第六章:挡土墙设计4案例
挡土墙设计实例

挡土墙设计实例在土木工程领域中,挡土墙是一种常见的结构,用于支撑土体、防止土体坍塌或滑坡,保证边坡的稳定性。
本文将通过一个具体的实例,详细介绍挡土墙的设计过程。
一、工程背景假设在某一山区公路建设项目中,需要在一段斜坡上修建挡土墙,以保证公路的安全和稳定。
该斜坡的高度约为 8 米,坡度约为 45 度,土体为粉质黏土,其物理力学性质如下:内摩擦角φ = 20 度,黏聚力 c = 15kPa,重度γ = 18kN/m³。
二、设计要求1、挡土墙的高度应满足斜坡的稳定性要求,并保证公路的安全使用。
2、挡土墙的结构应具有足够的强度和稳定性,能够承受土体的压力和其他荷载。
3、挡土墙的设计应考虑施工的可行性和经济性。
三、挡土墙类型选择在常见的挡土墙类型中,重力式挡土墙因其结构简单、施工方便、造价较低等优点,在本工程中较为适用。
重力式挡土墙主要依靠自身的重力来抵抗土体的压力,一般由墙身、基础和排水设施等组成。
四、荷载计算1、土压力计算根据库仑土压力理论,计算主动土压力。
主动土压力系数 Ka =tan²(45 φ/2) = 049。
主动土压力 Ea =05 × γ × H² × Ka = 05 × 18 × 8² × 049 =2808kN/m2、其他荷载考虑到墙顶可能有车辆荷载或人群荷载,按照相关规范进行取值和计算。
五、稳定性验算1、抗滑移稳定性验算挡土墙的抗滑移稳定性系数 Kc =(μ × W + Ean) / Eax其中,μ 为基底摩擦系数,取 04;W 为挡土墙自重;Ean 为土压力的垂直分量;Eax 为土压力的水平分量。
经过计算,Kc > 13,满足抗滑移稳定性要求。
2、抗倾覆稳定性验算挡土墙的抗倾覆稳定性系数 Kt =(Mv + Ma) / Mo其中,Mv 为抗倾覆力矩,Ma 为倾覆力矩。
经过计算,Kt > 15,满足抗倾覆稳定性要求。
重力式挡土墙设计实例

重力式挡土墙设计实例设计实例:地坡道挡土墙设计1.工程背景:地坡道长200米,最大高度10米。
地基为砂质土壤,土体粒径分析显示主要由干砂组成,内摩擦角为35度,容重为18kN/m³。
设计要求挡土墙能够抵抗土体的水平推力。
2.坡度分析:根据地坡高和水平距离,计算坡度。
使用一坡三坡图法,确定化简的坡度,以保证坡度均衡,并减少地形改变的需求。
3.坡道设计:根据地坡高和坡度分析结果,设计坡道。
确定坡道长度、坡顶宽度和坡底宽度,保证坡道稳定和路面设计要求。
4.挡土墙类型选择:根据挡土墙高度、土体参数和设计要求,选择合适的挡土墙类型。
在这个案例中,重力式挡土墙是合适的选择。
5.摩擦力计算:根据土体参数和墙体几何特征,计算土体的水平推力和墙体的摩擦力。
摩擦力大小应大于土体的水平推力,以保证挡土墙的稳定性。
6.底座宽度计算:根据土体参数和墙体高度,计算挡土墙底座的宽度。
底座宽度应足够大,以保证挡土墙的稳定和抗滑性能。
7.墙体高度计算:根据土体参数和挡土墙的几何形状,计算合理的墙体高度。
墙体高度应满足稳定性和承载能力的要求。
8.墙体尺寸计算:根据挡土墙的高度和几何形状,计算墙体的尺寸。
包括墙身厚度和墙脚截面宽度等,以确保墙体的稳定和承载能力。
9.墙体内力计算:根据挡土墙的几何形状和土体参数,计算墙体内力。
包括弯矩和剪力等,以保证墙体的结构安全。
10.墙体排水设计:根据场地情况和土体参数,设计挡土墙的排水系统。
确保排水的顺利进行,防止土体饱和和墙体的变形和破坏。
11.墙体施工:根据设计图纸和规范要求,进行挡土墙的施工。
确保施工质量和施工过程的安全。
12.墙体监测和维护:在挡土墙竣工后,进行墙体的监测和维护工作。
及时发现和处理墙体的变形和破坏,确保工程的可持续运行。
以上是关于重力式挡土墙设计实例的简要介绍。
在实际设计中,还需要结合具体场地要求和土体参数进行综合考虑,以确保挡土墙的稳定和安全性。
设计过程中需要参考国家和地区的相关规范和标准,并严格按照标准要求进行设计、施工和维护。
6第二篇(1分篇)第六章 挡土墙设计2014

第一节 挡土墙的基本认知
挡土墙是用来支撑路基填土或山坡土体,防止墙后土
体坍塌和增加其稳定性的一种构筑物。
在路基工程中,挡土墙可 以稳定路堤和路堑边坡, 减少土石方工程量和占地 面积,防止水流冲刷路基, 并经常用于整治塌方、滑 坡等路基病害。
什么是挡墙?有何用处?
