数学高二选修三练习题

合集下载

人教版高中数学选修三2.1共价键(习题2)

人教版高中数学选修三2.1共价键(习题2)

精品试卷高中化学学习材料(灿若寒星**整理制作)2.1共价键一、选择题1、不能作为判断硫、氯两种元素非金属性强弱的依据是( )A.单质氧化性的强弱B.单质沸点的高低C.单质与氢气化合的难易D.最高价氧化物对应的水化物酸性的强弱2、下列说法中正确的是A、含有非极性键的化合物分子一定是非极性分子B、原子晶体中只存在非极性共价键C、冰是水分子通过氢键作用而形成的分子晶体D、若R的含氧酸的酸性大于Q的含氧酸的酸性,则非金属性R大于Q3、下列物质属于含有共价键的离子化合物的是A.C60 B.C6H6C.KF D.NaOH4、下列叙述正确的是( )A.酸性氧化物和碱性氧化物都是电解质B.将NaOH溶液逐滴加入FeCl3溶液可制备Fe(OH)3胶体C.电化学腐蚀是造成金属腐蚀的主要原因D.离子键一定只存在于离子化合物中,共价键一定只存在于共价化合物中5、由短周期元素构成的某离子化合物的固体中,一个阳离子和一个阴离子核外电子数之和为20。

下列说法中不正确的是A.固体中阳离子和阴离子个数不一定相等B.固体中一定有离子键可能有共价键C.所含元素一定不在同一周期也不在同一主族D.固体中阳离子半径一定大于阴离子半径6、PH3是一种无色、有剧毒的气体,其分子结构和NH3相似,下列判断正确的是A.N-H的键长比P-H的键长短,所以PH3的沸点比NH3低B.PH3分子的立体构型是三角锥形,与NH3互为等电子体C.PH3分子是极性分子,极易溶于水,因为它与水分子间存在氢键D.NH3比PH3稳定,因为NH3分子间存在氢键7、下列说法正确的是()A.凡金属元素与非金属元素之间都形成离子键B.形成离子键的微粒必须是金属阳离子与阴离子C.含有离子键的化合物中,也可能还含有共价键D.非金属元素形成的化合物一定不存在离子键8、我国科学家研制出一种催化剂,能在室温下高效催化空气中甲醛的氧化,其反应如下:HCHO+O2=CO2+H2O.下列有关说法正确的是()A.该反应为吸热反应B. CO2分子中的化学键为非极性键C. HCHO分子中含σ键又含π键D.每生成1.8 g H2O消耗2.24 L O29、下列叙述中正确的是()A. VSEPR模型就是分子的空间构型B.在共价化合物分子中一定存在σ键C.全由非金属元素组成的化合物一定是共价化合物D.共价键键长越短,键能一定越大10、关于氢键,下列说法正确的是()A.甲硫醇(CH3SH)比甲醇的熔点低的原因是甲醇分子间易形成氢键B.氯化钠易溶于水是因为形成了氢键C.氨易液化与氨分子间存在氢键无关D.H2O是一种非常稳定的化合物,这是由于氢键所致11、下列说法中,正确的是()A.键长越长,化学键越牢固B.成键原子间原子轨道重叠越少,共价键越牢固C.对双原子分子来讲,键能越大,含有该键的分子越稳定D.原子间通过共用电子对所形成的化学键叫离子键12、PH3一种无色剧毒气体,其分子结构和NH3相似,但P-H键键能比N-H键键能低。

高中人教版数学选修3-5经典题目及解析

高中人教版数学选修3-5经典题目及解析

高中人教版数学选修3-5经典题目及解析第一题题目:若函数 $f(x) = \frac{1}{x^2}$,求函数 $f(x)$ 的极值。

解析:我们要求函数 $f(x) = \frac{1}{x^2}$ 的极值,可以通过求导数的方法来解答。

首先,我们对函数 $f(x)$ 求导数,得到 $f'(x) = -\frac{2}{x^3}$。

然后,我们令导数为零来求得函数 $f(x)$ 的驻点。

即 $f'(x) =0$,解得 $x = 0$。

所以,函数 $f(x)$ 在 $x=0$ 处取得极值。

接下来,我们使用二阶导数判定法来确定函数 $f(x)$ 在$x=0$ 处的极值类型。

计算二阶导数得到 $f''(x) = \frac{6}{x^4}$。

当 $x=0$ 时,$f''(0)$ 不存在。

因此,函数 $f(x)$ 在 $x=0$ 处不是极值点,也不是拐点。

综上所述,函数 $f(x) = \frac{1}{x^2}$ 在 $x=0$ 处取得驻点。

第二题题目:已知等差数列的前四项分别为 2, 5, 8, 11,求该等差数列的通项公式。

解析:我们已知等差数列的前四项为 2, 5, 8, 11,可以通过求公差的方法来确定该等差数列的通项公式。

首先,我们计算出公差 $d$。

根据等差数列的性质,我们有$a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = d$。

代入已知的数值,得到 $5 - 2 = 8 - 5 = 11 - 8 = d$。

解得 $d =3$。

然后,我们确定等差数列的首项$a_1$。

根据等差数列的性质,我们有 $a_n = a_1 + (n-1)d$。

代入已知的数值,得到 $2 = a_1 + 0 \times 3$。

解得 $a_1 = 2$。

综上所述,该等差数列的通项公式为 $a_n = 2 + (n-1)3$。

第三题题目:已知矩形的长为 $x$,宽为 $y$,且 $2x + y = 10$,求矩形的最大面积和最小面积。

高中选修三数学试题及答案

高中选修三数学试题及答案

高中选修三数学试题及答案一、选择题(每题3分,共30分)1. 若函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(-1) \)的值。

A. 0B. 2C. 4D. 62. 已知圆的半径为5,圆心在原点,求圆的方程。

A. \( x^2 + y^2 = 25 \)B. \( (x-5)^2 + (y-5)^2 = 25 \)C. \( x^2 + y^2 - 5x - 5y = 0 \)D. 以上都不对3. 直线\( y = 3x + 2 \)与直线\( y = -x + 6 \)的交点坐标是:A. (1, 5)B. (2, 8)C. (4, 10)D. (3, 11)4. 已知\( \sin \theta = \frac{3}{5} \),且\( \theta \)为锐角,求\( \cos \theta \)的值。

A. \( \frac{4}{5} \)B. \( -\frac{4}{5} \)C.\( \frac{3}{4} \) D. \( -\frac{3}{4} \)5. 函数\( g(x) = \ln(x) \)的定义域是:A. \( x > 0 \)B. \( x < 0 \)C. \( x \geq 0 \)D. \( x\leq 0 \)6. 已知等差数列\( a_n \)的首项为2,公差为3,求第5项的值。

