高中数学会考重难点知识点总结
高中数学会考知识点总结

高中数学会考知识点总结
1. 数学基础知识
- 数字与运算:包括整数、有理数、无理数和实数等概念,以及四则运算和混合运算。
- 代数与函数:包括代数运算规律、函数的概念、函数的图像和性质等内容。
- 几何与形状:包括几何图形的分类、性质和计算等内容。
2. 数学推理与证明
- 数学推理:包括命题逻辑、谓词逻辑和命题的推理法则等内容。
- 数学证明:包括直接证明法、间接证明法和反证法等内容。
3. 高中数学应用
- 函数与方程:包括一次函数、二次函数、指数函数、对数函数和三角函数等内容。
- 数列与数学归纳法:包括等差数列、等比数列、递推数列和数学归纳法等内容。
- 空间与向量:包括坐标系、平面向量和空间几何等内容。
4. 统计与概率
- 统计学:包括数据的收集、整理、分析与解释等内容。
- 概率学:包括事件概率、条件概率和概率分布等内容。
5. 解决实际问题
- 实际问题的建模与解决:包括将实际问题转化为数学问题、运用数学方法解决问题等内容。
- 实际问题的解释与应用:包括解释数学解的含义和应用数学解于实际问题的场景等内容。
以上是高中数学会考的主要知识点总结,希望对你的学习有所帮助。
高三会考数学必考知识点

高三会考数学必考知识点在高三数学会考中,有一些知识点被认为是必考的,掌握好这些知识点对于考试成绩的提升至关重要。
下面将介绍这些必考知识点,并给出相应的解题方法和注意事项。
一、函数与方程1. 一元一次方程一元一次方程是高中数学中最基础的方程之一。
解题思路是通过整理方程,将未知数移项并进行系数运算,最终求得解。
例如:求解方程2x - 5 = 7,则可以将方程化简为2x = 12,再除以2得到x = 6。
2. 二次函数与一元二次方程二次函数是高考中考查频率较高的一个知识点,而一元二次方程则是与二次函数紧密相关的一个概念。
解题时,需要掌握如何求解一元二次方程的根、判别式的使用以及解的性质。
例如:求解方程x^2 - 5x + 6 = 0,可以使用因式分解得到(x - 2)(x - 3) = 0,于是x的解为x = 2或x = 3。
二、几何与三角学1. 一元二次方程与直线的交点一元二次方程与直线的交点是一个重要的几何概念,要掌握如何通过求解方程组来确定交点的坐标。
例如:已知直线y = 2x + 3与抛物线y = x^2 - 1相交,求其交点。
解题思路为将两个方程联立,即x^2 - 3x - 4 = 0,通过求解一元二次方程可得到x的解,再将x带入其中一个方程得出y的值。
2. 三角函数与角度在三角函数中,要着重掌握正弦函数、余弦函数和正切函数的基本定义与性质,以及如何运用它们求解问题。
例如:已知直角三角形中一条边长为3,另一条边长为4,求斜边长。
可以利用勾股定理,其中斜边长对应的是直角三角形的斜边,通过计算可得斜边长为5。
三、概率与统计1. 概率的计算概率是高考数学考察频率较高的一个知识点,要了解如何计算事件发生的可能性。
例如:在一副扑克牌中,从中随机抽出一张牌,求抽到红心的概率。
首先需要确定红心牌的数量和总牌数,然后将红心牌的数量除以总牌数。
2. 统计的数据分析在统计学中,要学会如何分析给定的数据,包括计算平均值、方差、标准差等,以及如何绘制统计图表。
高中数学会考重点整理--非常详细总结

高中数学会考重点整理--非常详细总结1. 代数部分- 多项式多项式- 一元多项式的定义和性质- 多项式的加减乘除运算- 一元多项式的整除性质和余式定理- 多项式的因式定理和因式分解- 方程与不等式方程与不等式- 一元二次方程的解法及其性质- 二次函数与二次方程的关系- 一次不等式、二次不等式的解法及其性质- 绝对值方程与绝对值不等式的解法及其性质- 函数函数- 线性函数、反比例函数和一次函数的性质和图像- 二次函数、指数函数和幂函数的性质和图像- 对数函数和指数函数的互反性质- 数列数列- 等差数列和等比数列的性质及其应用- 通项公式、求和公式和首项公式的推导和使用2. 几何部分- 平面几何平面几何- 长度、角度、面积、体积的计算方法及其应用- 相似三角形的性质和判定条件- 三角形内角和、外角和、中线、高线的性质和计算方法- 圆内接四边形和圆内接三角形的性质和判定条件- 立体几何立体几何- 空间几何图形的投影、旋转和平移等变换- 空间几何体的面积和体积计算方法及其应用- 空间几何体的表面积和体积计算方法及其应用- 球的性质、公式和计算方法3. 统计与概率部分- 统计统计- 数据的收集、整理和描述方法- 数据的频数、频率、平均数和离散程度计算- 图表和统计图的制作和解读- 抽样调查和统计推断的基本方法- 概率概率- 基本概率定理和计算方法- 事件的相互排斥和独立性判定条件- 概率问题的计算步骤和策略- 条件概率和事件的互斥性计算方法以上是高中数学会考的重点整理,希望能够帮助你复习和准备考试。
祝你取得好成绩!。
高中数学会考重点知识点详细总结

