初中数学常见辅助线添法

合集下载

初中数学三角形中14种辅助线添加方法

初中数学三角形中14种辅助线添加方法

初中数学三角形中14种辅助线添加方法在三角形中,常用的辅助线有中线、高线、中垂线、角平分线等。

下面是三角形中14种辅助线添加方法:1. 三角形中线的添加方法:在三角形的每个顶点上作一条连接对边中点的线段,则这些线段交于一点,且该点到三角形各顶点的距离相等,即为三角形的重心。

2. 三角形中垂线的添加方法:从三角形的顶点向所对边作垂线,垂足分别为A、B、C,则三个垂足所在直线相交于一点,为三角形的垂心。

3. 三角形高线的添加方法:从三角形的顶点向所对边作垂线,垂线所在直线与所对边的交点称为底部端点,连接三个底部端点,则构成一个矩形,其中两个对角线分别为三角形的两个高。

4. 角平分线的添加方法:从角的顶点向其对边作角平分线,将角平分为两个相等的角,且角平分线上的任意一点到两侧边的距离相等。

5. 外接圆的添加方法:三角形三边的中垂线交于一点,则以该点为圆心,三角形三个顶点分别为圆上的三个点的圆称为三角形的外接圆。

6. 内切圆的添加方法:三角形三条边所在直线的交点为内心,以内心为圆心,作内切圆,该圆与三角形的三边相切。

7. 垂直平分线的添加方法:从线段的中点向垂直于该线段的方向作一条线段,则该线段垂直于原线段且平分其长度。

8. 外角平分线的添加方法:从三角形的一顶点作一条射线,使其不在所在直线内,将相邻两个角的外部划分成两个大小相等的角,则这条射线为该顶点所对的角的外角平分线。

9. 旁切圆的添加方法:以三角形的某一边为半径,在其外侧作一条与该边平行的直线,使其与另外两边所在直线相交,其交点则为旁切圆心。

10. 中位线的添加方法:连接三角形任意两个顶点,则连接这两个顶点的中点的线段称为三角形的中位线,三角形三条中位线交于一点,即为三角形重心。

11. 等腰三角形的中线、高线和垂心重合。

12. 等边三角形的中线、高线、垂心和外心重合。

13. 直角三角形的垂心落在斜边上,且斜边上的高线与斜边垂直。

14. 任意三角形的外心到三个顶点的距离相等。

初中数学做辅助线的方法总结

初中数学做辅助线的方法总结

初中数学做辅助线的方法总结
在初中数学中,做辅助线是解题的重要方法之一。

以下总结了几
种常见的做辅助线的方法:
1. 对称性辅助线法:当一个图形或方程式具有对称性时,可以
画出一条对称轴或一些对称线,从而利用对称性来简化问题。

例如,
在求三角形的中线长度相等定理时,可以描绘出三角形的垂直平分线,并在中点处作垂线,得到两个相等的直角三角形。

2. 垂线辅助线法:当一个角、线段或线段的垂线很难直接操作时,可以画出一条垂线,将问题转化为一个直角三角形问题。

例如,
在求一条线段的垂线长度时,可以先画出一条垂线与该线段相交,并
组成一个直角三角形。

3. 平移辅助线法:当一个几何图形或方程式涉及到平移时,可
以通过向图形或方程式添加平移线或平移量来使问题变得简单。

例如,在证明平行四边形对角线平分的定理时,可以平移一个平行四边形,
使其成为一个重合的平行四边形,从而使问题变得简单。

4. 分割辅助线法:当一个图形或方程式很复杂时,可以通过将
其分解成几个简单的部分来解题。

例如,在求多边形面积时,可以将
多边形分割成几个三角形或梯形,并将它们的面积相加,从而得到多
边形的面积。

总之,做辅助线的方法不只有以上四种,还可以根据具体问题的
不同情况选用其他的方法。

需要注意的是,在使用辅助线时,要注意
画出清晰的图形,并理解各种辅助线的作用,才能有效地解决问题。

初中数学常见辅助线做法

初中数学常见辅助线做法

初中数学经常应用帮助线【1 】一.添帮助线有二种情形:1按界说添帮助线:如证实二直线垂直可延伸使它们,订交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添帮助线.2按根本图形添帮助线:每个几何定理都有与它相对应的几何图形,我们把它叫做根本图形,添帮助线往往是具有根本图形的性质而根本图形不完全时补完全根本图形,是以“添线”应当叫做“补图”!如许可防止乱添线,添帮助线也有纪律可循.举例如下:(1)平行线是个根本图形:当几何中消失平行线时添帮助线的症结是添与二条平行线都订交的等第三条直线(2)等腰三角形是个简略的根本图形:当几何问题中消失一点发出的二条相等线段时往往要补完全等腰三角形.消失角等分线与平行线组应时可延伸平行线与角的二边订交得等腰三角形.(3)等腰三角形中的主要线段是个主要的根本图形:消失等腰三角形底边上的中点添底边上的中线;消失角等分线与垂线组应时可延伸垂线与角的二边订交得等腰三角形中的主要线段的根本图形.(4)直角三角形斜边上中线根本图形消失直角三角形斜边上的中点往往添斜边上的中线.