结构健康监测的研究现状

合集下载

结构试验与检测技术的现状和发展趋势

结构试验与检测技术的现状和发展趋势

结构试验与检测技术的现状和发展趋势随着科学技术的不断发展,结构试验与检测技术在工程领域中扮演着重要的角色。

结构试验与检测技术是研究结构物力学性能和健康状况的一种手段,通过对结构物进行试验和检测,可以评估结构物的性能,预测结构物的寿命,并提供准确的结构健康监测数据,为结构的设计、施工和维护提供科学依据。

目前,结构试验与检测技术已经取得了很大的进展。

传统的结构试验主要依赖于传感器和测量设备,通过对结构物进行物理加载和数据采集,得到结构物的力学性能数据。

随着计算机技术的发展,数字化试验技术逐渐兴起,利用计算机模拟结构的加载和响应过程,可以更准确地预测结构物的性能。

另外,无损检测技术也得到了广泛应用,利用声、热、电等非破坏性手段对结构物进行检测,可以实现对结构物内部缺陷的探测和定位。

然而,结构试验与检测技术仍然存在一些挑战和不足之处。

首先,传统的试验方法需要消耗大量的人力和物力资源,时间成本较高。

其次,试验数据的处理和分析也面临一些困难,需要借助复杂的数学模型和算法。

最后,现有的无损检测技术对于复杂结构和特殊材料的应用还存在局限性。

为了克服这些挑战,结构试验与检测技术正朝着自动化、智能化和高效化的方向发展。

一方面,利用机器学习、人工智能等技术,开发智能化的试验和检测系统,可以自动化地进行试验和数据采集,减少人力和时间成本。

另一方面,结合虚拟现实技术,可以实现对复杂结构的数字化建模和仿真,提高试验数据的准确性和可靠性。

此外,基于无线传感器网络和互联网技术的远程监测系统也在逐渐应用于结构试验与检测领域,可以实现对结构物的实时监测和远程数据传输。

总之,结构试验与检测技术在工程领域中具有重要的应用价值。

随着科技的不断进步,结构试验与检测技术正朝着自动化、智能化和高效化的方向发展,这将为工程设计、施工和维护提供更可靠和准确的技术支持。

土木工程结构健康监测系统的研究现状及进展

土木工程结构健康监测系统的研究现状及进展

土木工程结构健康监测系统的研究现状及进展1引言口前我国土木工程事故频繁发生,如桥梁的突然折断、房屋骤然倒塌等,造成了重大的人员伤亡和财产损失,已经引起人们对于重大工程安全性的关心及重视。

另外,我国有一大部分桥梁和基础设施都是在20世纪五六十年代建造的,经过这么多年的使用,它们的安全性能如何?是否对人民的生命财产构成威胁?这些都是亟待回答的问题。

近些年,地震,洪水、暴风等自然灾害也对这些建筑物和结构造成不同程度的损伤;还有一些人为的爆炸等破坏性行为,如美国世贸大楼倒塌对周围轻筑物的影响。

这些越来越引起人们的密切关注。

对重大丄程结构的结构性能进行实时的监测和诊断,及时发现结构的损伤,并评估其安全性,预测结构的性能变化和剩余寿命并做出维护决定,对提高工程结构的运营效率,保障人民生命财产安全有极其重大的意义,已经成为现代工程越来越迫切的要求,也是土木工程学科发展的一个重要领域。

结构健康监测系统可以实时采集反结构服役状况的相关数据,采用一定的损伤识别算法判断损伤的位置与程度,及时有效地评佔结构的安全性,预测结构的性能变化并对突发事件进行预警,因而可以较全面地把握结构建造与服役全过程的受力与损伤演化规律,土木是保障大型工程结构隐建造和服役安全的有效手段之一。

2健康监测系统的基本概念结构健康签测(structural health monitoring, SHM)是指利川现场的无损传感技术,分析通过包括结构响应在内的结构系统特性,达到检测结构损伤或退化的一些变化。

