中南大讲义学低品位红土镍矿直接还原研究
CaO在红土镍矿直接还原焙烧中的作用机理_刘志国

第46卷第10期中南大学学报(自然科学版) V ol.46No.10 2015年10月Journal of Central South University (Science and Technology)Oct. 2015 DOI: 10.11817/j.issn.1672-7207.2015.10.002CaO在红土镍矿直接还原焙烧中的作用机理刘志国1,孙体昌1,蒋曼2,高恩霞1(1. 北京科技大学土木与环境工程学院,北京,100083;2. 山东理工大学资源与环境工程学院,山东淄博,255049)摘要:以Ni和Fe质量分数分别为1.46%和26.68%的红土镍矿为研究对象,进行直接还原焙烧−磁选试验研究,并对焙烧矿进行X线衍射(XRD)与扫描电镜(SEM)分析以研究CaO的作用机理。
研究结果表明:使用含CaO的组合添加剂能够达到磁选精矿中镍质量分数为8.58%、回收率为88.15%的最佳试验效果。
在直接还原焙烧过程中,添加的CaO能够在焙烧过程中与硅酸盐矿物反应生成辉石、提高含镍硅酸盐的反应活性、促进镍的还原并且能够降低还原过程中NiO与SiO2结合的概率,提高镍的回收率。
关键词:红土镍矿;直接还原;CaO;磁选;硅酸盐中图分类号:TD95;TF556 文献标志码:A 文章编号:1672−7207(2015)10−3566−07 Mechanism of CaO in direct reduction roasting ofnickel laterite oreLIU Zhiguo1, SUN Tichang1, JIANG Man2, GAO Enxia1(1. School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China;2. School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, China)Abstract: The direct reduction roasting-magnetic separation experiment was conducted on nickel laterite sample graded1.46% Ni and 26.68% Fe, and X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses wereconducted to to investigate the mechanism of CaO. The results show that it can achieve the best results with nickel grade of 8.58%, recovery grade of 88.15% by using composite additives containing CaO. In the process of direct reduction roasting, CaO can react with silicate minerals to generate pyroxene, which can increase the reactivity of silicate bearing nickel and promote the reduction of nickel. It can also reduce the probability of NiO combined with SiO2 again in the reduction process and improve the recovery of nickel.Key words: nickel laterite ore; direct reduction; CaO; magnetic separation; silicate镍资源按地质成因主要划分为2类:岩浆型硫化镍矿床和风化型红土镍矿床。
红土镍矿酸浸液直接萃取提镍新技术

中南大学 稀有金属冶金研究所
混合萃取剂协同萃取效应
表1 混合萃取剂的协同效应 编号 1 2 3
萃取剂A浓度(mol/L)
萃取剂B浓度(mol/L) ENi (%) DNi
0.20
0 2.49 0.026
0
1.0 0.33 0.003
0.20
1.0 94.29 16.51
料液:Ni1.836 g/L, Al 33.22 g/L, Fe 0.179g/L,pH=3.02; 相比O/A=1/1;振荡时间 10 min; 萃取温度T=25℃ .
3.1 直接萃镍连续运转扩大试验(混合室 1.2L)
中南大学 稀有金属冶金研究所
图9 连续运转扩大试验现场
5级萃取 , 2级洗涤,3~4级反萃,2~3级反洗,1级皂化; 萃取槽混合室体积:1.2L
3.1 直接萃镍连续运转扩大试验(混合室 1.2L)
中南大学 稀有金属冶金研究所
★堆浸液连续稳定运行5天, 典型的萃余液和反萃液取样分析结果:
[Ni]a (g/L)
6.0 4.0 2.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 [Ni]o (g/L)
图6 Ni2+的反萃等温线
反萃剂:0.5mol/L H2SO4; 有机相:45%HBL110-55%磺化煤油, Ni 4.876g/L; 温度:30℃
2. 直接萃取提镍的技术基础
料液成分 (g/L)
萃余液成分 (g/L) 反萃液成分 (g/L) 萃取率(%) 除杂率(%)
33.39 0.0052 >98.0 ---
0.0065 0.0090 -82.85 -99.99
3.1 直接萃镍连续运转扩大试验(混合室 1.2L)
用固态去氧的方法还原低品位红土镍矿中的镍