A. 17B. 14C. 11D. 87. 已知矩阵\( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \),求矩阵\( A \)的行列式。

A. 0B. 1C. 7D. 88. 已知圆锥曲线\( x^2 - 4xy + 4y^2 = 0 \),求其类型。

A. 椭圆B. 双曲线C. 抛物线D. 圆9. 若\( a \),\( b \),\( c \)是三角形的三边,且满足\( a^2 + b^2 = c^2 \),求三角形的类型。

北师大版数学选修23练习12排列含答案

北师大版数学选修23练习12排列含答案

第一章§2一、选择题1.6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有( )A.240种B.360种C.480种D.720种[答案] C[解析] 本题考查了排列问题的应用.由题意,甲可从4个位置选择一个,其余元素不限制,所以所有不同次序共有A14A55=480.利用特殊元素优先安排的原则分步完成得到结论.2.由1、2、3、4、5组成没有重复数字的四位数,按从小到大的顺序排成一个数列{a n},则a72等于( )A.1543 B.2543C.3542 D.4532[答案] C[解析] 容易得到千位为1时组成四位数的个数为A34=24,则千位为2,3,4,5时均有四位数24个,由于24×3=72,四位数由小到大排列,可知第72个数为千位为3的最大的四位数即3542,故选C.3.(2014·辽宁理,6)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )A.144 B.120C.72 D.24[答案] D[解析] 采用插空法.任两人隔1椅,共有2A33=12,有两个隔2椅,共有A22·A33=12,共有12+12=24(种)方法.二、填空题4.2014年南京青奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有________种(用数字作答).[答案] 96[解析] 先安排最后一棒,有A12种方案;再安排第一棒,有A12种方案;最后安排中间四棒,有A44种方案.所以不同的传递方案共有A12·A12·A44=96种.5.(2013·北京理,12)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________.[答案] 96[解析] 5张参观券分为4堆,有2个连号的有4种分法,每一种分法中的不同排列有A44种,因此共有不同的分法4A44=4×24=96种.三、解答题6.书架上某层有6本书,新买了3本书插进去,要保持原来6本书原有顺序,问有多少种不同插法?[解析] 解法一:9本书按一定顺序排在一层,考虑到其中原来的6本书保持原有顺序,原来的每一种排法都重复了A66次.所以有A99÷A66=504(种).解法二:把书架上的这一层欲排的9本书看作9个位置,将新买的3本书放入这9个位置中的3个,其余的6本书按着原来顺序依次放入.则A39=504(种).解法三将新买来的3本书逐一插进去.空档中选1个,有7种选法,第2本书可从现在的7本书的8个空档中选1个,有8种选法,最后1本可从现在的8本书9个空档中选1个有9种选法;3本书都插进去,这件事才算做完,根据乘法原理,共有7×8×9=504(种)不同的插入方法.一、选择题1.(2014·郑州网校期中联考)从6个人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有( )A.300种B.240种C.144种D.96种[答案] B[解析] 先从除甲、乙外的4人中选取1人去巴黎,再从其余5人中选3人去伦敦、悉尼、莫斯科,共有不同选择方案,A14·A35=240种.2.在由数字1,2,3,4,5组成的没有重复数字的5位数中,大于23 145且小于43 521的数共有( )A.56个B.57个C.58个D.60个[答案] C[解析] 首位为3时,有A44=24;首位为2时,千位为3,则有A12A22+1=5,千位4或5时,A12A33=12;首位为4时,千位为1或2,则A12A33=12,千位为3,则有A12A22+1=5,∴共有24+5+12+12+5=58.3.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有( )A.36种B.42种C.48种D.54种[答案] B[解析] 分两类解决:第一类:甲排在第一位,共有A44=24种排法.第二类:甲排在第二位,共有A13·A33=18种排法.所以节目演出顺序的编排方案共有24+18=42种.4.(2012·全国大纲理,11)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( )A.12种B.18种C.24种D.36种[答案] A[解析] 本题考查了分步计数原理的应用.利用分步计数原理,先填写最左上角的数,有C13=3种;再填写右上角的数为2种;再填写第二行第一列的数有2种,一共有3×2×2=12种.故选A.解题的关键是正确地利用分步计数原理合理地分步计算.5.(2014·四川理,6)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A.192种B.216种C.240种D.288种[答案] B[解析] 分两类:最左端排甲有A55=120种不同的排法,最左端排乙,由于甲不能排在最右端,所以有C14A44=96种不同的排法,由加法原理可得满足条件的排法共有216种.解决排列问题,当有限制条件的问题要注意分类讨论,做到不重、不漏.二、填空题6.(2014·辽宁省协作联校三模)航空母舰“辽宁舰”在某次飞行训练中,有5架歼-15飞机准备着舰.如果甲、乙两机必须相邻着舰,而甲、丁两机不能相邻着舰,那么不同的着舰方法有________种.[答案] 36种[解析] ∵甲、乙相邻,∴将甲、乙看作一个整体与其他3个元素全排列,共有2A 44=48种,其中甲乙相邻,且甲丁相邻的只能是甲乙丁看作一个整体,甲中间,有A 22A 33=12种,∴共有不同着舰方法48-12=36种.7.(1)若A 2n =7A 2n -4,则n =________; (2)若A 5n +A 4nA 3n=4,则n =________.[答案] (1)7 (2)5[解析] (1)将A 2n =7A 2n -4按排列数公式展开得n (n -1)=7(n -4)(n -5)(n ≥6,n 为正整数),解得n =7.(2)将A 5n +A 4nA 3n=4改写为阶乘形式为n !n -5!+n !n -4!n !n -3!=n -3!n -5!+n -3!n -4!=(n -3)(n -4)+(n -3)=4(n ≥5,n 为正整数),解得n =5.三、解答题8.从7名运动员中选出4人参加4×100米接力,求满足下述条件的安排方法的种数:(1)甲、乙二人都不跑中间两棒;(2)甲、乙二人不都跑中间两棒.[分析] 这是排列和体育项目的综合题目,应在理解4×100米接力方式的同时,合理运用排列知识确定安排的方法.[解析] (1)从甲、乙之外的5人中选2人安排在中间两棒有A25种方法,再从所有余下5人中安排首、末棒有A25种方法,故符合要求的共有A25·A25=400(种)方法.(2)从7人中选4人安排到各接力区有A47种方法,去掉甲、乙两人都跑中间两棒的种数为A25·A22.即得甲、乙二人不都跑中间两棒的有A47-A25·A22=800(种)方法.[点评] 本题主要考查了体育中4×100米接力的要求和排列知识,考查了应用数学知识的能力,解决此类问题的关键在于从题目情景中提炼出“序”的实质.9.由0,1,2,3,4,5共六个数字组成没有重复数字的六位数,其中小于50万又不等于5的倍数的数有多少个?[分析] 依题意,有两个特殊元素,即数字“0”和“5”,不能放入两个特殊的盒子,即“首位”和“个位”,解题的基本策略有3种:(1)以元素即数字为主,先排特殊元素再排其他元素;(2)可以以盒子即数位为主,先排特殊位置,再排其他位置;(3)将全排列数减去不符合要求的数的个数.[解析] 解法一:因为0和5不能排在首位或个位,先将它们排在中间4个位置上有A24种排法,再排其他4个数有A44种排法,由分步乘法计数原理,共有A24·A44=12×24=288个符合要求的六位数.解法二:因为首位和个位上不能排0和5,所以先从1,2,3,4中任选2个排在首位和个位,有A24种排法,再排中间4位数有A44种排法,由分步乘法计数原理,共有A24·A44=12×24=288个符合要求的六位数.解法三:六个数字的全排列共有A66个,其中有0排在首位或个位上的有2A55个,还有5排在首位或个位上的也有2A55个,它们都不合要求应减去,但这种情况都包含0和5分别在首位或个位上的排法2A44种,所以有A66-4A55+2A44=288个符合要求的六位数.10.从数字0,1,3,5,7中取出不同的三个数作系数,可以组成多少个不同的一元二次方程ax2+bx+c=0?其中有实根的方程有多少个?[分析] 第一问隐含的限制条件是a≠0,可转化为由0,1,3,5,7排成没有重复数字的三位数.第二问的限制条件等价于Δ≥0,即受不等式b2-4ac≥0的制约,需分类讨论.[解析] 先考虑组成一元二次方程的问题:首先确定a,只能从1,3,5,7中选一个,有A14种,然后从余下的4个数中任选两个作b、c,有A24种,∴由分步乘法计数原理知,组成一元二次方程共有A14·A24=48(个).方程要有实根,必须满足Δ=b2-4ac≥0.分类讨论如下:当c=0时,a,b可在1,3,5,7中任取两个排列,有A24个;当c≠0时,分析判别式知,b只能取5,7.当b取5时,a,c只能取1,3这两个数,有A22种;当b取7时,a,c可取1,3或1,5这两组数,有2A22种.此时共有A22+2A22个.由分类加法计数原理知,有实根的一元二次方程共有A24+A22+2A22=18(个).[点评] 对于这类由数字组成方程(或函数或不等式)个数、直线、二次曲线条数等实际问题,可以转化为排数问题求解,但要搞清哪些是特殊元素(或位置),再根据问题进行合理分类、分步,选择合适的解法.。