损伤识别:工程结构一般会受到两种损伤,即突然损伤和积累损伤。

突然损伤山遭地震、洪水、飓风、爆炸等严重的自然或人为灾害等突发事件引起,而积累损伤则一般是结构在经过长时期使用后缓慢累积的损伤,具有缓慢积累的性质。

对于损伤识别的目标,有工程师提出了损伤检测的5个层次:判断结构中是否有损伤产生,损伤定位,识别损伤类型,量化损伤的严重程度,评估结构的剩余寿命。

结构健康监测若干方法与技术研究进展综述共3篇

结构健康监测若干方法与技术研究进展综述共3篇

结构健康监测若干方法与技术研究进展综述共3篇结构健康监测若干方法与技术研究进展综述1随着城市化和建筑业的发展,结构健康监测日益重要。

结构健康监测方法和技术的研究已经广泛应用于各种建筑结构和设施。

本文将对结构健康监测方面的若干方法和技术进行综述。

1. 轴力传感器轴力传感器能够测量梁、柱、桁架等建筑结构中的轴力,是结构健康监测中常用的一种技术。

轴力传感器可以分为电阻应变式和电容式两类。

电阻应变式轴力传感器通常使用应变片来测量梁、柱等结构的应变,进而计算出轴力。

电容式轴力传感器利用电极之间的电容变化来测量轴力。

轴力传感器的安装方便,可以非常准确地测量结构的轴力。

2. 加速度传感器加速度传感器是结构健康监测中最常用的传感器之一。

加速度传感器的作用是测量结构的加速度。

结构在发生震动或振动时,加速度传感器可以量化震动或振动的频率和幅值。

这种监测方法被广泛应用于地震研究、桥梁、风力发电机塔等建筑结构的结构健康监测。

加速度传感器的数据可以用于识别结构的刚性、阻尼和质量等特性。

3. 光纤传感器光纤传感器是一种基于光学原理的传感器。

光纤传感器可以用于测量多种物理量,包括应变、温度和压力等。

在结构健康监测中,应变光纤传感器可以用于测量结构的变形和应变,温度光纤传感器可以用于测量结构的温度变化。

光纤传感器的优点是灵敏度高、精度高、抗干扰能力强。

这种传感器通常用于海底管道、桥梁等长距离的结构监测。

4. 振动传感器振动传感器可以测量结构的振动。

振动传感器基于加速度传感器原理,但更多地专注于结构在某一频率范围内的振动。

它可以用于监测桥梁、风力发电机塔、建筑物等结构的振动。

振动传感器可以通过固定在结构上的惯性物体和磁铁实现震动控制和监测。

5. 影像监测影像监测是一种非接触的结构健康监测方法。

它通过在结构表面安装摄像头或激光传感器等设备,并运用计算机视觉技术进行图像分析,可以实现对结构表面形变和裂缝等的监测。

影像监测适用于高层建筑、拱桥等建筑结构的结构健康监测。

飞机结构健康监测技术综述

飞机结构健康监测技术综述

飞机结构健康监测技术综述飞机是一种非常重要的交通工具,它需要具备高速度、高高度、高强度、高可靠性等特点,并且需要满足各种恶劣环境的测试和性能,可以保证飞机运行的安全性和正常性,同时也可以适应现代社会的需求。

为了确保飞机的安全运行,减少意外事故的发生,飞机结构健康监测技术应运而生。

本文将从飞机结构健康监测技术的背景、基本原理、现状以及应用,进行综述。

1、背景:飞机结构健康监测技术是指对飞机的结构、系统和组件进行监测、识别、评估、预测和管理的技术。

它可以通过不同的传感器、测试数据、计算方法等获取支持,掌握飞机结构的实时状态,为飞机运营、维护和保养提供科学和精确的依据,同时也是飞机生产、设计和改进的关键环节。

飞机的结构是其性能和安全的重要指标,它们需要不断地接受工程师们的检测和监测,以便及时发现存在的缺陷和隐患,进行有效的修复和加固。

飞机的结构健康监测技术的发展,大大的提高了飞机运行的安全性和正常性、降低了事故发生的概率和风险。

2、基本原理:(1)传感器技术:传感器技术是基于无线电子技术、工业计量技术、材料科学和信息处理技术,并利用一系列的传感元件和电子仪器设备,对各种结构物的物理量进行测试、监测、安防和故障分析等处理,如应力、疲劳、温度、压力等多种参数。

(2)智能系统:智能系统是由智能传感器、控制器和信息处理单元等组成的管控网络系统。

它能够采集、分析和处理结构在各种复杂环境下的运行数据,并利用专业算法和数学模型进行分析,及时识别生产缺陷和结构异常,提供合理的预警和预测,并实现结构健康监测目标。