消失线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线根本图形.(5)三角形中位线根本图形几何问题中消失多个中点时往往添加三角形中位线根本图形进行证实当有中点没有中位线时则添中位线,当有中位线三角形不完全时则需补完全三角形;当消失线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线根本图形;当消失线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线根本图形.(6)全等三角形:全等三角形有轴对称形,中间对称形,扭转形与平移形等;假如消失两条相等线段或两个档相等角关于某一向线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转.当几何问题中消失一组或两组相等线段位于一组对顶角双方且成一向线时可添加中间对称形全等三角形加以证实,添加办法是将四个端点两两贯穿连接或过二端点添平行线*(7)类似三角形:类似三角形有平行线型(带平行线的类似三角形),订交线型,扭转型;当消失比拟线段重叠在一向线上时(中点可算作比为1)可添加平行线得平行线型类似三角形.若平行线过端点添则可以分点或另一端点的线段为平行偏向,这类标题中往往有多种浅线办法.(8)特别角直角三角形当消失30,45,60,135,150度特别角时可添加特别角直角三角形,应用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证实(9)半圆上的圆周角消失直径与半圆上的点,添90度的圆周角;消失90度的圆周角则添它所对弦---直径;平面几何中总共只有二十多个根本图形就像房子不过有一砧,瓦,水泥,石灰,木等构成一样.二.根本图形的帮助线的画法1.三角形问题添加帮助线办法办法1:有关三角形中线的标题,常将中线加倍.含有中点的标题,经常应用三角形的中位线,经由过程这种办法,把要证的结论恰当的转移,很轻易地解决了问题.办法2:含有等分线的标题,常以角等分线为对称轴,应用角等分线的性质和题中的前提,结构出全等三角形,从而应用全等三角形的常识解决问题.办法3:结论是两线段相等的标题常画帮助线构成全等三角形,或应用关于等分线段的一些定理.办法4:结论是一条线段与另一条线段之和等于第三条线段这类标题,常采取截长法或补短法,所谓截长法就是把第三条线段分成两部分,证个中的一部分等于第一条线段,而另一部分等于第二条线段.平行四边形(包含矩形.正方形.菱形)的两组对边.对角和对角线都具有某些雷同性质,所以在添帮助线办法上也有配合之处,目标都是培养线段的平行.垂直,构成三角形的全等.类似,把平行四边形问题转化成罕有的三角形.正方形等问题处理,其经常应用办法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过极点尴尬刁难边的垂线结构直角三角形(3)衔接对角线交点与一边中点,或过对角线交点作一边的平行线,结构线段平行或中位线(4)衔接极点与对边上一点的线段或延伸这条线段,结构三角形类似或等积三角形.(5)过极点尴尬刁难角线的垂线,构成线段平行或三角形全等.梯形是一种特别的四边形.它是平行四边形.三角形常识的分解,经由过程添加恰当的帮助线将梯形问题化归为平行四边形问题或三角形问题来解决.帮助线的添加成为问题解决的桥梁,梯形中经常应用到的帮助线有:(1)在梯形内部平移一腰.(2)梯形外平移一腰(3)梯形内平移两腰(4)延伸两腰(5)过梯形上底的两头点向下底作高(6)平移对角线(7)衔接梯形一极点及一腰的中点.(8)过一腰的中点作另一腰的平行线.(9)作中位线当然在梯形的有关证实和盘算中,添加的帮助线其实不一定是固定不变的.单一的.经由过程帮助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的症结.在平面几何中,解决与圆有关的问题时,经常须要添加恰当的帮助线,架起题设和结论间的桥梁,从而使问题化难为易,天真烂漫地得到解决,是以,灵巧控制作帮助线的一般纪律和罕有办法,对进步学生剖析问题息争决问题的才能是大有帮忙的.(1)见弦作弦心距有关弦的问题,常作其弦心距(有时还须作出响应的半径),经由过程垂径等分定理,来沟通题设与结论间的接洽.(2)见直径作圆周角在标题中若已知圆的直径,一般是作直径所对的圆周角,应用"直径所对的圆周角是直角"这一特点来证实问题.(3)见切线作半径命题的前提中含有圆的切线,往往是贯穿连接过切点的半径,应用"切线与半径垂直"这一性质来证实问题.(4)两圆相切作公切线对两圆相切的问题,一般是经由切点作两圆的公切线或作它们的连心线,经由过程公切线可以找到与圆有关的角的关系.(5)两圆订交作公共弦对两圆订交的问题,平日是作出公共弦,经由过程公共弦既可把两圆的弦接洽起来,又可以把两圆中的圆周角或圆心角接洽起来.。