高中数学会考重点知识点详细总结引言高中数学会考是对学生数学知识掌握程度的重要评估,涵盖了代数、几何、概率统计等多个领域。
本文档旨在总结高中数学会考的重点知识点,帮助学生系统复习,提高考试成绩。
第一部分:代数1.1 函数函数的定义与性质一次函数、二次函数、指数函数、对数函数、三角函数的图像与性质函数的单调性、奇偶性、周期性1.2 代数方程一元一次方程、一元二次方程的解法高次方程的解法无理方程、指数方程、对数方程的解法1.3 不等式不等式的基本性质一元一次不等式、一元二次不等式的解法线性规划的基本概念和简单应用1.4 数列等差数列、等比数列的定义和通项公式数列的求和公式数列极限的概念1.5 复数复数的概念和四则运算复数的几何意义复数与三角函数的关系第二部分:几何2.1 平面几何三角形、四边形的性质圆的性质解析几何:点的坐标、直线的方程、圆的方程2.2 立体几何棱柱、棱锥、球的性质空间几何体的表面积和体积计算2.3 解析几何的应用直线与直线、直线与圆、圆与圆的位置关系空间向量及其在立体几何中的应用第三部分:概率统计3.1 概率论基础随机事件的概率互斥事件、独立事件的概率条件概率3.2 统计学基础数据的收集、整理和图表表示描述性统计:均值、中位数、众数、方差、标准差概率分布:离散型随机变量、连续型随机变量3.3 统计推断抽样分布置信区间假设检验第四部分:微积分初步4.1 极限与连续性极限的概念函数的连续性4.2 导数与微分导数的定义和几何意义基本初等函数的导数公式复合函数、反函数的求导法则4.3 积分不定积分和定积分的概念牛顿-莱布尼茨公式定积分的几何意义和物理意义结语高中数学会考覆盖了数学的多个重要领域,本文档的总结旨在帮助学生系统地复习和掌握这些知识点。
通过对这些重点内容的深入理解和练习,学生可以提高解题能力,增强数学思维,为会考和未来的数学学习打下坚实的基础。
高二数学会考知识点集合

高二数学会考知识点集合在高二阶段进行数学学习,会考是一个具有相当重要性的考试。
为了帮助同学们顺利备考并取得好成绩,以下是高二数学会考知识点的集合。
详细内容如下:一、代数与函数1. 幂函数与指数函数2. 对数函数3. 三角函数4. 复数与复数运算5. 不等式6. 排列与组合7. 二项式定理二、几何1. 三角形的性质与判断2. 圆与圆的性质3. 直线与平面的位置关系4. 空间几何体的性质与计算5. 平面几何变换三、解析几何1. 直线与曲线的方程2. 二次函数的性质与图像3. 圆锥曲线的基本概念与性质4. 参数方程的应用四、数据与图表分析1. 离散数学与概率论2. 数据的收集与整理3. 统计量的计算与分析4. 图表的绘制与分析五、数列与数学归纳法1. 等差数列与等比数列的性质与应用2. 递推数列的定义与求解3. 数学归纳法的原理与应用六、微积分初步1. 限制与连续性2. 导数的概念与计算3. 极限与函数的收敛性4. 函数的单调性与最值5. 积分的概念与计算七、计数与概率1. 概率的基本概念与计算2. 事件的相容性与互斥性3. 排列与组合的计数原理4. 离散随机变量与概率分布文章将对上述各知识点进行简要介绍。
代数与函数部分,我们将学习幂函数与指数函数,并掌握它们之间的关系。
同时,对数函数也是高二代数与函数的一个重要内容。
三角函数不仅仅是高中数学的一个知识点,同时也对高等数学的学习打下了坚实的基础。
复数与复数运算是代数与函数中的一个抽象概念,通过学习可以拓宽我们的数学思维。
不等式是数学中一个常见的问题,我们需要掌握不等式的解法以及应用。
排列与组合是数学中一个有趣且实用的概念,通过学习我们可以了解到在不同情况下如何进行排列与组合。
最后,二项式定理是代数与函数中的重点内容之一,我们需要熟练运用。
几何部分,我们将学习三角形的性质与判断,了解三角形的内外切圆等重要概念。
圆是高中数学中的重要内容,通过学习圆的性质,我们可以掌握圆的方程等重要知识点。
山东省高中会考数学重点及公式

高中数学会考复习必背知识点第一章 集合与简易逻辑 1、含n 个元素的集合的所有子集有n2个 第二章 函数对数:①:负数和零没有对数,②、1的对数等于0:01log =a ,③、底的对数等于1:1log =a a ,④、积的对数:N M MN a a a log log )(log +=, 商的对数:N M NMa a alog log log -=,幂的对数:M n M a n a log log =;b mnb a n a m log log =, 第三章 数列1、数列的前n 项和:n n a a a a S ++++= 321; 数列前n 项和与通项的关系:⎩⎨⎧≥-===-)2()1(111n S S n S a a n nn2、等差数列 :1、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数; 2通项公式:d n a a n)1(1-+= 其中首项是1a ,公差是d ;3前n 项和:1.2)(1n n a a n S +=d n n na 2)1(1-+=整理后是关于n 