高中数学选修2-3同步练习题库:正态分布(填空题:一般)

高中数学选修2-3同步练习题库:正态分布(填空题:一般)

正态分布(填空题:一般)1、某班有名同学,一次数学考试的成绩服从正态分布,已知,估计该班学生数学成绩在分以上的有人;2、若随机变量服从正态分布,,,设,且则__________.3、在某项测试中,测量结果服从正态分布,若,则__________.4、在我校2017年高二某大型考试中,理科数学成绩,统计结果显示.假设我校参加此次考试的理科同学共有2000人,那么估计此次考试中我校成绩高于120分的人数是___________.5、已知正态总体落在区间上的概率是,则相应的正态曲线在__________时,达到最高点.6、若,,,则_____.7、某班有45名学生,一次考试的成绩ξ(ξ∈N)近似服从正态分布N(100,102),已知P(90≤ξ≤100)=0.3,估计该班数学成绩在110分以上的人数为__________.8、已知正态分布总体落在区间(0.2,+∞)的概率为0.5,那么相应的正态曲线f(x)在x= ______时达到最高点.9、设随机变量,且,,则__________.10、设随机变量ξ~N(4,9),若P(ξ>c+3)=P(ξ<c﹣3),则c=-__________11、设随机变量服从正态分布,若,则_________12、在某次联考数学测试中,学生成绩服从正态分布,若在内的概率为0.6,则落在内的概率为__________.13、商场经营的某种袋装大米质量(单位:kg)服从正态分布N(10,0.12),任取一袋大米,质量不足9.8kg的概率为________.(精确到0.0001)注:P(μ-σ<x≤μ+σ)=0.6826,P(μ-2σ<x≤μ+2σ)=0.9544,P(μ-3σ<x≤μ+3σ)=0.9974.14、已知随机变量服从正态分布,且方程有实数解得概率为,若,则__________.15、若随机变量服从正态分布,,,设,且,在平面直角坐标系中,若圆上有四个点到直线的距离为1,则实数的取值范围是__________.16、某地区数学考试的成绩服从正态分布,正态分布密度函数为,其密度曲线如图所示,则成绩位于区间的概率是__________.(结果保留3为有效数字)本题用到参考数据如下:,.17、若随机变量,且,则展开式中项的系数是__________.18、若随机变量服从正态分布,,,设,且,在平面直角坐标系中,若圆上有四个点到直线的距离为1,则实数的取值范围是__________.19、若随机变量,且,则展开式中项的系数是__________.20、某厂生产的零件尺寸服从正态分布N(25,0.032),为使该厂生产的产品有95%以上的合格率,则该厂生产的零件尺寸允许值的范围为________.21、在某项测量中,测量结果ξ~N(1,σ2),若ξ在(0,2)内取值的概率为0.8,则ξ在(-∞,2]内取值的概率为________.22、在我校2015届高三11月月考中理科数学成绩(),统计结果显示,假设我校参加此次考试有780人,那么试估计此次考试中,我校成绩高于120分的有人.23、设随机变量服从正态分布,则函数不存在零点的概率为________.24、已知随机变量ξ服从正态分布N(0,σ2),若,则.25、某校在一次测试中约有600人参加考试,数学考试的成绩(,试卷满分150分),统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的,则此次测试中数学考试成绩不低于120的学生约有___________人.26、已知随机变量,,若,,则__________.27、在某市日前进行的2009年高三第二次模拟考中,参加考试的2000名理科学生的数学成绩在90—110分的人数为800人,统计结果显示,理科学生的数学成绩服从正态分布,则2000名理科学生的数学成绩不低于110分的人数是28、设随机变量,则______.29、已知随机变量服从正态分布. 若,则等于.30、已知随机变量服从正态分布,,则.31、设随机变量服从正态分布,若,则.32、设随机变量服从正态分布,若,则的值为 .33、已知正态分布密度曲线,且,则方差为 .34、已知正态分布密度曲线,且,则方差为 .35、商场经营的某种袋装大米质量(单位:kg)服从正态分布,任取一袋大米,质量不足9.8kg的概率为 .(精确到0.0001)36、设X~N(0,1).①P(-ε<X<0)=P(0<X<ε);②P(X<0)=0.5;③已知P(-1<X<1)=0.6826,则P(X<-1)=0.1587;④已知P(-2<X<2)=0.9544,则P(X<2)=0.9772;⑤已知P(-3<X<3)=0.9974,则P(X<3)=0.9987.其中正确的有________(只填序号).37、已知随机变量X服从正态分布N(2,σ2),且P(X<4)=0.8,则P(0<X<2)=________.38、已知正态分布总体落在区间(-∞,0.3)的概率为0.5,那么相应的正态曲线φμ,σ(x)在x=________时达到最高点.39、设,且总体密度曲线的函数表达式为:,x∈R求的值。

新课标高中数学选修23(统计与概率)测试题

新课标高中数学选修23(统计与概率)测试题

新课标高中数学选修2—3(统计与概率)测试题命题:广东省汕头市潮阳林百欣中学 许吟裕(2006-4-8)一、选择题(本题共10小题,每小题5分,共50分,在每小题给出的4个选项中,只有1项是符合题目要求的。