图5里显示了红土镍矿的SEM图像。红土镍矿的内部结构是松散的,这样有助于水的储存,同样还发现了三明治结构和粒状结构。这种三明治结构厚,边缘和角落由粒状结构组成。矿物学分析显示了红土镍矿主要由夹层型形态和不规则六边形的石英粒状结构的利蛇纹石而构成。
4.2
4.2.1
根据实验的要求,还原温度在600~1000℃的范围内,图6显示了在还原温度下总镍中转换成金属镍的比例函数。随着还原温度的增高αNi也增加,在850℃时转换比例有轻微的下降,这个归结为利蛇纹石对镁橄榄石的相变(Flavio,1992)提高还原温度(>850℃)是有助于还原反应的。在800℃的转换比例之中,900℃时转换比例的降低归结为形成了金属铁盒镍与铁氧化物结合而形成铁镍合金。
图6.总镍到金属镍的转换比例的还原温度函数图7.总镍到金属镍的转换比例的还原时间函数
图8.总镍到金属镍的转换比例的CO用量函数图9.总镍到金属镍的转换比例的还原温度函数
图10.总镍到金属镍的转换比例的还原时间函数图11.总镍到金属镍的转换比例的碳含量函数
图12.总镍到金属镍转换比例的CaO用量函数图13.红土镍矿还原的XRD模式
事实上,红土镍矿是混合矿石,包含有NiO、Fe2O3、Fe3O4等等,所以在还原过程中也伴随着其他反应的发生。基于铁镍矿的还原,NiO·Fe2O3,氧化镍还原为金属镍是优先的,这点由(4)~(6)式可以表明(Olli等人,1995):
3NiO•Fe2O3+CO=3NiO+2Fe3O4+CO2(4)
NiO+2Fe2O3+CO=Ni+2Fe3O4+CO2(5)
热重分析法/联立扫描分析法是用来确定红土镍矿的热性能,见图4。由于吸热和放热的过程,两个主要的峰出现在DSC温谱图。第1个峰在610°C,出现在这里是由于利蛇纹石中结晶水的流失,相对应地重量会损失9.6%,利蛇纹石分解成为一种无形的硅酸镁相。第2个主要的峰值出现在820°C,因为利蛇纹石到镁橄榄石的转换阶段中,这种结构的变化而导致的。
红土镍矿金属化球团直接还原工艺研究

红土镍矿金属化球团直接还原工艺研究
樊计生;郭明威;郭亚光;朱荣;王永威
【期刊名称】《工业加热》
【年(卷),期】2013(042)004
【摘要】采用转底炉直接还原工艺处理红土镍矿制备金属化球团,通过正交实验探索对红土镍矿选择性还原的影响因素,找出最佳工艺参数.实验表明,可以通过调整温度、还原时间和w(C)/w(O)来实现选择性还原.从金属化球团扫描电镜观察及XRD 衍射分析得知,金属晶粒成长不规则,分布不均匀,w(Fe)约为80%,w(Ni)约为8%,球团中铁主要以金属铁与硅酸铁的形式存在;镍主要以金属形式存在.当铁金属化率到53.81%时,XRD衍射分析已测不出镍氧化物的存在.
【总页数】4页(P36-39)
【作者】樊计生;郭明威;郭亚光;朱荣;王永威
【作者单位】北京中冶设备研究设计总院有限公司,北京100029;北京中冶设备研究设计总院有限公司,北京100029;北京科技大学冶金与生态工程学院,北京100083;北京科技大学冶金与生态工程学院,北京100083;北京科技大学冶金与生态工程学院,北京100083
【正文语种】中文
【中图分类】TF815
【相关文献】
1.提高低品位铁矿球团直接还原金属化率研究 [J], 经文波;陈文亮
2.红土镍矿直接还原富集镍工艺研究 [J], 石清侠;邱国兴;王秀美
3.快速直接还原法生产金属化球团工艺的探讨 [J], 吴光亚
4.转底炉直接还原生产金属化球团的富氧燃烧技术研究 [J], 高古忠;杨春善
5.转底炉直接还原生产金属化球团的富氧燃烧技术研究 [J], 高古忠;杨春善;
因版权原因,仅展示原文概要,查看原文内容请购买。
低品位红土镍矿制备镍精矿的试验研究