用途 ——支撑路堤或路堑边坡 ——隧道洞口 ——防止水流冲刷路基 ——处理路基边坡滑坡崩坍病害
EP
在验算挡土墙的抗滑动稳定性时,抗滑动稳定系数应满足下表规定。
K c0
荷载情况
验算项目
稳定系数
荷载组合Ⅰ、Ⅱ
抗滑动 抗倾覆
1.3 1.5
荷载组合Ⅲ
抗滑动 抗倾覆
1.3 1.3
施工阶段验算
抗滑动 抗倾覆
1.2 1.2
3.抗倾覆(2稳-1-6-定6) 性验算
0.8WZ W Q1(EyZ y EX Z X ) Q2EpZ p 0
筋带常用的有钢带、钢筋混凝土 带、聚丙稀土工带、钢塑复合带 和土工格栅等
加筋挡土墙——布置
1)坚固; 2)美观; 3)安装方便。
基础:
加筋挡土墙的设计要点
破坏模式:
1)筋带断裂; 2)筋带拔出; 3)整体失稳。
验算项目:
内部稳定性
1)筋带强度 2)筋带抗拔
外部稳定性
3)基底滑动 4)倾覆 5)基底应力 6)整体滑动
❖ 1.横向布置布置包括:选择位置、确定断面形式、绘制挡土墙横 断面图等。
❖ 位置:工程量、结构安全等方面、美观、地质、冲刷等 ❖ 断面: ❖ 地形陡峻——俯斜式或衡重式; ❖ 地形平坦——仰斜式。 ❖ 路堑墙——仰斜式或折线式。
路基路面工程第六章挡土墙设计

沉降缝与伸缩缝: 设计时,一般将沉降缝与伸缩缝合并设置,沿路线(lùxiàn) 方向每隔10~15m设置一道,兼起两者的作用,缝宽2~ 3cm,缝内一般可用胶泥填塞,但在渗水量大,填料容易流 失或冻害严重地区,则宜用沥青麻筋或涂以沥青的木板等具 有弹性的材料,沿内、外、顶三方填塞,填深不宜小于,当 墙后为岩石路堑或填石路堤时,可设置空缝。 。
第五十一页,共159页。
第五十二页,共159页。
第五十三页,共159页。
挡土墙的布置(bùzhì)
挡土墙位置的选定: 1)路堑挡土墙大多数设在边沟旁; 2)山坡挡土墙应考虑设在基础可靠处; 3)当路肩墙与路堤墙的墙高或截面圬工数量相近、基础情 况相似时,应优先选用路肩墙; 4)若路堤墙的高度或圬工数量比路肩墙显著(xiǎnzhù)降 低,而且基础可靠时,宜选用路堤墙; 5)沿河路堤设置挡土墙时,应结合河流情况来布置,注意 设墙后仍保持水流顺畅,不致挤压河道而引起局部冲刷。
第三十六页,共159页。
第三十七页,共159页。
桩板式挡土墙:由桩柱和挡板组成,利用深埋的桩柱前土层的被 动土压力来平衡墙后主动土压力,适用于土压力大、要求基础埋 深地段(dìduàn),可用于路堑墙、路肩墙。
第三十八页,共159页。
第三十九页,共159页。
垛式挡土墙:用钢筋混凝土预制杆件,纵横交错装配成框 架,内填土石,以抵抗土压力(yālì),适用于缺乏石料地 区的路肩墙和路堤墙。
第二十页,共159页。
重力式挡土墙:重力式挡土地依靠墙身自重支撑土压力来维 持其稳定(wěndìng)。—般多用片(块)石砌筑,在缺乏石料 的地区有时也用混凝土修建。工量较大、型式简单、施工方 便,可就地取材,适应性较强,故被广泛采用。
A 竖直式
第六章 挡土墙设计

4)地基为软弱土层时,可采用砂砾、碎 石、矿渣或灰土等材料予以换填。
5)当挡土墙修筑在陡坡上,而地基又为 完整、稳固、对基础不产生侧压力的坚硬 岸石时,可设置台阶基础,以减少基坑开 挖和节省圬工。
6)如地基有短段缺口(如深沟等)或挖基 困难(如需水下施工),可采用拱形基础。
a)墙趾或墙踵部分加宽;b)钢筋混凝土底板; c)换填地基;d)台阶基础;e)拱形基础
2.基础埋置深度