的没有常数项的二次函数 3、等比数列:1、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数,0≠q ;2通项公式:11-=n nq a a 其中:首项是1a ,公比是q3前n 项和:⎪⎩⎪⎨⎧≠--=--==)1(,1)1(1)1(,111q q q a qq a a q na S n n n 第四章 三角函数 1弧度制:1π=180弧度,1弧度'1857)180( ≈=π;弧长公式:r l ||α= α是角的弧度数2、三角函数 1、定义: r y =αsin r x =αcos xy=αtan 3、 特殊角的三角函数值4、同角三角函数基本关系式:1cos sin22=+αααααcos sin tan =5、诱导公式:奇变偶不变,符号看象限 正弦上为正;余弦右为正;正切一三为正公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ ααααααtan )180tan(cos )180cos(sin )180sin(=+︒-=+︒-=+︒ ααααααtan )tan(cos )cos(sin )sin(-=-=--=- 6、两角和与差的正弦、余弦、正切)(βα+S :βαβαβαsin cos cos sin )sin(+=+)(βα-S :βαβαβαsin cos cos sin )sin(-=-)(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C :βαβαβsin sin cos cos )cos(+=-a)(βα+T : βαβαβαtan tan 1tan tan )tan(-+=+)(βα-T : βαβαβαtan tan 1tan tan )tan(+-=-7、辅助角公式:⎪⎪⎭⎫ ⎝⎛++++=+x b a b x b a a b a xb x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a8、二倍角公式:1α2S :αααcos sin 22sin =α2C :ααα22sin cos 2cos -= 1cos 2sin 2122-=-=ααα2T :ααα2tan 1tan 22tan -=2、降幂公式:多用于研究性质ααα2sin 21cos sin =212cos 2122cos 1sin 2+-=-=ααα212cos 2122cos 1cos 2+=+=ααα9、三角函数:ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ 10、解三角形:1、三角形的面积公式:A bc B ac C ab S sin 2sin 2sin 2===∆2正弦定理:sin 2sin 2,sin 2,2sin sin sin R c B R b A R a R CcB b A a ======, 边用角表示:3余弦定理:Cab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222-+=⋅-+=⋅-+= 求角:abc b a C ac b c a B bc a c b A 2cos 2cos 2cos 222222222-+=-+=-+= 第五章、平面向量 1、坐标运算:1设()()2211,,,y x b y x a ==→→,则()2121,y y x x b a ±±=±→→数与向量的积:λ()()1111,,y x y x aλλλ==→,数量积:2121y y x x b a +=⋅→→2、设A 、B 两点的坐标分别为x 1,y 1,x 2,y 2,则()1212,y y x x AB --=→.终点减起点221221)()(||y y x x AB -+-=;向量a 的模|a |:a a a ⋅=2||22y x +=;3、平面向量的数量积: θcos →→→→⋅=⋅b a b a , 注意:00=⋅→→a,→→=⋅00a ,0)(=-+a a4、向量()()2211,,,y x b y x a==→→的夹角θ,则222221212121cos y x y x y y x x +++=θ,2、重要结论:1、两个向量平行: →→→→=⇔b a b a λ// )(R ∈λ,⇔→→b a // 01221=-y x y x2、两个非零向量垂直0=⋅⇔⊥→→→→b a b a,02121=+⇔⊥→→y y x x b a中点坐标公式⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x 第六章:不等式 1、 均值不等式:1、 ab ba 222≥+ 222b a ab +≤2、a >0,b >0;ab ba 2≥+或2)2(b a ab +≤ 一正、二定、三相等2、解指数、对数不等式的方法:同底法,同时对数的真数大于0;第七章:直线和圆的方程 