低品位红土镍矿制备镍精矿的试验研究朱德庆;郑国林;潘建;李启厚;安月明;朱景和;刘志宏【摘要】对某低品位腐殖土型红土镍矿(镍和铁质量分数分别为1.01%和15.72%)进行压块—还原焙烧—磁选试验,研究还原温度、还原时间、复合添加剂用量和预热温度对镍和铁回收效果的影响.研究结果表明:在碱度(即CaO与SiO2质量比)为0.2、复合添加剂质量分数为14%、预热温度为900℃、预热时间为15 min、还原温度为1250℃、还原时间为35 min、煤与矿质量比为2.7、磨矿细度小于0.074 mm的质量分数为(95±4)%、磁选磁场强度为131.34 kA/m的条件下,获得镍和铁品位分别为4.22%和69.75%的镍精矿,镍和铁回收率分别为92.22%和85.73%;适宜的预热制度有利于团块中镍、铁的富集;复合添加剂促进了镍铁晶粒的聚集、长大,提高了镍、铁回收效果.%The enrichment of Ni from a low-grade saprolite laterite assaying with 1.01% Ni and 15.72% Fe was studied through briquetting—reduction—magnetic separation process and the effects of reduction temperature, reduction duration, dosage of composite additive, preheating temperature on the recovery of Ni and Fe were examined to optimize the process. The results show that nickel concentrate with 4.22% Ni and 69.75% Fe was achieved with recoveries of 92.22% and 85.73% for Ni and Fe respectively at the following conditions: basicity (mass ratio of CaO to SiO2) 0.2, dosage of composite additive 14%, preheating at 900°C for 15 min, reduction at 1 250 °C for 35 min, mass ratio of coal to ore 2.7, grinding fineness of (95±4)% passing 0.074 mm and magnetic intensity of 131.34 kA/m, the enrichment of Ni and Fe is improved by preheating the briquettes of laterite ores. The compositeadditive can promote the growth of ferro-nickel grains, enhance the separation process and improve the recovery of Ni and Fe.【期刊名称】《中南大学学报(自然科学版)》【年(卷),期】2013(044)001【总页数】7页(P1-7)【关键词】腐殖土型红土镍矿;直接还原;复合添加剂;镍精矿【作者】朱德庆;郑国林;潘建;李启厚;安月明;朱景和;刘志宏【作者单位】中南大学资源加工与生物工程学院,湖南长沙,410083;中南大学资源加工与生物工程学院,湖南长沙,410083;中南大学资源加工与生物工程学院,湖南长沙,410083;中南大学冶金科学与工程学院,湖南长沙,410083;中国有色矿业集团有限公司,北京,100029;中国有色矿业集团有限公司,北京,100029;中南大学冶金科学与工程学院,湖南长沙,410083【正文语种】中文【中图分类】TF815;TF803.12镍由于具有抗蚀性能强、耐热性好等特点在不锈钢、特殊合金钢等多种领域获得广泛应用[1]。
红土镍矿深度还原—磁选试验研究

红土镍矿深度还原—磁选试验研究王亚琴;李艳军;张剑廷;韩跃新;李淑菲【摘要】The low grade nickeliferous laterite ore was treated by deep reduction,low-intensity magnetic separation,high-intensity magnetic separation process,during which reducing temperature,reducingtime,carbon coefficient,thickness of materisl-bed and the backing amount of concentration from high-intensity magnetic separation was investigated. The optimal condition were the reduction temperature at1275 ℃ .reduction time for 50 min,carbon coefficient of 2.5,thic kness of material-beds of 25 mm, the backing amount of concentration from high-intensity magnetic separation of 25 percent of ore by weight The nickel-iron products in high quality with nickel and iron grade of 6.96% and34.74% , nickel and iron recovery of 94.06% and 80.44% respectively was achieved by low-intensity magnetic separation,the intensity of which was 130 kA/m,at the same time,the concentration riched in micro-nickeliron particles from high-intensity magnetic separation has good qualities in nucleator.%采用深度还原—弱磁—强磁工艺对低品位红土镍矿进行了开发利用研究,重点研究了深度还原合适的温度、还原时间、配碳系数、料层厚度、强磁精矿返回量等参数.研究表明,适宜的深度还原条件为:还原温度1 275℃、还原时间50 min、配碳系数2.5、料层厚度25 mm、强磁精矿返回量占原矿量的25%,还原产物经弱磁选(场强为130 kA/m),可获得镍、铁品位分别为6.96%、34.74%,镍、铁总回收率分别为94.06%、80.44%的优质镍铁精矿产品;同时富含大量细小镍铁颗粒的强磁精矿是红土镍矿深度还原的优质成核剂.【期刊名称】《金属矿山》【年(卷),期】2011(000)009【总页数】5页(P68-71,86)【关键词】红土镍矿;深度还原;磁选;返回【作者】王亚琴;李艳军;张剑廷;韩跃新;李淑菲【作者单位】济南钢城矿业有限公司;东北大学资源与土木工程学院;东北大学资源与土木工程学院;东北大学资源与土木工程学院;东北大学资源与土木工程学院【正文语种】中文随着易选硫化镍矿资源的逐渐减少,红土镍矿资源的开发利用技术研究迫在眉睫。
红土镍矿直接还原生产含镍粒铁脱硫试验研究①