对于土质地基,基础埋置深度应符合下列要求: (1)无冲刷时,应在天然地面以下至少1m; (2)有冲刷时,应在冲刷线以下至少1m; (3)受冻胀影响时,应在冻结线以下不少于0.25m。当冻深超过1m时,采 用1.25m,但基底应夯填一定厚度的砂砾或碎石垫层,垫层底面亦应位于 冻结线以下不少于0.25m。
(四)沉降缝与伸缩缝
设计时,一般将沉降缝与伸缩缝合并设置,沿路线方向每隔10~15m设置 一道,兼起两者的作用,缝宽2~3cm,缝内一般可用胶泥填塞,但在渗 水量大,填料容易流失或冻害严重地区,则宜用沥青麻筋或涂以沥青的木 板等具有弹性的材料,沿内、外、顶三方填塞,填深不宜小于0.15m,当 墙后为岩石路堑或填石路堤时,可设置空缝。
附加力是季节性作用于挡土墙的各种力, 特殊力是偶然出现的力。
二、一般条件下库仑主动土压力计算 主动土压力:挡土墙向外移动时(位移或倾覆),
土压力随之减少,直到墙后土体沿破裂面下滑而处于极 限平衡状态,作用于墙背的土压力。
被动土压力:墙向土体挤压移动,土压力随之增大,
土体被推移向上滑动处于极限平衡状态,此时土体对墙 的抗力。
1. 破裂面交于内边坡时(库仑主动土压力公式的推导) (1).力的大小
挡土墙经典案例

引言概述:挡土墙是一种结构工程,主要用于防止土壤的侵蚀和保护土地,同时也可以起到美化环境的作用。
本文将介绍挡土墙的经典案例,并详细阐述这些案例中的设计理念、施工技术和效果。
正文内容:一、设计理念1.1功能需求:挡土墙的功能需求是首要考虑的因素,如防止土壤侵蚀、保持地势平稳等。
1.2地质条件:挡土墙的设计需要充分考虑地质条件,如土壤类型、水位状况等。
1.3美化环境:挡土墙的设计也应兼顾美化环境的需求,如选择合适的植被和装饰材料等。
二、经典案例2.1案例一:XXX公园挡土墙2.1.1设计理念:该挡土墙的设计借鉴了周围自然环境,采用了与公园景观相融合的设计理念。
2.1.2施工技术:挡土墙采用了灵活的施工技术,如模块化构件的拼装和土工布的使用,提高了施工效率和质量。
2.1.3效果评价:该挡土墙经过一段时间的使用,有效地起到了防止土壤侵蚀和保护公园地势的作用,同时也增加了公园的美观度。
2.2案例二:XXX高速公路挡土墙2.2.1设计理念:该挡土墙的设计主要考虑舒适的视觉体验和道路安全性,采用了流线型的外形设计和防护网的设置。
2.2.2施工技术:挡土墙采用了耐候钢板和混凝土结构的组合施工技术,保证了挡土墙的稳定性和耐久性。
2.2.3效果评价:该挡土墙不仅起到了防止土壤侵蚀的作用,还提高了驾驶者的舒适感和道路的安全性。
2.3案例三:XXX居民区挡土墙2.3.1设计理念:该挡土墙的设计注重与周围建筑环境的融合,采用了与居民区风格一致的设计理念。
2.3.2施工技术:挡土墙采用了砖石和混凝土结构的组合施工技术,不仅增加了挡土墙的美观度,还提高了抗冲击能力。
2.3.3效果评价:该挡土墙成功地将土地保护和美化环境结合起来,为居民区营造了良好的居住环境。
2.4案例四:XXX湖堤挡土墙2.4.1设计理念:该挡土墙的设计旨在保护湖面和周围生态环境,采用了与湖面自然地形相适应的设计理念。
2.4.2施工技术:挡土墙采用了湖石和土工布的组合施工技术,保持了湖堤的自然美观和生态环境的稳定。
地基基础电子教案第六章边坡稳定与挡土墙

第六章边坡稳定与挡土墙第一节边坡稳定一、概述引发边坡滑动的原因:坡顶堆放材料或建造建筑物、构筑物;车辆行驶、地震等引起的振动;土体中含水量或孔隙水压力增加;雨水或地面水流入边坡竖向裂缝等。