(3)数据处理:数据处理是结构健康监测技术的核心,它可以将大量的观测数据、实验数据、模拟模型产生的数据通过不同的算法处理,产生结构状态评估、损伤识别、故障预测和决策支持等信息,因而可以很好的帮助维修队及时认识和掌握飞机的实时状态,从而做出准确的维修计划,避免无谓的事件的发生。

3、现状:目前,飞机结构健康监测技术发展得非常迅速,已经成为飞行安全、使用性能提升的核心技术之一。

土木工程中的结构健康监测技术研究与应用

土木工程中的结构健康监测技术研究与应用

土木工程中的结构健康监测技术研究与应用在现代土木工程领域,确保各类建筑和基础设施的安全性、可靠性以及耐久性是至关重要的。

随着科技的不断进步,结构健康监测技术应运而生,并逐渐成为保障土木工程结构长期稳定运行的重要手段。

结构健康监测技术是一种通过对结构的各种物理参数进行实时监测、分析和评估,以判断结构是否处于健康状态的技术手段。

它涵盖了多个学科领域,包括传感器技术、信号处理、数据分析、结构力学等。

这项技术的出现,改变了传统土木工程中依靠定期检测和经验判断来评估结构安全性的方式,实现了对结构状态的实时、连续和准确监测。

在土木工程中,结构健康监测技术的应用范围十分广泛。

桥梁是其中一个重要的应用领域。

桥梁作为交通网络的关键节点,承受着车辆荷载、风荷载、地震等多种作用。

通过在桥梁关键部位安装传感器,如应变传感器、位移传感器、加速度传感器等,可以实时获取桥梁在各种荷载作用下的响应。

这些数据经过处理和分析,能够帮助工程师及时发现桥梁结构的损伤和潜在问题,如裂缝的产生和扩展、支座的位移等。

从而采取相应的维护和加固措施,保障桥梁的安全运行。

高层建筑也是结构健康监测技术的重要应用对象。

高层建筑在风荷载和地震作用下的响应较为复杂,通过监测其在不同工况下的振动特性、变形情况等,可以评估结构的稳定性和抗震性能。

此外,对于大型体育场馆、机场航站楼等大跨度空间结构,结构健康监测技术同样能够发挥重要作用。

它可以监测结构在施工过程中的变形和应力分布,确保施工安全;在运营阶段,能够及时发现结构的异常情况,为结构的维护和管理提供科学依据。

实现结构健康监测的关键在于传感器技术。

目前,常用的传感器包括光纤传感器、压电传感器、电阻应变片等。

光纤传感器具有抗电磁干扰、耐腐蚀、精度高等优点,能够准确测量结构的应变和温度等参数。

压电传感器则适用于动态监测,能够快速响应结构的振动信号。

电阻应变片虽然精度较高,但在长期使用中容易受到环境因素的影响。

除了传感器,数据采集与传输系统也是结构健康监测的重要组成部分。

高速公路桥梁结构健康监测技术研究

高速公路桥梁结构健康监测技术研究

高速公路桥梁结构健康监测技术研究随着城市化进程的加快,高速公路的建设规模与日俱增。

桥梁作为高速公路交通的重要组成部分,其结构健康状态的监测显得尤为重要。

本文将围绕高速公路桥梁结构健康监测技术展开研究,探讨其原理、方法和应用前景。

一、桥梁结构健康监测技术的原理桥梁结构健康监测技术是通过检测、分析和评估各种桥梁结构的力学性能和承载能力,以及随时间变化的结构健康状况。

其原理主要包括:1. 传感器技术:通过在桥梁结构上布设感应器,实时监测桥梁的挠度、应变、位移等参数,形成监测数据。

2. 数据采集与传输技术:采用先进的数据采集设备,将传感器获取的数据进行采集和传输,以保证数据的准确性和实时性。

3. 结构识别与评估技术:通过对监测数据进行分析与处理,实现对桥梁结构受力特征和性能的识别与评估,发现结构存在的问题和隐患。

4. 预警与修复技术:当桥梁结构出现异常情况时,通过预警系统发出警示,及时采取修复措施,确保桥梁的正常运行和使用安全。

二、常用的桥梁结构健康监测方法1. 振动监测法:通过挂设在桥梁上的加速度计和测斜仪等设备,实时监测桥梁的振动参数,判断结构的健康状况。

2. 应变监测法:通过布设在桥梁上的应变传感器,实时监测桥梁的应变情况,判断结构的受力情况和承载能力。

3. 超声波检测法:通过采用超声波技术,对桥梁的混凝土和钢材进行无损检测,发现潜在的结构缺陷。

4. 图像分析法:通过对桥梁结构的摄像图像进行分析,识别结构的裂缝、渗漏等问题,预测结构的健康状况。

三、桥梁结构健康监测技术的应用前景桥梁结构健康监测技术在高速公路建设中具有广阔的应用前景。

首先,它可以有效地提高桥梁的安全性和可靠性,及时发现结构的问题并采取措施进行修复,避免发生事故。

其次,结合大数据与人工智能技术,可以实现对大量桥梁数据的分析和挖掘,为桥梁维护与管理提供决策依据。

最后,桥梁结构健康监测技术的不断发展和创新,将进一步提高其监测精度和效率,降低监测成本,为交通运输行业的发展做出贡献。

桥梁结构健康监测与维护技术研究

桥梁结构健康监测与维护技术研究

桥梁结构健康监测与维护技术研究桥梁作为城市的重要组成部分,负责连接两岸并承载车辆和行人,其安全运行尤为重要。

因此,桥梁的结构健康监测和维护技术显得尤为重要。

本文将介绍桥梁结构健康监测和维护技术的研究现状。

一、桥梁结构健康监测技术桥梁的结构健康监测技术是指对桥梁的各种力学参数、形变量、振动量等进行实时采集并进行分析,评估桥梁结构的健康状况,及时发现并排除潜在的问题。

传统的桥梁结构健康监测技术主要基于人工巡检,该方法存在着局限性,如难以覆盖所有部位、存在安全隐患、周期性较长等问题。

随着信息技术的快速发展,基于传感器网的桥梁结构健康监测技术变得越来越普及,其基本原理是通过安装在桥梁各处的传感器,采集桥梁的结构参数、损伤指标等重要信息,并通过研究这些数据,识别出桥梁结构的健康状况,并及时发现、预防潜在的问题。