1、斜 率:αtan =k,),(+∞-∞∈k ;直线上两点),(),,(222111y x P y x P ,则斜率为1212x x y y k --=2、直线方程:1、点斜式:)(11x x k y y -=-;2、斜截式:b kx y +=;3、一般式:0=++C By Ax A 、B 不同时为0 斜率BAk -=,y 轴截距为B C -3、两直线的位置关系 1、平行:212121//b b k k l l ≠=⇔且 212121C C B B A A ≠= 时 ,21//l l ;垂直: 21211l l k k ⊥⇔-=⋅ 2121210l l B B A A ⊥⇒=+; 2、点到直线的距离公式2200B A C By Ax d +++=直线方程必须化为一般式6、圆的方程: 2圆的一般方程022=++++F Ey Dx y x0422>-+F E D 时,表示一个以)2,2(E D --为圆心,半径为F E D 42122-+的圆;第九章 直线 平面 简单的几何体 1、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3=2、球的体积公式:334R π,球的表面积公式:24R S π= 3、柱体h s V ⋅=,锥体h s V ⋅=31第十一章:概率:1、概率范围:0≤PA ≤1必然事件: PA=1,不可能事件: PA=02、等可能性事件的概率:()m P A n=. 3、互斥事件有一个发生的概率:A,B 互斥: PA +B=PA +PB ;A 、B 对立:PA+ PB =1。
高中会考数学知识点总结完整

高中会考数学知识点总结完整
版
一、代数:
1、复数:虚数单位i,负数的平方根,实部、虚部,复数模及其计算,共轭复数,复数乘法法则及其计算;
2、一元二次方程:二次函数的定义,一元二次方程的解法,两个实
数根(根的种类、解的类型),有理数解,实数解,无理数解;
3、一元n次方程:一元n次方程的定义、解法,有理数解,实数解、无理数解;
4、二元一次方程组:定义、解法,化简,消元,解的类型,无解,
有唯一解,有多解;
5、分式:分式定义及其特点,分式的加减法,乘除法,乘方,混合
运算法则及计算,提取公因数;
6、根式:定义、特点,同底数的幂的加法、减法,乘法、乘方及计算,开根号,根式与分式的比较及混合运算;
7、二元二次方程组:定义,利用配方求解,利用消元求解,利用把
变量替换成另一个求解;
二、几何:
1、直线与圆:直线与圆的定义,直线的斜率及其计算,圆的标准方
程及其计算,圆的圆心角的大小及其计算;
2、直角三角形:定义、特点,两个直角三角形的重要性质,利用重要性质求三角形的面积,角的大小及其计算,弦长的计算;
3、三角形:定义,重要性质(勾股定理、余弦定理),三角。
高中数学会考知识点

高中数学会考知识点高中数学会考是对学生高中阶段数学学习的一次重要检验。
为了帮助同学们更好地应对会考,下面将对高中数学会考的重要知识点进行梳理。
一、集合与函数集合是数学中一个基础的概念,包括集合的表示方法(列举法、描述法等)、集合的运算(交集、并集、补集)。
函数则是高中数学的重点内容。
要理解函数的概念,包括定义域、值域和对应关系。
常见的函数类型有一次函数、二次函数、反比例函数等。
对于二次函数,要掌握其图像和性质,如对称轴、顶点坐标、开口方向等。
函数的单调性和奇偶性也是重要的考点,能够通过函数的解析式或者图像判断其单调性和奇偶性。
二、数列数列包括等差数列和等比数列。
等差数列要掌握其通项公式、前n 项和公式,以及等差中项的性质。
通过这些公式和性质可以解决数列中的求值、求和等问题。
等比数列同样要掌握通项公式、前 n 项和公式,以及等比中项的性质。
在解题过程中,要注意公比是否为 1 的情况。
三、三角函数三角函数包括正弦函数、余弦函数、正切函数等。
要牢记它们的定义、周期性、值域、单调性等性质。
三角函数的诱导公式是解题的重要工具,能够将不同角度的三角函数值进行转化。
解三角形部分,要掌握正弦定理和余弦定理,能够运用它们解决三角形中的边长、角度等问题。
四、平面向量平面向量的概念包括向量的定义、表示方法(有向线段、坐标表示)。
向量的运算包括加法、减法、数乘和数量积。
要掌握这些运算的法则和性质,能够进行向量的运算和求解相关问题。
五、不等式不等式的性质是解不等式的基础,要熟练掌握。
一元二次不等式的解法是重点,通过求解二次函数的零点,结合函数图像得出不等式的解集。
线性规划问题则是考查如何在约束条件下,求目标函数的最值。
六、立体几何立体几何主要包括空间几何体的结构特征、表面积和体积的计算。
直线与平面、平面与平面的位置关系是重要考点,要能够进行判定和证明。