二、边坡稳定地基稳定性可采用圆弧滑动面法进行验算.最危险的滑动面上诸力对滑动中心所产生的抗滑力矩与滑动力矩应符合下式要求:M R/M S≥1.2式中 M S---滑动力矩; M R---抗滑力矩.当边坡坡角大于45°,坡高大于8m时,尚应按式M R/M S≥1.2验算坡体稳定性.在建设场区内,由于施工或其他因素的影响有可能形成滑坡的地段,必须采取可靠的预防措施,防止产生滑坡。
对具有发展趋势并威胁建筑物安全使用的滑坡,应及早整治,防止滑坡继续发展。
必须根据工程地质、水文地质条件以及施工影响等因素,认真分析滑坡可能发生或发展的主要原因,可采取下列防治滑坡的处理措施:1.排水:应设置排水沟以防止地面水浸入滑坡地段,必要时尚应采取防渗措施。
在地下水影响较大的情况下,应根据地质条件,做好地下排水工程;2.支挡:根据滑坡推力的大小、方向及作用点,可选用重力式抗滑挡墙、阻滑桩及其他抗滑结构。
抗滑挡墙的基底及阻滑桩的桩端应埋置于滑动面以下的稳定土(岩)层中。
必要时,应验算墙顶以上的土(岩)体从墙顶滑出的可能性;3.卸载:在保证卸载区上方及两侧岩土稳定的情况下,可在滑体主动区卸载,但不得在滑体被动区卸载;4.反压:在滑体的阻滑区段增加竖向荷载以提高滑体的阻滑安全系数。
三、滑坡推力应按下列规定进行计算:1.当滑体具有多层滑动面(带)时,应取推力最大的滑动面(带)确定滑坡推力;2.选择平行于滑动方向的几个具有代表性的断面(一般不得少于2个,其中应有一个是滑动主轴断面)进行计算。
根据不同断面的推力设计相应的抗滑结构;3.当滑动面为折线形时,滑坡推力可按下式计算(图6.4.3)。
F n=F n-1ψ+γtG nt-G nn tanφn-c n l n (6.4.3-1)ψ=cos(βn-1-βn)-sin(βn-1-βn)tanφn (6.4.3-2)式中 F n,F n-1---第n块、第n-1块滑体的剩余下滑力;ψ---传递系数;γt---滑坡推力安全系数;G nt,G nn---第n块滑体自重沿滑动面、垂直滑动面的分力;φn---第n块滑体沿滑动面土的内摩擦角标准值;c n---第n块滑体沿滑动面土的粘聚力标准值;l n---第n块滑体沿滑动面的长度;4.滑坡推力作用点,可取在滑体厚度的二分之一处;5.滑坡推力安全系数,应根据滑坡现状及其对工程的影响等因素确定,对地基基础设计为甲级的建筑物宜取1.25,设计等级为已级的建筑物宜取1.15,设计等级为丙级的建筑物宜取1.05;6.根据土(岩)的性质和当地经验,可采用试验和滑坡反算相结合的方法,合理地确定滑动面上的抗剪强度。
第六章 挡土墙设计

扩大基础 spread foundation
大连交通大学土木教研室赵丽华
钢筋混凝土基础 armored concrete foundation
换填基础 refilled foundation
大连交通大学土木教研室赵丽华
拱形基础 vaulted foundation
台阶基础 footstep foundation
1)基础类型 foundation types 扩大基础spread foundation 钢筋混凝土基础armored concrete foundation 拱形基础vaulted foundation 换填基础refilled foundation 台阶基础step foundation
大连交通大学土木教研室赵丽华