其中一个常用的传感器是应变计。

通过应变计采集桥梁的应变量,结合计算方法,可以得到桥梁结构的形变量。

这些数据可以用来识别桥梁中的潜在状况,诸如劈裂、疲劳、应力集中等等。

如此选择合适的应变计对于监测桥梁的结构永久性变形、非永久性变形等有着良好的效果。

同时,推导来的这些形变量可作为初步的模型验证或者场所,这些数据可供后续的结构分析使用。

另外一个常用的传感器是加速度计,它可以用来探测桥梁的动量学响应,如振动、位移等。

当桥梁受到外力或自由振动时,加速度计可以检测到桥梁的动量学响应。

通过对这些数据的处理,可以判断桥梁的结构健康状况,并及时发现存在的问题。

二、桥梁维护技术桥梁结构的维护技术是指通过对桥梁定期进行检查维护,使其可以在安全的条件下稳定运行。

常见的维护措施包括清理、维修、更换等,需要根据每一桥梁的不同情况而定。

通常,桥梁的维护可以分为以下三个阶段。

第一步是前期维护。

这个步骤包括桥梁的设计、材料和施工等。

要确保所有的材料、构件和工艺的质量都符合相关标准,以确保工程的质量和安全性。

在设计和建造过程中,需要充分考虑桥梁的使用情况、使用年限和环境影响等因素。

结构健康监测技术的发展与应用

结构健康监测技术的发展与应用

结构健康监测技术的发展与应用在现代工程领域中,结构健康监测技术正逐渐成为保障各类建筑和基础设施安全、可靠运行的重要手段。

随着科技的不断进步,这项技术也在不断发展和完善,其应用范围也日益广泛。

结构健康监测技术的概念,简单来说,就是通过一系列的传感器、数据采集设备以及数据分析方法,对结构的物理状态和性能进行实时监测和评估。

它就像是给结构配备了一位“私人医生”,能够及时发现潜在的问题和损伤,并提供准确的诊断和预警。

这项技术的发展并非一蹴而就。

早期,监测手段相对简单,主要依赖人工巡检和一些基本的物理测量方法。

然而,随着电子技术、计算机技术以及传感器技术的飞速发展,结构健康监测技术迎来了重大的变革。

传感器的精度和可靠性不断提高,从传统的应变计、位移传感器,到如今的光纤传感器、压电传感器等,能够更加准确地感知结构的微小变化。

同时,数据采集和传输技术也取得了显著进步,实现了实时、远程的数据获取,大大提高了监测的效率和及时性。

在数据分析方面,先进的算法和模型不断涌现,使得从海量监测数据中提取有价值的信息变得更加容易。

机器学习、人工智能等技术的引入,为结构健康监测提供了更强大的分析工具,能够更准确地识别结构的损伤模式和预测其未来的性能变化。

结构健康监测技术在众多领域都有着广泛的应用。

在桥梁工程中,它可以对桥梁的受力状态、变形情况进行实时监测,为桥梁的维护和管理提供科学依据。

例如,一些大型跨海大桥和山区高桥,由于所处环境恶劣,承受的荷载复杂,通过结构健康监测系统,可以及时发现桥梁结构的疲劳损伤、锈蚀等问题,避免重大事故的发生。

在高层建筑中,结构健康监测能够监测建筑物在风荷载、地震作用下的响应,评估其抗震性能和安全性。

特别是在一些超高层建筑中,结构的稳定性和安全性至关重要,健康监测系统可以为设计优化和施工控制提供宝贵的数据支持。