) 1.从总体中抽得的样本数据为3.8,6.8,7.4则样本平均数x 为:( )A. 6.5B. 6C. 5D. 5.52.高三年级有12个班,每班50人按1—50排学号,为了交流学习经验,要求每班学号为 18的同学留下进行交流,这里运用的是( )抽样法:A.抽签法B.系统抽样C.分层抽样D.随机数表法3.如果数据x 1,x 2,x 3,…,x n 的平均数为 ,方差为62,则数据3x 1+5,3x 2+5,…,3x n +5的平均数和方差分别是 ( ) A . B . C . D . 4.甲、乙两个水文站同时作水文预报,如果甲站、乙站各自预报的准确率为0.8和0.7,那么,在一次预报中两站都准确预报的概率为 ( ) A .0.7 B .0.56 C .0.7 D .0.85.从分别写有A 、B 、C 、D 、E 的5张卡片中,任取两张,这两张卡片上的字母恰好是按字母顺序相邻的概率为 ( )A .B .C .D .6.已知盒子中有散落的围棋棋子15粒,其中6粒黑子,9粒白子,从中任意取出2粒恰好是同一色的概率 ( )A .B .C .D .7)A .B .C .D .8.甲、乙两人独立解答某道题,解不出来的概率分别为a 和b ,那么甲、乙两人都解出这道题的概率是 ( ) A .1-ab B .(1-a )(1-b ) C .1-(1-a )(1-b ) D .a (1-b )+b (1-a ) 9.有3个相识的人某天各自乘火车外出,假设火车有10节车厢,那么至少有两人在车厢内相遇的概率为 ( )A .B .C .D .26和x 2653和+x 29653和+x 2363和x 51521031073517711051635342014121107200292571442918710.一患者服用某种药品后被治愈的概率是95%,则患有相同症状的四位病人中至少有3人被治愈的概率为 ( ) A .0.86 B .0.90 C .0.95 D .0.99二,填空题(本题共4小题,每小题5分,共20分)11.甲投篮的命中率为0.7,乙投篮的命中率为0.8,每人各投3次,每人恰好都投中2次的概率为___________。