初中数学辅助线的添加方法,帮你轻松拿下压轴题!

初中数学辅助线的添加方法,帮你轻松拿下压轴题!

今天,数姐为大家整理了初中数学辅助线的添加方法,赶快来看看~~一、添辅助线有二种情况1、按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2、按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形:出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形:几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

初中数学14种方法教会你给三角形加辅助线!

初中数学14种方法教会你给三角形加辅助线!

初中数学14种方法教会你给三角形加辅助线!1.垂线:对于任意三角形ABC,可以从顶点A引一条垂线AD,垂足D位于BC边上。

通过垂线可以将三角形分成两个直角三角形,进而使用直角三角形的性质解决问题。

2.中线:对于任意三角形ABC,可以从任意两个顶点A和B引两条中线CD和EF,其中C和D是AB边的中点,E和F是AC边和BC边的中点。

通过中线可以将三角形分成三个等边三角形,进而使用等边三角形的性质解决问题。

3.角平分线:对于任意三角形ABC,可以从顶点A引一条角平分线AD,使得∠CAD=∠BAD。

通过角平分线可以将一个角平分成两个相等的角,从而使用相等角的性质解决问题。

4.内切圆:对于任意三角形ABC,可以画出其内切圆,该圆与三角形的三条边都相切。

通过内切圆可以获得三个切点,进而使用切点的性质解决问题。

5.外切圆:对于任意三角形ABC,可以画出其外切圆,该圆与三角形的三条边都相切。

通过外切圆可以获得三个切点,进而使用切点的性质解决问题。

6.高线:对于任意三角形ABC,可以从顶点A引一条高线AH,垂足H位于BC边上。

通过高线可以将三角形分成两个直角三角形,进而使用直角三角形的性质解决问题。

7.中位线:对于任意三角形ABC,可以从任意两个顶点A和B引两条中位线CD和EF,其中C和D是AB边的中点,E和F是AC边和BC边的中点。

通过中位线可以将三角形分成三个面积相等的三角形,进而使用面积相等的性质解决问题。

8.三角形的对称性:对于任意三角形ABC,可以观察到三个顶点关于其中一条边的对称性,根据这种对称性可以找到一些相等的角或边,从而简化问题的解决。

9.倒错:对于任意三角形ABC,可以考虑将这个三角形倒转或翻转,从而改变三角形的位置和形态,进而简化问题的解决。

10.几何图形的组合:对于给定的三角形ABC,可以考虑将它与其他几何图形进行组合,例如,与一个正方形、矩形或平行四边形组合,从而改变问题的形式,解决新问题。

「初中数学」常规辅助线添法梳理.doc

「初中数学」常规辅助线添法梳理.doc

「初中数学」常规辅助线添法梳理在几何的教学中,添加辅助线既是难点也是重点,如果能帮助学生梳理常规辅助线的添法,再配上经典的试题,往往就能让学生形成正确的添线“直觉”,体会到数学解题中的“对立”和“统一”,提高解题效率。