在隧道工程中,结构健康监测可以监测隧道衬砌的变形、受力情况,预防隧道坍塌等事故。

对于一些地质条件复杂的隧道,如穿越断层、软土地区的隧道,健康监测系统能够及时发现潜在的危险,保障隧道的安全运营。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构健康监测的研究现状摘要:阐述了结构健康监测的概念、系统组成及其重要性,介绍了结构健康监测的研究现状,对工程中的应用作了概要性描述,并提出了需要进一步研究的问题关键词:结构健康监测,研究现状,综述一结构健康监测的意义近期在土耳其、我国台湾省以及印度的地震灾害,又重新演示了地震所造成的城市及其附近地区的破坏。

尽管在2001年的4月,在Seattle附近发生的6. 8级地震并没有造成很严重的破坏,但它却提示我们必须为防止今后的地震破坏而维修结构。

因为地震造成的结构损伤往往是隐藏在结构中的,如嵌入墙中和置于混凝土中节点的损伤,这样的损伤很难通过观测发现。

如1994年,在美国加州发生的Northridge地震,花了巨资来探测钢结构节点的损伤。

探测损伤往往需要非结构构件的移除,这又使得结构不能正常使用。

1995年的神户地震也碰到类似的情况。

对结构进行监测将在很大程度上避免这样的情况发生。

对于结构整体性能的长期监测也同样非常重要。

多数发达国家,土木工程结构的维护、修复、替换的费用非常大。

粗略估计,这些费用的总和将占到其国民总收入的10%左右。

还有,在大多数国家,很多建筑都在接近它们的设计寿命。

而现在,对于结构完好性的评估,主要还是采用人工、凭经验观测判断的方式,这样很费时间和资金。

对结构采取有计划的修复和维护也会很困难。

结构健康监测可以很大程度上减少周期性的检测,还能比较准确地确定结构的损伤程度,同时,也能对结构的剩余寿命和对结构的加固改造做出更好的评价。

二结构健康监测的概念及系统组成1概念结构健康监测(Structure Health Monitoring,简称SHM)技术是用探测到的响应,结合系统的特性分析,来评价结构损伤的严重性以及定位损伤位置。

其基本思想是通过测量结构在超常荷载前后的响应来推断结构特性的变化,进而探测和评价结构的损伤;或者通过持续监测来发现结构的长期退化。

有人将结构健康监测定义为“用最少的人力来实现对结构自动、连续的监测和观察。

”结构健康监测可适用于所有种类的结构。

对于土木工程结构,SHM系统可监测结构在地震或者爆炸下的损伤,或者监测结构在周围环境以及人的活动下的长期损伤。

这些信息可以为结构的安全评估提供重要参考,也可以用于结构的维护以及其剩余寿命的评估2结构健康监测系统应包括以下四个部分(1)传感系统:主要通过传感器将待测的物理量转变为电信号。

(2)数据采集和处理系统:一般安装于待测结构中,采集传感系统的数据并进行初步处理。

(3)通汛系统:将采集并处理过的数据传输到监控中心(4)监控中心和报警设备:利用具备诊断功能的软硬件对接收到的数据进行诊断,判断损伤的发生、位置、程度,对结构健康状况做出评估,如发现异常,发出报警信息。