7 为保护重要建筑物,生态环境或其它特殊需要的地段plat for protecting important buildings, ecological environment or other special needs
大连交通大学土木教研室赵丽华
第一节 概述
◆5、挡土墙的类型
➢ 按挡土墙位置分:
第三节 挡土墙土压力计算
5、路基挡土墙的土压力考虑
– 1)主动土压力与被动土压力的区分:
假定挡土墙处于极限移动状态,土体有沿墙及假想破裂面移
动的趋势,则土推墙即为主动土压力,墙推土即为被动 土压力。 – 2)路基挡土墙的土压力考虑:
路基挡土墙一般都有可能有向外的位移或倾覆,因此,在设 计中按墙背土体达到主动极限平衡状态考虑,即只考虑Ea , 且取一定的安全系数以保证墙背土体的稳定。
➢ Classification based on the wall position
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础 墙趾 基底 墙踵
③墙顶及护栏
挡土墙的组成示意图
④墙底(墙趾、墙踵)
第二节 挡土墙的构造与布置
◆1、挡土墙的构造
⑤基础-p113有具体要求
设计的主要内容包括基础形式的选择和基础埋置深度的确定。
⑥排水设施-p115有具体要求
通常由地面排水和墙身排水两部分组成。
⑦沉降缝和伸缩缝-p115有具体要求
为防止因地基不均匀沉陷而引起墙身开裂,应根据地基地质 条件及墙高墙身断面的变化情况,设置沉降缝;为了减少圬 工砌体因硬化收缩和温度变化作用而产生的裂缝,须设置伸 缩缝。
第二节 挡土墙的构造与布置
①横向布置 ②纵向布置
在墙趾纵断面图上进行墙的纵向布置,布置后绘成挡土墙正面图。包括: 1)分段,设伸缩缝与沉降缝; 2)考虑始、末位置在路基及 其它结构处的衔接; 3)基础的纵向布置; 4)泄水孔布置。
◆2、挡土墙布置
主要是在路基横断面图上选定挡土墙的位置,确定是路堑墙、路肩墙、路堤 墙还是浸水挡墙?并确定断面形式及初步尺寸。
③平面布置
对于个别复杂的挡土墙,例如高的、长的沿河挡墙和曲面挡墙;绕避建筑物 挡墙,除了横、纵向布置外,还应作平面布置,并绘制平面布置图。
第三节 挡土墙土压力计算
◆1、作用在挡土墙上的力系 (1)主要力系:
主要内容
第一节 概述 第二节 挡土墙的构造与布置 第三节 挡土墙土压力计算 第四节 挡土墙的设计原则 第五节 重力式挡土墙设计 第六节 浸水路堤挡土墙设计 第七节 地震地区挡土墙设计 第八节 轻型挡土墙 第九节 加筋土挡土墙
第一节 概述
◆ 1、挡土墙的定义
挡土墙的定义与的作用
第一节 概述
填土 桥面
重力式挡土墙
支撑土坡的 挡土墙 填土
拱桥桥台
填土
E
堤岸挡土墙
E
第一节 概述
(2)柔性挡土墙
本身会发生变形, 墙上土压力分布形式复杂
锚杆 板桩
板桩变形
板桩上土压力 实测 计算
第一节 概述
3、新型挡土墙 自嵌式挡土墙-主要依靠挡土块块体、填土通过加筋带
连接构成的复合体自重来抵抗动静荷载,达到稳定的作用。 用于园林景观、高速公路、立交桥和护坡、小区水岸等,比 传统的混凝土和浆砌块石容易施工,并且美观、耐久。
还有哪些? --结构、材料
第一节 概述
挡土墙照片
第一节 概述
4、挡土墙的作用
路肩墙:护肩及改善综合坡度;
路堤墙:收缩坡脚,防止边坡或基底(对于陡坡)路堤滑
动,沿河路堤可防水流冲刷等;
路堑墙:减少开挖,降低边坡高度;
山坡墙:支挡坡上覆盖层,可兼起拦石作用;
隧道及明洞口挡墙:缩短隧道或明洞口长度;