人教A版高中数学选修2-3全册同步练习及单元检测含答案

人教A版高中数学选修2-3全册同步练习及单元检测含答案

⼈教A版⾼中数学选修2-3全册同步练习及单元检测含答案⼈教版⾼中数学选修2~3 全册章节同步检测试题⽬录第1章《计数原理》同步练习 1.1测试1第1章《计数原理》同步练习 1.1测试2第1章《计数原理》同步练习 1.1测试3第1章《计数原理》同步练习 1.2排列与组合第1章《计数原理》同步练习 1.3⼆项式定理第1章《计数原理》测试(1)第1章《计数原理》测试(2)第2章同步练习 2.1离散型随机变量及其分布列第2章同步练习 2.2⼆项分布及其应⽤第2章测试(1)第2章测试(2)第2章测试(3)第3章练习 3.1回归分析的基本思想及其初步应⽤第3章练习 3.2独⽴性检验的基本思想及其初步应⽤第3章《统计案例》测试(1)第3章《统计案例》测试(2)第3章《统计案例》测试(3)1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题1.⼀件⼯作可以⽤2种⽅法完成,有3⼈会⽤第1种⽅法完成,另外5⼈会⽤第2种⽅法完成,从中选出1⼈来完成这件⼯作,不同选法的种数是()A.8 B.15C.16 D.30答案:A2.从甲地去⼄地有3班⽕车,从⼄地去丙地有2班轮船,则从甲地去丙地可选择的旅⾏⽅式有()A.5种B.6种C.7种D.8种答案:B3.如图所⽰为⼀电路图,从A 到B 共有()条不同的线路可通电()A.1 B.2 C.3 D.4答案:D4.由数字0,1,2,3,4可组成⽆重复数字的两位数的个数是()A.25 B.20 C.16 D.12答案:C5.李芳有4件不同颜⾊的衬⾐,3件不同花样的裙⼦,另有两套不同样式的连⾐裙.“五⼀”节需选择⼀套服装参加歌舞演出,则李芳有()种不同的选择⽅式()A.24 B.14 C.10 D.9答案:B 6.设A ,B 是两个⾮空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==,,,,,,,则P *Q 中元素的个数是()A.4 B.7 C.12 D.16答案:C⼆、填空题7.商店⾥有15种上⾐,18种裤⼦,某⼈要买⼀件上⾐或⼀条裤⼦,共有种不同的选法;要买上⾐,裤⼦各⼀件,共有种不同的选法.答案:33,2708.⼗字路⼝来往的车辆,如果不允许回头,共有种⾏车路线.答案:129.已知{}{}0341278a b ∈∈,,,,,,,则⽅程22()()25x a y b -+-=表⽰不同的圆的个数是.答案:1210.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有项.答案:1011.如图,从A →C ,有种不同⾛法.答案:612.将三封信投⼊4个邮箱,不同的投法有种.答案:34三、解答题 13.⼀个⼝袋内装有5个⼩球,另⼀个⼝袋内装有4个⼩球,所有这些⼩球的颜⾊互不相同.(1)从两个⼝袋内任取⼀个⼩球,有多少种不同的取法?(2)从两个⼝袋内各取⼀个⼩球,有多少种不同的取法?解:(1)549N =+=种;(2)5420N =?=种.14.某校学⽣会由⾼⼀年级5⼈,⾼⼆年级6⼈,⾼三年级4⼈组成.(1)选其中1⼈为学⽣会主席,有多少种不同的选法?(2)若每年级选1⼈为校学⽣会常委,有多少种不同的选法?(3)若要选出不同年级的两⼈参加市⾥组织的活动,有多少种不同的选法?解:(1)56415N =++=种;(2)564120N =??=种;(3)56644574N =?+?+?=种15.已知集合{}321012()M P a b =---,,,,,,,是平⾯上的点,a b M ∈,.(1)()P a b ,可表⽰平⾯上多少个不同的点?(2)()P a b ,可表⽰多少个坐标轴上的点?解:(1)完成这件事分为两个步骤:a 的取法有6种,b 的取法也有6种,∴P 点个数为N =6×6=36(个);(2)根据分类加法计数原理,分为三类:①x 轴上(不含原点)有5个点;②y 轴上(不含原点)有5个点;③既在x 轴,⼜在y 轴上的点,即原点也适合,∴共有N =5+5+1=11(个).1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题 1.从集合{ 0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有() A .30个 B .42个 C .36个 D .35个答案:C2.把10个苹果分成三堆,要求每堆⾄少1个,⾄多5个,则不同的分法共有() A .4种 B .5种 C .6种 D .7种答案:A3.如图,⽤4种不同的颜⾊涂⼊图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂⾊不同,则不同的涂法有() A .72种 B .48种 C .24种 D .12种答案:A4.教学⼤楼共有五层,每层均有两个楼梯,由⼀层到五层的⾛法有() A .10种 B .52种C.25种D.42种答案:D5.已知集合{}{}023A B x x ab a b A ===∈,,,,,|,则B 的⼦集的个数是()A.4 B.8 C.16 D.15答案:C6.三边长均为正整数,且最⼤边长为11的三⾓形的个数为()A.25 B.26 C.36 D.37答案:C⼆、填空题7.平⾯内有7个点,其中有5个点在⼀条直线上,此外⽆三点共线,经过这7个点可连成不同直线的条数是.答案:128.圆周上有2n 个等分点(1n >),以其中三个点为顶点的直⾓三⾓形的个数为.答案:2(1)n n -9.电⼦计算机的输⼊纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产⽣种不同的信息.答案:25610.椭圆221x y m n+=的焦点在y 轴上,且{}{}123451234567m n ∈∈,,,,,,,,,,,,则这样的椭圆的个数为.答案:20 11.已知集合{}123A ,,ü,且A 中⾄少有⼀个奇数,则满⾜条件的集合A 分别是.答案:{}{}{}{}{}13122313,,,,,,,12.整数630的正约数(包括1和630)共有个.答案:24三、解答题 13.⽤0,1,2,3,4,5六个数字组成⽆重复数字的四位数,⽐3410⼤的四位数有多少个?解:本题可以从⾼位到低位进⾏分类.(1)千位数字⽐3⼤.(2)千位数字为3:①百位数字⽐4⼤;②百位数字为4: 1°⼗位数字⽐1⼤;2°⼗位数字为1→个位数字⽐0⼤.所以⽐3410⼤的四位数共有2×5×4×3+4×3+2×3+2=140(个).14.有红、黄、蓝三种颜⾊旗⼦各(3)n n >⾯,任取其中三⾯,升上旗杆组成纵列信号,可以有多少种不同的信号?若所升旗⼦中不允许有三⾯相同颜⾊的旗⼦,可以有多少种不同的信号?若所升旗⼦颜⾊各不相同,有多少种不同的信号?解: 1N =3×3×3=27种; 227324N =-=种; 33216N =??= 种.15.某出版社的7名⼯⼈中,有3⼈只会排版,2⼈只会印刷,还有2⼈既会排版⼜会印刷,现从7⼈中安排2⼈排版,2⼈印刷,有⼏种不同的安排⽅法.解:⾸先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版⼜会印刷”中的⼀个作为分类的标准.下⾯选择“既会排版⼜会印刷”作为分类的标准,按照被选出的⼈数,可将问题分为三类:第⼀类:2⼈全不被选出,即从只会排版的3⼈中选2⼈,有3种选法;只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第⼆类:2⼈中被选出⼀⼈,有2种选法.若此⼈去排版,则再从会排版的3⼈中选1⼈,有3种选法,只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此⼈去印刷,则再从会印刷的2⼈中选1⼈,有2种选法,从会排版的3⼈中选2⼈,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.第三类:2⼈全被选出,同理共有16种选法.所以共有3+18+16=37种选法.1. 1 分类加法计数原理与分步乘法计数原理综合卷⼀.选择题:1.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种2.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出语⽂、数学、英语各⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种3.某商业⼤厦有东南西3个⼤门,楼内东西两侧各有2个楼梯,从楼外到⼆楼的不同⾛法种数是()(A ) 5 (B )7 (C )10 (D )124.⽤1、2、3、4四个数字可以排成不含重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个5.