三结构健康监测的目前研究现状结构健康监测是一门综合技术,涉及到结构动力学、信息技术(如信号的传输、存储与处理)、传感器技术、优化设计等多个学科。

结构健康监测技术最早起源于航空航天领域,最初的目的主要是进行结构的载荷监测。

随着结构设计的日益大型化、复杂化和智能化的发展,结构健康监测的内容逐渐丰富起来,不再是单纯的载荷监测,而是向结构损伤检测、损伤定位、结构寿命预测等方面发展。

在土木工程领域,结构健康监测20世纪80年代提出,最初主要在桥梁健康监测方面发展得比较快。

从20世纪90年代中后期至今,世界各国的土木工程师针对建筑结构的健康监测开展了大量的研究。

1信号的采集与处理结构的状况是由分析采集到的信号而获得的,因此,信号采集技术是结构损伤识别的前提。

信号采集技术包括信号的采集和放大、传感器的类型、安装位置、数量以及数据的获取、存储等。

由于被监测结构的庞大和复杂,传感器的类型和数目相当多,如何确定传感器的最优布置是研究的热点。

信号的采集和处理是结构损伤识别技术中特征因子的提取技术。

传感器采集的信号,如频率、振型、位移、温度等可以直接利用,但大部分信号需经过放大、去噪声后,才能得到对损伤敏感的特征因子。

近年来,数据融合技术开始用于数据处理和结构健康监测的整体评价上。

数据处理技术基于得到的信息对数据进行处理,以减小误差而加强分析结果的可靠性。

在结构健康监测中,模糊综合评价的应用最为广泛,它的思想是将模糊数学理论与可靠度诊断标准相结合进而给出整体评价等级。

2损伤检测损伤检测则是进行结构健康监测的基础,这是健康监测的关键环节,一直以来都是非常活跃的研究领域。

从技术上,损伤检测可以分为基于模态分析(整体探测)和基于试验信号处理(局部探测)的方法。

也即是整体和局部的探测方法。

(1)基于模态分析方法的结构损伤检测结构损伤导致结构的动力特性,如同有频率、固有振型、和模态阻尼等发生变化。

结构的固有频率和固有振型可以通过试验直接测得或由有限元模型计算得到,模态阻尼主要由试验直接测得。

由固有频率和固有振型可以推出结构的质量矩阵和刚度矩阵,于是可以根据未损伤结构和损伤结构的质量矩阵和刚度矩阵来确定损伤位置和程度。

固有频率和模态阻尼可直接进行比较,固有振型的比较通常使用Ewins 提出的模态置信度(modal assuranee criterion MAC )判断。

关于根据结构响应来反推结构有限元模型的质量矩阵和刚度矩阵的方法,也就是参数识别问题,主要涉及试验测试技术、结构动力修改和模态比较以及损伤位置确定的方法。

其中,结构动力修改是基于模态分析方法的损伤检测过程中的一个关键问题,其原因是有限元模型和实际结构之间的差异,这可能造成模型的误差而产生的偏差和损伤产生的效果相当,于是很难识别损伤。

除了模型和实际结构的差异外,基于模态分析的方法还将受到传感器获取数据的不完整性以及测量信号中噪声的影响。

这些都可能使方法在探测损伤时失效。

(2)基于试验信号处理的损伤检测方法基于试验信号处理的损伤检测方法不需要识别结构的动力参数,而是通过对比所检测结构与无损伤结构的响应信号或信号的某种特征参数来识别损伤。

通常是针对结构局部构件的检测。

一般来说,直接测试得到的动态响应信号要经过处理才能提取出其特征参数,在基于试验信号处理的损伤检测方法中,用于信号处理的方法是多种多样的,但其根本目的都是要提取出足够多的响应信息和追求足够高的信号损伤敏感度。

总的来说,该方法可分为两种:一种是在时间域上进行结构响应信号的分析;一种是求得信号的某些非时域特征值,如信号峰值、能量积分,然后再比较这些值来识别结构的损伤。

四结构健康监测的工程应用结构健康监测系统监测结构的性能,检测结构的损伤,进而评价结构的健康状况并做出相应的维护决策,是一种可靠、有效、经济的监测方法。

从20世纪80年代起,SHM系统开始用于大型桥梁的健康监测。

例如,英国在总长522m的3跨变高度连续箱梁的Foyle 桥上布设传感器,监测桥梁运营阶段在车辆与风荷载作用下主梁的振动、扰度和应变等响应,同时监测环境风和结构温度场。