空间向量在立体几何中的应用,可以通过建立空间直角坐标系,利用向量的方法解决线线角、线面角、面面角等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学会考重难点知识点总结2em; text-align: center;">高中数学重难点知识点总结高中数学(文)包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学习两本书。
必修一:1、集合与函数的概念 (这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用 (比较抽象,较难理解)必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1—1、1—2选修1--1:重点:高考占30分1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)选修1--2:1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容) 理科:选修2—1、2—2、2—3选修2--1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)选修2--2:1、导数与微积分2、推理证明:一般不考3、复数选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。
高考必考,10分2、随机变量及其分布:不单独命题3、统计:高考的知识板块集合与简单逻辑:5分或不考函数:高考60分:①、指数函数②对数函数③二次函数④三次函数⑤三角函数⑥抽象函数(无函数表达式,不易理解,难点)平面向量与解三角形立体几何:22分左右不等式:(线性规则)5分必考数列:17分 (一道大题+一道选择或填空)易和函数结合命题平面解析几何:(30分左右)计算原理:10分左右概率统计:12分----17分复数:5分推理证明一般高考大题分布1、17题:三角函数2、18、19、20 三题:立体几何、概率、数列3、21、22 题:函数、圆锥曲线成绩不理想一般是以下几种情况:做题不细心,(会做,做不对)基础知识没有掌握解决问题不全面,知识的运用没有系统化(如:一道题综合了多个知识点)心理素质不好总之学习数学一定要掌握科学的学习方法:1、笔记:记老师讲的课本上没有的知识点,尤其是数列性质,课本上没有,但做题经常用到 2、错题收集、归纳总结高一年级必修一第一章集合与函数概念第二章基本初等函数(Ⅰ)第三章函数的应用必修二第一章空间几何体第二章点、直线、平面之间的位置关系第三章直线与方程必修三第一章算法初步第二章统计第三章概率必修四第一章三角函数第二章平面向量第三章三角恒等变换(二)教学要求在教学中,由于集合、函数等内容比较抽象,三角函数在高考中占据重要地位,平面向量又是高考中数学必考内容,教师在备课组协作的基础上应注意对各章知识的重难点的讲解和释疑,减轻学生自学的压力,增强学生学好数学的信心。
首先,在高中数学中,集合的初步知识以及与其它内容的密切联系。
它们是学习、掌握和使用数学语言的基础,是高中数学学习的出发点。
在教学中,应注重引导学生更好的理解数学中出现的集合语言,使学生更好的使用集合语言表述数学问题,并且可以使学生运用集合的观点,研究、处理数学问题。
因此集合的基本概念、函数等有关内容是教师重点讲解的内容。
其次,函数作为中学数学中最重要的基本概念之一,教师应注意运用有关的概念和函数的性质,培养学生的思维能力;通过指数与对数,指数函数与对数函数之间的内在联系,对学生进行辩证唯物主义观点的教育;通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生的实践能力和创新意识。
第三,通过对三角函数的学习,学生将进一步了解符号与变元、集合与对应、数形结合等基本的数学思想在研究三角函数时所起的重要作用,在式子与图形的变化中,教师应引导学生通过分析、探索、划归、类比、平行移动、伸长和缩短等常用的基本方法的学习,使学生在学习数学和应用数学方面达到一个新的层次。
第四,学习的平面向量,不但应注意平面向量基本知识的讲解,更要充分挖掘平面向量的工具作用,提高学生应用数学知识解决实际问题的能力和实际操作的能力,使学生学会提出问题,明确研究方向,使学生学会交流,体验数学活动的过程,培养创新精神和应用能力。
第五、在学习空间几何体、点、直线、平面之间的位置关系时,重点要帮助学生逐步形成空间想象能力,严格遵循从整体到局部,从具体到抽象的原则,逐步掌握解决空间几何体的相关问题。
第六、要在平面解析几何初步教学中,帮助学生经历如下的过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。
这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合〞的思想方法。
第七、在学习算法初步、统计等内容的时候,要注意顺序渐进,不可追求一步到位,特别要注意其思想的重要性。