⽤1、2、3、4四个数字可排成必须含有重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个6.3科⽼师都布置了作业,在同⼀时刻4名学⽣都做作业的可能情况有()(A )43种(B )34种(C )4×3×2种(D ) 1×2×3种7.把4张同样的参观券分给5个代表,每⼈最多分⼀张,参观券全部分完,则不同的分法共有()(A )120种(B )1024种(C )625种(D )5种8.已知集合M={l ,-2,3},N={-4,5,6,7},从两个集合中各取⼀个元素作为点的坐标,则这样的坐标在直⾓坐标系中可表⽰第⼀、⼆象限内不同的点的个数是()(A )18 (B )17 (C )16 (D )109.三边长均为整数,且最⼤边为11的三⾓形的个数为()(A )25 (B )36 (C )26 (D )3710.如图,某城市中,M 、N 两地有整齐的道路⽹,若规定只能向东或向北两个⽅向沿途中路线前进,则从M 到N 不同的⾛法共有()(A )25 (B )15 (C)13 (D )10 ⼆.填空题:11.某书店有不同年级的语⽂、数学、英语练习册各10本,买其中⼀种有种⽅法;买其中两种有种⽅法.12.⼤⼩不等的两个正⽅形玩具,分别在各⾯上标有数字1,2,3,4,5,6,则向上的⾯标着的两个数字之积不少于20的情形有种.13.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,可得到个不同的对数值.14.在连结正⼋边形的三个顶点组成的三⾓形中,与正⼋边形有公共边的有个.15.某班宣传⼩组要出⼀期向英雄学习的专刊,现有红、黄、⽩、绿、蓝五种颜⾊的粉笔供选⽤,要求在⿊板中A 、B 、C 、D 每⼀部分只写⼀种颜⾊,如图所⽰,相邻两块颜⾊不同,则不同颜⾊的书写⽅法共有种.三.解答题:16.现由某校⾼⼀年级四个班学⽣34⼈,其中⼀、⼆、三、四班分别为7⼈、8⼈、9⼈、10⼈,他们⾃愿组成数学课外⼩组.(1)选其中⼀⼈为负责⼈,有多少种不同的选法?(2)每班选⼀名组长,有多少种不同的选法?(3)推选⼆⼈做中⼼发⾔,这⼆⼈需来⾃不同的班级,有多少种不同的选法?17.4名同学分别报名参加⾜球队,蓝球队、乒乓球队,每⼈限报其中⼀个运动队,不同的报名⽅法有⼏种?[探究与提⾼]1.甲、⼄两个正整数的最⼤公约数为60,求甲、⼄两数的公约数共有多个?2.从{-3,-2,-1,0,l,2,3}中,任取3个不同的数作为抛物线⽅程y=ax2+bx+c(a≠0)的系数,如果抛物线过原点,且顶点在第⼀象限,这样的抛物线共有多少条?3.电视台在“欢乐今宵”节⽬中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的群众来信,甲信箱中有30封,⼄信箱中有20封.现由主持⼈抽奖确定幸运观众,若先确定⼀名幸运之星,再从两信箱中各确定⼀名幸运伙伴,有多少种不同的结果?综合卷1.A 2.B 3.D 4.D 5.B 6.B 7.D 8.B 9.B 10.B11.30;300 12.513.17 14.40 15.1801. 2排列与组合1、排列综合卷1.90×9l ×92×……×100=()(A )10100A (B )11100A (C )12100A (D )11101A 2.下列各式中与排列数mn A 相等的是()(A )!(1)!-+n n m (B )n(n -1)(n -2)……(n -m) (C )11m n nA n m --+ (D )111m n n A A --3.若 n ∈N 且 n<20,则(27-n )(28-n)……(34-n)等于()(A )827n A - (B )2734nn A -- (C )734n A - (D )834n A -4.若S=123100123100A A A A ++++,则S 的个位数字是()(A )0 (B )3 (C )5 (D )85.⽤1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有()(A )24个(B )30个(C )40个(D )60个6.从0,l ,3,5,7,9中任取两个数做除法,可得到不同的商共有()(A )20个(B )19个(C )25个(D )30个7.甲、⼄、丙、丁四种不同的种⼦,在三块不同⼟地上试种,其中种⼦甲必须试种,那么不同的试种⽅法共有()(A )12种(B )18种(C )24种(D )96种8.某天上午要排语⽂、数学、体育、计算机四节课,其中体育不排在第⼀节,那么这天上午课程表的不同排法共有()(A )6种(B )9种(C )18种(D )24种9.有四位司机、四个售票员组成四个⼩组,每组有⼀位司机和⼀位售票员,则不同的分组⽅案共有()(A )88A 种(B )48A 种(C )44A ·44A 种(D )44A 种10.有4位学⽣和3位⽼师站在⼀排拍照,任何两位⽼师不站在⼀起的不同排法共有()(A )(4!)2种(B )4!·3!种(C )34A ·4!种(D )3 5A ·4!种11.把5件不同的商品在货架上排成⼀排,其中a ,b 两种必须排在⼀起,⽽c ,d 两种不能排在⼀起,则不同排法共有()(A )12种(B )20种(C )24种(D )48种⼆.填空题::12.6个⼈站⼀排,甲不在排头,共有种不同排法.13.6个⼈站⼀排,甲不在排头,⼄不在排尾,共有种不同排法.14.五男⼆⼥排成⼀排,若男⽣甲必须排在排头或排尾,⼆⼥必须排在⼀起,不同的排法共有种.15.将红、黄、蓝、⽩、⿊5种颜⾊的⼩球,分别放⼊红、黄、蓝、⽩、⿊5种颜⾊的⼝袋中,但红⼝袋不能装⼊红球,则有种不同的放法.16.(1)有5本不同的书,从中选3本送给3名同学,每⼈各⼀本,共有种不同的送法;(2)有5种不同的书,要买3本送给3名同学,每⼈各⼀本,共有种不同的送法.三、解答题:17.⼀场晚会有5个唱歌节⽬和3个舞蹈节⽬,要求排出⼀个节⽬单(1)前4个节⽬中要有舞蹈,有多少种排法?(2)3个舞蹈节⽬要排在⼀起,有多少种排法?(3)3个舞蹈节⽬彼此要隔开,有多少种排法?18.三个⼥⽣和五个男⽣排成⼀排.(1)如果⼥⽣必须全排在⼀起,有多少种不同的排法?(2)如果⼥⽣必须全分开,有多少种不同的排法?(3)如果两端都不能排⼥⽣,有多少种不同的排法?(4)如果两端不能都排⼥⽣,有多少种不同的排法?(5)如果三个⼥⽣站在前排,五个男⽣站在后排,有多少种不同的排法?综合卷1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.C 9.D 10.D 11.C12.600 13.504 14.480 15.9616.(1) 60;(2) 12517.(1) 37440;(2) 4320;(3) 1440018.(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 7202、组合综合卷⼀、选择题:1.下列等式不正确的是()(A )!!()!mn n C m n m =- (B )11mm n n m C C n m++=- (C )1111m m n n m C C n +++=+ (D )11m m n n C C ++= 2.下列等式不正确的是()(A )m n m n n C C -= (B )11m m mm m m C C C -++=(C )123455555552C C C C C ++++= (D )11 111m m m m n n n n C C C C --+--=++3.⽅程2551616x x x C C --=的解共有()(A )1个(B )2个(C )3个(D )4个4.若372345n n n C A ---=,则n 的值是()(A )11 (B )12 (C )13 (D )145.已知7781n n n C C C +-=,那么n 的值是()(A )12 (B )13 (C )14 (D )15 6.从5名男⽣中挑选3⼈,4名⼥⽣中挑选2⼈,组成⼀个⼩组,不同的挑选⽅法共有()(A )3254C C 种(B ) 3254C C 55A 种(C ) 3254A A 种(D ) 3254A A 55A 种7.从4个男⽣,3个⼥⽣中挑选4⼈参加智⼒竞赛,要求⾄少有⼀个⼥⽣参加的选法共有()(A )12种(B )34种(C )35种(D )340种8.平⾯上有7个点,除某三点在⼀直线上外,再⽆其它三点共线,若过其中两点作⼀直线,则可作成不同的直线()(A )18条(B )19条(C )20条(D )21条9.在9件产品中,有⼀级品4件,⼆级品3件,三级品2件,现抽取4个检查,⾄少有两件⼀级品的抽法共有()(A )60种(B )81种(C )100种(D )126种10.某电⼦元件电路有⼀个由三节电阻串联组成的回路,共有6个焊点,若其中某⼀焊点脱落,电路就不通.现今回路不通,焊点脱落情况的可能有()(A )5种(B )6种(C )63种(D )64种⼆.填空题:11.若11m m n n C xC --=,则x= .12.三名教师教六个班的课,每⼈教两个班,分配⽅案共有种。