加拿大在全长12.9km、建于海上的45跨预应力混凝土箱梁Confederation桥上实施的一套综合监测系统,对桥梁在冰荷载作用下的性能、长短期变形、温度应力以及在车辆荷载、荷载组合、风和地震荷载作用下的动力响应和环境对桥梁的侵蚀进行研究。

目前,SHM系统在国内主要用于大型桥梁。

例如,从1997年年底开始,香港青马大桥的桥梁结构健康监测系统,通过设在大桥不同位置的各类传感器系统收集大桥结构反应和大桥工作环境变化的信息。

信息首先从所在的传感器传送到三台分别位于大桥两侧由微电脑控制的信息收集站作信息收集及初步处理,经过数位/类别转换,再透过光纤网络,将信息转送至一台信息处理和分析系统上,作信息收集、处理、分析及储存。

获取的数据可以作为以后大桥结构评估、运营和维护的参考。

在南京长江大桥上安装的健康监测系统,主要进行温度、风向、地震及船舶撞击、墩位沉降,以及恒载几何线形、结构振动、主桁杆件应力、支座位移等方面的监测。

采用健康监测系统的还有江阴长江大桥、上海徐浦大桥等。

五结构健康监测的展望结构健康监测是最近十几年才发展起来的一门新兴科学,目前正处在蓬勃的发展之中。

这种技术在航空航天、机械等领域已经有了广泛的应用,但在土木工程领域,尤其是在建筑结构方面,还处于起步阶段,绝大多数研究还仅仅局限于试验阶段。

1996年国际结构控制研讨会形成了关于创建工作组来研究建筑结构健康监测问题的计划,并成立了亚洲、美国、欧洲的工作组。

国内外的研究人员在传感器技术、损伤检测、模式识别、数据处理等方面进行了大量的研究,取得了一系列的成果。

但这些研究成果大多还停留在理论与试验阶段,能实际应用的成果还只是小部分。

从近年来研究的发展来看,以下几个方面的研究在该技术的发展中有重要意义:(1)结合土木工程结构自身的特点,利用振动模态分析技术和系统识别理论,探索适合土木工程结构的模态识别方法。

由于土木工程结构健康监测大部分技术都是从航空航天及机械领域移植过来的,这些技术中的很大一部分并不适合土木工程结构的健康监测,因此,探索适合土木工程结构的模态识别方法具有重要意义。

(2)结构健康监测系统的耐久性,包括传感器的耐久性和数据传输系统的耐久性。

由于结构健康监测是一项长期的工作,需要传感器和数据传输系统有较好的耐久性,而目前的健康监测系统的耐久性还不够,能研究出具有更好的耐久性的结构健康监测系统具有很大意义。

(3)量化损伤程度、估计结构剩余寿命的损伤检测研究。

目前的健康监测还很难实现对损伤的量化,也不能较好地估计结构剩余寿命。

(4)数据处理技术,尤其关键的是处理所获得的丰富数据以获取对结构简洁有用的评估的核心算法。

目前的传感器技术的进步使得获取大量的结构信息已经不是问题,迫切需要处理所获取的数据以形成对结构的正确评价的算法。

(5)结构健康监测的设计指南和标准的结构健康监测系统。

设汁指南和标准健康监测系统的研究是试验研究和工程应用的纽带,待这方面的研究成果比较成熟后,工程应用的水平会有更大的提高。

参考文献【1】孙鸿敏,等.土木工程结构健康监测的研究进展.防灾减灾工程学报,2003, 23(3) : 92 —97.【2】杨智春,等.结构健康监测中的损伤榆测技术研究进展.力学进展,2004. 34(2) : 215 —222.【3】姜绍飞,等.结构健康监测中的数据融合技术.沈阳建筑大学学报,2005( 1): 18 —22【3】欧进萍,等.重大工程结构智能传感网络与健康监测系统的研究与应用.中国科学基金,2005( 1) : 8 一l 2 . 【4】刘永前.大型桥梁结构健康监测技术研究与应用[D].北京交通大学2007【5】桥梁结构模态参数辨识与损伤识别方法研究[D].武汉理工大学2009【6】孙全胜.智能桥梁结构健康监测的研究[D].东北林业大学2005【7】孙鸿敏,李宏男.土木工程结构健康监测研究进展[J].防灾减灾工程学报.2003(03)【8】朱宏平.结构损伤动力检测与健康监测研究现状与展望[J].工程力学.第28卷第2期.2011。

相关文档
最新文档