矿 冶 工 程
MI NI NG AND M ETALLURGI CAL ENGI NEERI NG
V0 l _ 3 3№ 1 Fe b r u a r y 2 01 3
红 土 镍 矿 直 接 还 原 生产 含 镍 粒 铁 脱 硫 试 验 研 究①
Ab s t r a c t :F e r r o — n i c k e l n u g g e t s w e r e p r o d u c e d b y h i g h t e mp e r a t u r e r e d u c t i o n a n d me l t i n g o f c o mp o s i t e p e l l e t s p r e p a r e d wi t h l a t e it r e n i c k e l o r e a s r a w ma t e ia r l a n d a d d i t i o n o f r e d u c t a n t , f l u x a n d a d d i t i v e .T h e d e s u l f u r a t i o n me c h a n i s m i n t h e p r o c e s s o f f e r r o — n i c k e l n u g g e t s p r o d u c t i o n wa s i n v e s t i g a t e d .S i mu l t a n e o u s l y ,t h e i n l f u e n c e s o f e x p e i r me n t a l t e mp e r a t u r e a n d t i me a s we l l a s d o s a g e s o f C a C O3 a n d Mn O o n d e s u l f u r a t i o n e f f e c t we r e s t u d i e d .T h e r e s u l t s i n d i c a t e t h a t t h e r e d u c — t i o n — m e l t i n g t e mp e r a t u r e a n d t i me a n d C a C O3 d o s a g e h a v e c e r t a i n i mp a c t o n s u l f u r c o n t e n t i n t h e f e r r o — n i c k e l n u g g e t s a n d d e s u l f u r i z a t i o n d e g r e e ,b u t wi t h n o o b v i o u s e f f e c t . Mn O d o s a g e h a s a s i g n i f i c a n t i mp a c t o n t h e d e s u l f u r i z a t i o n d e g r e e . T h e s u l f u r c o n t e n t i n t h e f e r r o — n i c k e l n u g g e t s d e c r e a s e d f r o m 0 .1 3 % t o 0 . 0 6 % wh i l e t h e d e s u l f u r i z a t i o n d e re g e
红土镍矿软熔性能及还原过程研究

关键 词 : 红土镍矿 ; 软熔性能 ;煤基直接还原
中图分类号 : T F 8 1 5 文 献标 识 码 : A d o i : 1 0 . 3 9 6 9 / j . i s s n . 0 2 5 3 — 6 0 9 9 . 2 0 1 3 . 0 6 . 0 1 6 文章 编 号 : 0 2 5 3 — 6 0 9 9 ( 2 0 1 3 ) 0 6 一 O 0 5 7 — 0 5
逐渐提 高 , 红土镍矿 的熔 化温度和流动温度呈现先 降低后 升高的趋 势 , 当C a O添加量为 1 0 %时 , 红土镍矿 的熔化温度和流动温度最 低, 分别为 1 3 1 5℃和 1 3 3 5 o C。结合扫描 电子 显微 镜和能谱分析仪 , 对不 同温 度下 反应 后的球团样品进行 了分析 , 研究 了红土镍矿
t h e a d d i t i o n o f Ca O a t 1 0% .Me a n wh i l e, pe l l e t s r e a c t e d a t di f f e r e n t t e mp e r a t u r e s we r e a n a l y z e d b y b o t h s c a n n i n g e l e c t r o n mi c r o s c o p e a n d e n e r y d g i s pe r s e s pe c t r o s c o p y, S O a s t o s t u d y r e d uc t i o n p r o c e s s o f c a r b o n— b e a ing t p e l l e t i n l a t e r i t e — n i c k e l o r e . Ke y wo r ds:l a t e r i t e — ni c k e l o r e;s o te f n i n g — me l t i n g p r o p e r t i e s ;c o a l — ba s e d d i r e c t r e d u c t i o n