【高中数学选修第三册】排列数的综合应用(习题课)

【高中数学选修第三册】排列数的综合应用(习题课)

排列数的综合应用(习题课)关键能力·素养形成类型一数字排列问题【典例】1.用数字1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有________个.2.用1,2,3,4,5,6,7这7个数字组成没有重复数字的四位数.(1)如果组成的四位数必须是偶数,那么这样的四位数有多少个?(2)如果组成的四位数必须大于6 500,那么这样的四位数有多少个?【思维·引】1.解答本题时充分借助题设条件,先考虑首位数字的特征,其次考虑末位数字的要求,中间三个数将剩余的三个数全排的思维模式,运用排列数公式求解.2.先确定四位数的最高位,再依次确定其他数字,结合排列的定义及排列数公式求解.【解析】1.由题设可知:当首位排5和3时,末位可排2和4,中间三数全排,两种情况共有4种;当首位排2和4时,末位只能排4和2,中间三个数全排,两种情况共有2,所以由分类加法计数原理可得所有符合条件的五位数共有6=6×6=36个.答案:362.(1)第一步排个位上的数,因为组成的四位数必须是偶数,个位数字只能是2,4,6之一,所以有种排法;第二步排千、百、十这三个数位上的数字,有种排法.根据分步乘法计数原理,符合条件的四位数的个数是=3×6×5×4=360.故这样的四位数有360个.(2)因为组成的四位数要大于6 500,所以千位上的数字只能取7或6.排法可以分两类.第一类:千位上排7,有种不同的排法;第二类:若千位上排6,则百位上可排7或5,十位和个位可以从余下的数字中取2个来排,共有种不同的排法.根据分类加法计数原理,符合条件的四位数的个数是+=160.故这样的四位数有160个.【内化·悟】1.在数字的排列问题中应注意哪些位置上的数?提示:(1)要注意最高位不能为0;(2)对奇(偶)数要注意个位上的数为奇(偶)数;(3)能被3或5整除的数对各位数字上的要求.2.对于数字的排列问题应先排哪一位上的数?提示:根据情况而定,有可能先排最高位,也可能先排个位.【类题·通】数字排列问题的解题原则排列问题的本质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要表现在某元素不排在某个位子上,或某个位子不排某些元素,解决该类排列问题的方法主要是按“优先”原则,即优先排特殊元素或优先满足特殊位子,若一个位子安排的元素影响到另一个位子的元素个数时,应分类讨论.提醒:解决数字问题时,应注意题干中的限制条件,恰当地进行分类和分步,尤其注意特殊元素“0”的处理.【习练·破】我们把各位数字之和为7的四位数称为“北斗数”(如2 014是“北斗数”),则“北斗数”中千位为3的共有________个.【解析】由已知得千位为3的“北斗数”的后三位之和为4,有以下四种可能:0,0,4;0,1,3;0,2,2;1,1,2;各种组合对应的排列个数分别为3,6,3,3,合计15个.答案:15【加练·固】用0,1,2,3,4,5这六个数字可以组成多少个无重复数字的(1)能被5整除的五位数.(2)能被3整除的五位数.【解析】(1)个位上的数字必须是0或5.个位上是0,有个;个位上是5,若不含0,则有个;若含0,但0不作首位,则0的位置有种排法,其余各位有种排法,故共有++=216(个)能被5整除的五位数.(2)能被3整除的条件是各位数字之和能被3整除,则5个数可能有{1,2,3,4,5}和{0,1,2,4,5}两种情况,能够组成的五位数分别有个和个.故能被3整除的五位数有+=216(个).类型二“排队”问题角度1 元素“相邻”与“不相邻”问题【典例】3名男生,4名女生,这7个人站成一排,在下列情况下,各有多少种不同的站法.(1)男、女各站在一起.(2)男生必须排在一起.(3)男生不能排在一起.(4)男生互不相邻,且女生也互不相邻.【思维·引】利用排列数公式解决相关问题时,特殊元素应特殊考虑,相邻元素捆绑处理,不相邻元素插空处理.【解析】(1)(相邻问题捆绑法)男生必须站在一起,即把3名男生进行全排列,有种排法,女生必须站在一起,即把4名女生进行全排列,有种排法,全体男生、女生各看作一个元素全排列有种排法,由分步乘法计数原理知共有=288种排法.(2)(捆绑法)把所有男生看作一个元素,与4名女生组成5个元素全排列,故有=720种不同的排法.(3)(不相邻问题插空法)先排女生有种排法,把3名男生安排在4名女生隔成的5个空中,有种排法,故有=1 440种不同的排法.(4)先排男生有种排法.让女生插空,有=144种不同的排法.【类题·通】处理元素“相邻”“不相邻”问题应遵循“先整体,后局部”的原则.元素相邻问题,一般用“捆绑法”,先把相邻的若干个元素“捆绑”为一个大元素与其余元素全排列,然后再松绑,将这若干个元素内部全排列.元素不相邻问题,一般用“插空法”,先将不相邻元素以外的“普通”元素全排列,然后在“普通”元素之间及两端插入不相邻元素.角度2 定序问题【典例】1.东京夏季奥运会因为2020年的新型冠状病毒肺炎疫情由2020年夏季改为2021年夏季举办,其中将设置4×100米男女混合泳接力这一新的比赛项目,比赛的规则是:每个参赛国家派出2男2女共计4名运动员参加比赛,按照仰泳→蛙泳→蝶泳→自由泳的接力顺序,每种泳姿100米且由1名运动员完成,且每名运动员都要出场.若中国队确定了备战该项目的4名运动员名单,其中女运动员甲只能承担仰泳或者自由泳,男运动员乙只能承担蝶泳或者蛙泳,剩下的2名运动员四种泳姿都可以承担,则中国队参赛的安排共有( )A.144种B.8种C.24种D.12种2.7人站成一排.(1)甲必须在乙的前面(不一定相邻),则有多少种不同的排列方法?(2)甲、乙、丙三人自左向右的顺序不变(不一定相邻),则有多少种不同的排列方法?【思维·引】1.分两类,(1)甲承担仰泳,(2)甲承担自由泳,根据分类计数原理求.2.(1)先将7人全排,考虑甲在乙的前面和在乙的后面是等可能的,即可得出结果.(2)先将7人全排,甲、乙、丙三人排列有6种情况,考虑三人顺序一定只是6种情况中的一种即可求得结果.【解析】1.选B.由题意,若甲承担仰泳,则乙运动员有2种安排方法,其他两名运动员有=2种安排方法,共计2×2=4种方法,若甲承担自由泳,则乙运动员有2种安排方法,其他两名运动员有=2种安排方法,共计2×2=4种方法,所以中国队共有4+4=8种不同的安排方法.2.(1)甲在乙前面的排法种数占全体全排列种数的一半,故有=2 520(种)不同的排法.(2)甲、乙、丙自左向右的顺序保持不变,即甲、乙、丙自左向右顺序的排法种数占全体全排列种数的.故有=840(种)不同的排法.【类题·通】定序问题的解题策略这类问题的解法是采用分类法.n个不同元素的全排列有种排法,m个不同元素的全排列有种排法.因此种排法中,关于m个元素的不同分法有类,而且每一分类的排法数是一样的.当这m个元素顺序确定时,共有种排法.【习练·破】7名师生排成一排照相,其中老师1人,女生2人,男生4人,若4名男生的身高都不等,按从高到低的顺序站,有多少种不同的站法?【解析】7人全排列中,4名男生不考虑身高顺序的站法有种,而由高到低有从左到右和从右到左的不同的站法,所以共有2=420(种)不同的站法.【加练·固】8人排成前后两排,每排4人,其中甲、乙在前排,丙在后排,共有________种排法.【解析】按照前排甲、乙,后排丙,其余5人的顺序考虑,共有=5 760种,故填5 760.答案:5 760角度3 元素“在”与“不在”问题【典例】从包括甲、乙两名同学在内的7名同学中选出5名同学排成一列,求解下列问题:(1)甲不在首位的排法有多少种?(2)甲既不在首位,又不在末位的排法有多少种?(3)甲与乙既不在首位又不在末位的排法有多少种?(4)甲不在首位,乙不在末位的排法有多少种?【思维·引】(1)优先考虑甲,再结合排列数公式求解.(2)先将除甲以外的6名同学中选2名排在首、末位,再排剩余的5名同学.(3)先将甲、乙以外的5名同学中选2名排在首末位,再排剩余的5名同学.(4)用间接法求解.【解析】(1)方法一:把同学作为研究元素.第一类:不含甲,此时只需从甲以外的其他6名同学中取出5名放在5个位置上,有种.第二类:含有甲,甲不在首位:先从4个位置中选出1个放甲,再从甲以外的6名同学中选出4名排在没有甲的位置上,有种排法.根据分步乘法计数原理,含有甲时共有4×种排法.由分类加法计数原理,共有+4×=2 160(种)排法.方法二:把位置作为研究元素.第一步,从甲以外的6名同学中选1名排在首位,有种方法.第二步,从占据首位以外的6名同学中选4名排在除首位以外的其他4个位置上,有种方法.由分步乘法计数原理,可得共有·=2 160(种)排法.方法三(间接法):即先不考虑限制条件,从7名同学中选出5名进行排列,然后把不满足条件的排列去掉.不考虑甲不在首位的要求,总的可能情况有种;甲在首位的情况有种,所以符合要求的排法有-=2 160(种).(2)把位置作为研究元素,先满足特殊位置.第一步,从甲以外的6名同学中选2名排在首末2个位置上,有种方法.第二步,从未排上的5名同学中选出3名排在中间3个位置上,有种方法.根据分步乘法计数原理,有·=1 800(种)方法.(3)把位置作为研究元素.第一步,从甲、乙以外的5名同学中选2名排在首末2个位置,有种方法.第二步,从未排上的5名同学中选出3名排在中间3个位置上,有种方法.根据分步乘法计数原理,共有·=1 200(种)方法.(4)用间接法.总的可能情况是种,减去甲在首位的种,再减去乙在末位的种.注意到甲在首位同时乙在末位的情况被减去了两次,所以还需补回一次种,所以共有-2+=1 860(种)排法.【类题·通】元素“在”与“不在”问题的解题原则与方法(1)原则:解“在”与“不在”的有限制条件的排列问题时,可以从元素入手也可以从位置入手,原则是谁特殊谁优先.(2)方法:从元素入手时,先给特殊元素安排位置,再把其他元素安排在其他位置上;从位置入手时,先安排特殊位置,再安排其他位置.【习练·破】元旦晚会期间,高三二班的学生准备了6个参赛节目,其中有2个舞蹈节目,2个小品节目,2个歌曲节目,要求歌曲节目一定排在首尾,另外2个舞蹈节目一定要排在一起,则这6个节目的不同编排种数为( )A.48B.36C.24D.12【解析】选C.分3步进行:①歌曲节目排在首尾,有=2种排法.②将2个小品节目安排在歌曲节目的中间,有=2种排法.③排好后,2个小品节目与2个歌曲节目之间有3个空位,将2个舞蹈节目全排列,安排在中间的3个空位,有=6种排法.则这6个节目出场的不同编排种数为2×2×6=24种.类型三排列问题的综合应用【典例】1.(2020·柳州高二检测)某单位安排7位工作人员在10月1日到10月7日值班,每人值一天,其中甲、乙二人安排在相邻两天,并且甲只能在双日值班,则不同的安排方法有( )A.120种B.240种C.360种D.720种2.从数字0,1,3,5,7中取出不同的三个数作系数,可以组成______ 个不同的一元二次方程ax2+bx+c=0?其中有实根的方程有________个.【思维·引】1.根据题意,依次分析甲、乙和其他五人的排法,再利用分步计数原理计算.2.先确定a的值,再确定b,c的值,最后根据分步乘法计数原理求解.对于有实根的方程先对c进行讨论.【解析】1.选D.根据题意:甲只能在2,4,6这三天值班,共三种情况,又甲、乙二人安排在相邻两天,甲确定后,乙有两种选择,其余5人没有限制,有种情况,故不同的安排方法有3×2×=720种.2.先考虑组成一元二次方程的问题.首先确定a,只能从1,3,5,7中选一个,有种,然后从余下的4个数中任选两个作b,c,有种.由分步乘法计数原理知,共组成一元二次方程·=48(个).方程要有实根,必须满足Δ=b2-4ac≥0.分类讨论如下:当c=0时,a,b可以从1,3,5,7中任取两个,有种;当c≠0时,分析判别式知b只能取5,7中的一个.当b取5时,a,c只能取1,3这两个数,有种;当b取7时a,c可取1,3或1,5这两组数,有2种.此时共有(+2)个.由分类加法计数原理知,有实根的一元二次方程共有++2=18(个).答案:48 18【内化·悟】解决排列问题要从哪些角度考虑?提示:或从元素考虑,或从位置考虑,都要贯彻到底.不能一会考虑元素,一会考虑位置,造成分类、分步混乱,导致解题错误.【类题·通】排列综合问题解题策略实际问题中,既要能观察出是排列问题,又要能搞清哪些是特殊元素,还要根据问题进行合理分类、分步,选择合适的解法.因此需做一定量的排列应用题,逐渐掌握解决问题的基本思想.【习练·破】A,B,C,D,E,F共6个同学和1个数学老师站成一排合影留念,数学老师穿白色文化衫,A,B和C,D同学分别穿着白色和黑色文化衫,E和F分别穿着红色和橙色的文化衫,若老师站中间,穿着白色文化衫的不相邻,则不同的站法种数为( ) A.72 B.112 C.160 D.192【解析】选D.共有7个位置,老师站中间,两边各三个座位,两位穿白色文化衫的同学不站老师两边,且他俩不能相邻,所以他俩有2×2×=8种方法,其他没有限制,所以共有8×=192种方法.【加练·固】由四个不同数字1,2,4,x组成无重复数字的三位数,(1)若x=5,其中能被5整除的共有多少个?(2)若x=0,其中的偶数共有多少个?(3)若所有这些三位数的各位数字之和是252,求x.【解析】(1)若x=5,则末位为5的三位数共有=6个,即能被5整除的共有6个.(2)若x=0,当末位是0时,三位数共有=6个;当末位是2或4时,三位数共有=8个,故共有6+8=14个.(3)4个不同的数,组成无重复三位数共有4×3×2=24种,每个数字用了3=18次.因为所有这些三位数的各位数字之和是252,所以18×(1+2+4+x)=252,即x=7.课堂检测·素养达标1.6位选手依次演讲,其中选手甲不排在第一个也不排在最后一个演讲,则不同的演讲次序共有( )A.240种B.360种C.480种D.720种【解析】选C.第一步:排甲,共有种不同的排法;第二步:排其他人,共有种不同的排法,因此不同的演讲次序共有=480(种).2.有4名司机、4名售票员分配到4辆汽车上,使每辆汽车上有一名司机和一名售票员,则可能的分配方案有( )A. B. C. D.2【解析】选C. 安排4名司机有种方案,安排4名售票员有种方案.司机与售票员都安排好,这件事情才算完成,由分步乘法计数原理知共有种方案.3.甲、乙等5人在南沙聚会后在天后宫沙滩排成一排拍照留念,甲和乙必须相邻的排法有( )A.24种B.48种C.72种D.120种【解析】选B.由题意利用捆绑法求解,甲、乙两人必须相邻的方法数为·=48种.4.从1,2,3,…,9这9个数字中任取2个不同的数分别作为一个对数的底数和真数,一共可以得到多少个不同的对数值?其中比1大的有几个?【解析】从2,3,…,9这8个数中任取2个数组成对数,有个,在这些对数值中,log24=log39,log42=log93,log23=log49,log32=log94,重复计数4个,又1不能作为对数的底数,1作为真数时,不论底数为何值,其对数值均为0.所以可以得到-4+1=53(个)不同的对数值.要求对数值比1大,分类完成:底数为2时,真数从3,4,5,…,9中任取一个,有7种选法;底数为3时,真数从4,5,…,9中任取一个,有6种选法;…;依次类推,当底数为8时,真数只能取9,故有7+6+5+4+3+2+1=28(个).但其中log24=log39,log23=log49,所以其中比1大的对数值有28-2=26(个).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学高二选修三练习题
高二数学选修三练习题
1. 解析几何
1.1 平面与空间直线相交的情况
在解析几何中,平面和空间直线的相交情况有三种:相交于一点、平行、重合。