三种不同性质的土压力
第三节 挡土墙土压力计算
5、路基挡土墙的土压力考虑
1)主动土压力与被动土压力的区分:
假定挡土墙处于极限移动状态,土体有沿墙及假想破裂
面移动的趋势,则土推墙即为主动土压力,墙推土即为
被动土压力。
2)路基挡土墙的土压力考虑:
路基挡土墙一般都有可能有向外的位移或倾覆,因此,
挡土墙自重及位于墙上的恒载; 墙后土体的主动土压力(包括超载); 基底的支撑力与摩阻力; 墙前土体的被动土压力; 浸水墙的常水位静水压力及浮力。
季节性或规律性作用于墙的各种力,
如波浪冲击、洪水。
图6-5 作用在挡土墙上 的力系
(2)附加力: (3)特殊力:
偶然出现的力,如地震力、浮力、水面物撞击力等。
挡土墙是支撑天然边坡或人工填土边坡以保持土体稳定的结构 物。公路中主要作用是支撑路堤、路堑、隧道洞口、桥梁两端及 河岸壁等。
第一节 概述
◆2、挡土墙的类型
按挡土墙位置分:
路堑挡墙,路堤挡墙,路肩挡墙和山坡挡墙等。
按挡土墙的墙体材料分:
石砌挡墙,混凝土挡墙,钢筋混凝土挡墙,砖砌挡 墙,木质挡墙和钢板墙等。
按挡土墙的结构形式分:
重力式,半重力式,衡重式,悬臂式,扶壁式,锚 杆式,拱式,锚定板式,板桩式和垛式等。
第一节 概述
a
b
c
d
挡土墙位置分:a)路肩挡墙、b)路堤挡墙、c)路堑挡墙、d)山坡挡墙
第一节 概述
(1)刚性挡土墙本身变形极小,只能发生整体位移
重力式 悬臂式
扶壁式 锚拉式 (锚碇式)
(1)朗肯土压力理论
1857年英国学者朗肯(Rankine)从研究弹性半空 间体内的应力状态,根据土的极限平衡理论,得出 计算土压力的方法,又称极限应力法。
(2)库仑土压力理论
1776年法国的库伦(C.A.Coulomb)根据极限平 衡的概念,并假定滑动面为平面,分析了滑动楔体 的力系平衡,从而求算出挡土墙上的土压力,成为 著名的库伦土压力理论。
第三节 挡土墙土压力计算
◆2、挡土墙的移动形式
(1)墙体外移
(2)墙体内移
(3)墙体不移动
第三节 挡土墙土压力计算
土压力E Ep
◆3、墙位移与土压力关系
Ea:墙体外移,土压力逐渐减小, 当土体破坏,达到极限平衡状 态时所对应的土压力(最小)
E0
Ep:墙体内移,土压力逐渐增大, 当土体破坏,达到极限平衡状 态时所对应的土压力 (最大)
在设计中按墙背土体达到主动极限平衡状态考虑,即只 考虑Ea ,且取一定的安全系数以保证墙背土体的稳定。
墙趾前土体的被动土压力Ep一般不计。
第三节 挡土墙土压力计算
◆6、不同墙背倾斜形式的土压力大小
墙背倾斜形式
仰斜、直立和俯斜
E2
E1 仰斜
E3
E1<E2<E3 直立
俯斜
第三节 挡土墙土压力计算
7、挡土墙的土压力计算理论
桥梁两端挡墙:护台及连接路堤,作为翼墙或桥台。
第一节 概述
5、各式挡土墙的使用条件
第一节 概述
6、挡土墙的破坏
垮塌的重力式挡墙
第一节 概述
6、挡土墙的破坏
垮塌的护坡挡墙
第二节 挡土墙的构造与布置
◆1、挡土墙的构造
墙顶
①墙面(墙胸) ②墙背(俯斜、仰斜、垂直)
墙 身
墙面 墙背 墙身
有直线形墙背和折线形墙背 之分
1~5% 1~5‰ 墙位移与土压力E关系
E0:墙体不移动,土压力即是 土体产生的侧压力
第三节 挡土墙土压力计算
◆4、不同类型土压力需满足的条件
1)静止土压力:土静止不动 2)主动土压力Ea : ①土推墙 ②土体达到主动极限平衡状态 3)被动土压力Ep : ①墙推土 ②土体达到被动极限平衡状态