高二年级必修五第一章解三角形第二章数列第三章不等式选修1-1第一章常用逻辑用语第二章圆锥曲线与方程第三章导数及其应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修2-1第一章常用逻辑用语第二章圆锥曲线与方程第三章空间向量与立体几何选修2-2第一章导数及其应用第二章推理与证明第三章数系的扩充与复数的引入选修2-3第一章计数原理第二章随机变量及其分布第三章统计案例(二)教学要求高二上必修5学生将在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,并认识到运用它们可以解决一些与测量和几何计算有关的实际问题。
数列作为一种特殊的函数,是反映自然规律的基本数学模型。
在本模块中,学生将通过对日常生活中大量实际问题的分析,建立等差数列和等比数列这两种数列模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。
不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容。
建立不等观念、处理不等关系与处理等量问题是同样重要的。
在本模块中,学生将通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示平面区域,并尝试解决一些简单的二元线性规划问题;认识基本不等式及其简单应用;体会不等式、方程及函数之间的联系。
选修1—1(文科)在本模块中,学生将在义务教育阶段的基础上,学习常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流。
在必修课程学习的平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用,进一步体会数形结合的思想。
在本模块中,学生将通过大量实例,经历由平均变化率到瞬时变化率的过程,刻画现实问题,理解导数的含义,体会导数的思想及其内涵;应用导数探索函数的单调、极值等性质及其在实际中的应用,感受导数在解决数学问题和实际问题中的作用,体会微积分的产生对人类文化发展的价值。
选修2-1(理科)在本模块中,学生将学习常用逻辑用语、圆锥曲线与方程、空间中的向量(简称空间向量)与立体几何。
在本模块中,学生将在义务教育阶段的基础上,学习常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,从而更好地进行交流。
在必修阶段学习的平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。
结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。
在本模块中,学生将在学习的平面向量的基础上,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,体会向量方法在研究几何图形中的作用,进一步发展空间想像能力和几何直观能力。
高二下(文科)在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。
“推理与证明〞是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。
推理一般包括合情推理和演绎推理。
合情推理是根据已有的事实和正确的结论、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程。
归纳、类比是合情推理常用的思维方法。
在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有利于创新意识的培养。
演绎推理是根据已有的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程,培养和提高学生的演绎推理或逻辑证明的能力是高中数学课程的重要目标。
合情推理和演绎推理之间联系紧密、相辅相成。
证明通常包括逻辑证明和实验、实践证明,但是数学结论的正确性必须通过演绎推理或逻辑证明来保证,即在前提正确的基础上,通过正确使用推理规则得出结论。
在本模块中,学生将通过对已学知识的回顾,进一步体会合情推理、演绎推理以及二者之间的联系与差异;体会数学证明的特点,了解数学证明的基本方法,包括直接证明的方法(如分析法、综合法)和间接证明的方法(如反证法),感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的习惯。
数系扩充的过程体现了数学的发现和创造过程,同时体现了数学发生、发展的客观需求,复数的引入是中学阶段数系的又一次扩充。
在本模块中,学生将在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用。
框图是表示一个系统各部分和各环节之间关系的图示,它的作用在于能够清晰地表达比较复杂的系统各部分之间的关系。