1.2 直线与平面的位置关系
一条直线与平面的位置关系有四种情况,即相交、平行、重合和垂直。

1.3 直线与平面的距离
直线与平面之间的距离可以通过现场求解或公式计算得出。

2. 二次函数
2.1 二次函数的图像
二次函数的图像是一个开口朝上或朝下的抛物线。

2.2 二次函数的性质
二次函数的性质包括单调性、最值等,可以通过导数或求解二次函数的顶点得到。

2.3 二次函数的应用
二次函数可以应用于物理、经济等问题中,例如求解最值、模型拟
合等。

3. 概率
3.1 事件与概率
概率是描述事件发生可能性的数值,可以通过实验、频率定义或几
何概率等方法计算。

3.2 基本概率公式
基本概率公式包括加法公式和乘法公式,可用于计算复合事件的概率。

3.3 排列组合与概率
概率与排列组合密切相关,可以通过排列组合的知识解决概率问题。

4. 统计与概率
4.1 统计中的常用概念
统计中常用的概念包括频数、频率、平均数、中位数等,可以用于
描述和分析数据集。

4.2 正态分布
正态分布是一种连续型随机变量的概率分布,具有钟型对称曲线特点。

4.3 抽样与估计
通过抽样和估计可以根据样本数据估计总体的参数,如均值、比例等。

5. 三角函数
5.1 三角函数的定义与性质
三角函数包括正弦、余弦、正切等,具有周期性和对称性等性质。

5.2 三角函数的图像与变换
通过对三角函数进行平移、伸缩等变换,可以得到不同的图像。

5.3 三角函数的应用
三角函数在物理、工程等领域有广泛的应用,如模拟波动、测量高度等。

总结:
数学高二选修三练习题涵盖了解析几何、二次函数、概率、统计与概率以及三角函数等知识点。

对于高中数学学习者来说,通过练习这些题目可以巩固基础知识,提高解题能力。

相关文档
最新文档