一、添加辅助线的方法1.注意题目中背景图案的处理2.注意题目中特征条件的处理3. 注意题目中所求结论的处理①线段和差——截长补短或面积法注意:截的端点不同、线段不同,补的方向不同、线段不同,方法很多,注意筛选出能形成基本图形解题的方法。

与高有关的线段,可借助面积转化出线段之间的等量关系。

②倍分问题——加倍或折半注意:方法很多,注意筛选出能形成基本图形解题的方法。

4. 注意图形运动的处理旋转:①正确作图(关注旋转中心、旋转图形、旋转方向、旋转角度,有时方向和角度条件隐含在落点条件之中,反复审题提炼。

②旋转全等,相等边、角条件均可转化,注意筛选每一组等边、等角条件后结合已知生成新的基本图形。

③利用旋转角相等、对称点到旋转中心的距离相等,旋转后易形成相似的等腰三角形。

翻折:①正确作图(对称轴垂直平分对称点的连线段,可作垂直、截相等)②翻折全等,等边、角条件均可转化,注意筛选每一组等边、等角条件后结合已知生成新的基本图形。

③翻折对称性,对称轴垂直平分对称点的连线段,垂直条件易形成直角三角形,平分条件可转化出线段之间的等量关系,联中垂线上的点易得等腰三角形。

④特殊情况:翻折后常隐有角平分线的条件,遇上平行,易形成等腰三角形。

二、添线注意点1.题目中给定标准尺寸的重新画图,借助标准图形分析问题、寻求突破;题目中没有给定标准尺寸的用原图,不能准确定位图形的可先尝试着画出大致图形,根据已知再作不断的调整。

2.几何问题就是研究所呈现每个图形的边、角、边角所具有的特征,不要为了添线而添线,添线后要把所添加的辅助线回归整体图形,力争筛理出每个图形,继而叠加组合后生成新的结论解决问题。

读后感这篇文章从一个中心---基本图形和四个基本点:背景图形、条件处理、结论处理、图形运动诠释了如何添加辅助线,基本上概括了初中阶段的所有常规辅助线的添法,若能将其“自然”地应用到教学和解题当中,必将“所向披靡”。

初中数学】几何题,辅助线的添加方法和典型例题

初中数学】几何题,辅助线的添加方法和典型例题初中数学:几何题型,辅助线的画法和典型例题1.倍长中线法已知在△ABC中,D是BC中点,DE⊥DF,需要判断BE+CF与EF的大小关系,并证明结论。

思路点拨:利用倍长中线法,倍长过中点的线段DF使DG=DF,再证明△XXX≌△EDF,△FDC≌△GDB,将BE、CF与EF线段转化到△BEG中,利用两边之和大于第三边证明。

解析:连接BG、EG,因为D是BC中点,所以BD=CD。

又因为DE⊥DF,在△XXX和△EDF中,ED=ED,∠XXX∠EDF,DG=DF,因此△XXX≌△EDF(SAS),所以EG=EF。

在△XXX与△GDB中,CD=BD,∠1=∠2,DF=DG,因此△FDC≌△GDB(SAS),所以CF=BG。

因为BG+BE>EG,所以BE+CF>EF。

结论得证。

总结升华:有中点的时候作辅助线可以考虑倍长中线法(或倍长过中点的线段)。

变式:已知CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC,需要证明CD=2CE。

解析:连接BF,延长CE至F使EF=CE。

因为EC为中线,所以AE=BE。

在△AEC与△BEF中,AE=BE,∠AEC =∠BEF,CE=EF,因此△AEC≌△BEF(SAS)。

所以AC =BF,∠A=∠FBE。

又因为∠ACB=∠ABC,∠XXX∠ACB+∠A,∠XXX∠ABC+∠A,所以AC=AB,∠XXX∠XXX。

因此AB=BF,BC为△ADC的中线,所以AB=BD,即BF=BD。

在△FCB与△DCB中,∠XXX∠DBC,BC=BC,因此△FCB≌△DCB(SAS),所以CF=CD。

结论得证。

2.以角平分线为对称轴的翻折变换构造全等三角形已知在△ABC中,∠C=2∠B,∠1=∠2,需要证明XXX。

解析:在AB上截取AE=AC,连接CE,作角ACE的平分线交AB于D,连接CD。

因为∠C=2∠B,所以∠ACE=∠XXX∠B,∠XXX∠A=∠1=∠2,所以△AED≌△ACD (SAS),因此ED=CD。

初中几何辅助线大全

∴BP-PC<AB-AC
(补短法) 延长AC至M,使AM=AB,连接PM,
在△ABP和△AMP中

()(21)(公共边已知辅助线的作法APAPAMAB
∴△ABP≌△AMP (SAS)
∴PB=PM (全等三角形对应边相等)
又∵在△PCM中有:CM>PM-PC(三角形两边之差小于第三边)
CD
14图ABCDEFM1234
BD+CD,故不能直接证出此题,而由2AD想到要构造2AD,即加倍中线,把所要证的
AD至E,使DE=AD,连接BE,则AE=2AD
∵AD为△ABC的中线 (已知)
∴BD=CD (中线定义)
在△ACD和△EBD中
∴AB-AC>PB-PC。
7-1:已知AC=BD,AD⊥AC于A ,BC⊥BD于B, 求证:AD=BC
AD=BC,先证分别含有AD,BC的三角形全等,有几种方案:△ADC与△BCD,
AOD与△BOC,△ABD与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设
:分别延长DA,CB,它们的延长交于E点,
圆中常用辅助线的添法
解决与圆有关的问题时,常常需要添加适当的辅助线,架起
从而使问题化难为易,顺其自然地得到解决,因此,灵活
对提高学生分析问题和解决问题的能力是
1)见弦作弦心距
常作其弦心距(有时还须作出相应的半径),通过垂径平分
2)见直径作圆周角
"直径所对的
"这一特征来证明问题。
3)见切线作半径
∴EF=MF (全等三角形对应边相等)
∵在△CMF中,CF+CM>MF(三角形两边之和大于第三边)
∴BE+CF>EF

初中数学几何图形辅助线添加方法大全

初中数学添加辅助线的方法汇总作辅助线的基本方法一:中点、中位线,延长线,平行线。

如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。

二:垂线、分角线,翻转全等连。

如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。

其对称轴往往是垂线或角的平分线。

三:边边若相等,旋转做实验。

如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。

其对称中心,因题而异,有时没有中心。

故可分“有心”和“无心”旋转两种。

四:造角、平、相似,和、差、积、商见。

如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。

在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。

故作歌诀:“造角、平、相似,和差积商见。

”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。

如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。

六:两圆相切、离,连心,公切线。

如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。

七:切线连直径,直角与半圆。

如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。

即切线与直径互为辅助线。

如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。

即直角与半圆互为辅助线。

八:弧、弦、弦心距;平行、等距、弦。

如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。

初中数学辅助线添加方法及刷题注意事项

初中数学辅助线添加方法及刷题注意事项三角形中常见辅助线的添加1.与角平分线有关的(1) 可向两边作垂线。

(2) 可作平行线,构造等腰三角形(3) 在角的两边截取相等的线段,构造全等三角形2.与线段长度相关的(1) 截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可(2) 补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可(3) 倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。

(4) 遇到中点,考虑中位线或等腰等边中的三线合一。

3.与等腰等边三角形相关的(1) 考虑三线合一(2) 旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60°四边形中常见辅助线的添加特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形,在解决一些和四边形有关的问题时往往需要添加辅助线。

下面介绍一些辅助线的添加方法。

1.和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。

(1) 利用一组对边平行且相等构造平行四边形(2) 利用两组对边平行构造平行四边形(3) 利用对角线互相平分构造平行四边形2.与矩形有辅助线作法(1) 计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题(2) 证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题和矩形有关的试题的辅助线的作法较少.3.和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.(1) 作菱形的高(2) 连结菱形的对角线4.与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学常见辅助线添加口诀
郭李云阳县双土九年制学校
辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长截取可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

辅助线,是虚线,画图注意勿改变。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

相关文档
最新文档