弹塑性力学-09张量概念及其基本运算

合集下载

弹塑性力学PPT

弹塑性力学PPT
P
研究对象:
P

与其他学科的关系:
课程 理论力学 材料力学 结构力学 弹性力学 塑性力学 研究对象 刚体 弹性杆件 (一维) 弹性杆系 (二维) 弹性体(三维) 塑性体 解决的问题 力的静力平衡、运动 学、动力学 杆的拉、压、弯、 剪、扭 杆系的内力位移 应力、应变、位移 塑性加工 工程力学 固体力学 力学范畴 一般力学
哑标号:
三、求和约定:
当一个下标符号在一项中出现两次时,这个下标符号应理解为 取其变程N中所有的值然后求和,这就叫做求和约定。
ai xi a1 x1 a2 x2 a3 x3
ii 11 22 33 (i : 哑标,i 1, 2,3) S Ni ij l j i1l1 i 2l2 i 3l3
2 2 2
uy
2
主要参考书目
1 、杨伯源 《工程弹塑性力学》 2 、杨桂通 《弹塑性力学》 3 、徐秉业 《应用弹塑性力学》
二阶以上的张 量已不可能在 三维空间有明 显直观的几何 意义。
二、下标记号法:
为了书写上的方便,在张量的记法中,都采用下标字母符号 来表示和区别该张量的所有分量。这种表示张量的方法,就 称为下标记号法。
( x, y, z) ( x1, x2 , x3 ) xi (i 1, 2,3)
一、张量的概念
只需指明其大小即足以被说明的物理量,称为标量 温度、质量、力所做的功 除指明其大小还应指出其方向的物理量,称为矢量 物体的速度、加速度 在讨论力学问题时,仅引进标量和矢量的概念是不够的 如应力状态、应变状态、惯性矩、弹性模量等
张量
具有多重方向性的物理量,称为张量
关于三维空间,描述一切物理恒量的 分量数目可统一地表示成: M=rn=3n 标量:n=0,零阶张量 矢量:n=1,一阶张量 应力,应变等:n=2,二阶张量

弹塑性力学 陈明祥版的 课后习题答案++汇总

弹塑性力学 陈明祥版的 课后习题答案++汇总
阐明了应力、应变的概念和理论; 弹性力学和弹塑性力学的基本理论框架 得以确立。
七、张量概念及其基本运算(附录一)
1、张量概念
◆ 张量分析是研究固体力学、流体力学及连续介 质力学的重要数学工具 。
◆ 张量分析具有高度概括、形式简洁的特点。
◆ 任一物理现象都是按照一定的客观规律进行的, 它们是不以人们的意志为转移的。
静力学:研究力系或物体的平衡问题,不涉及 物体运动状态的改变;如飞机停在地 面或巡航。
运动学:研究物体如何运动,不讨论运动与受 力的关系; 如飞行轨迹、速度、 加速度。
动力学:研究力与运动的关系。 如何提供加速度?
● 按研究对象分:
◆ 一般力学: 研究对象是刚体。研究力及其与
运动的关系。分支学科有理论力学,分析力学等。
五、 弹塑性力学的基本假设
(1)连续性假设:假定物质充满了物体所 占有的全部空间,不留下任何空隙。
(2)均匀性与各向同性的假设:假定物体内 部各点处,以及每一点处各个方向上的 物理性质相同。
(3)力学模型的简化假设: (A)完全弹性假设 ; (B)弹塑性假设。
⑷ 几何假设——小变形条件
假定物体在受力以后,体内的位移和变形是微小 的,即体内各点位移都远远小于物体的原始尺寸,而 且应变( 包括线应变与角应变 )均远远小于1。根据 这一假定: (A)在弹塑性体产生变形后建立平衡方程时,可以
◆ 分析研究物理现象的方法和工具的选用与人们 当时对客观事物的认识水平有关,会影响问题 的求解与表述。
◆ 所有与坐标系选取无关的量,统称为物理恒量。
◆ 在一定单位制下,只需指明其大小即足以被说明
的物理量,统称为标量。例如温度、质量、功等。
◆ห้องสมุดไป่ตู้在一定单位制下,除指明其大小还应指出其方向

弹塑性力学基本知识

弹塑性力学基本知识

dε p =
塑性功增量: dW = σ ij dε ij
p p
2 p p deij deij 3
(13) (14)
等效剪应变 (或剪应变强度) : Γ=
2eij eij
(15)
T = 等效剪应力 (或剪应力强度) : 4 3 1 3
1 2
sij sij
(16)
八面体剪应变: γ8 =
eij eij 2 3
P dε ij = dλ1
∂f1 ∂σ ij
(49)
特殊情况, 若σ1 = σ 2 ≥ σ 3 , 则应力状态处于 f1 = σ 2 − σ 3 − σ s = 0 和 f 2 = σ 1 − σ 3 − σ s = 0
的交点处,则:
dε iP = dλ1
z 硬化模型(三类) 等向硬化:
∂f1 ∂σ i
加载
中性变载
(37)
卸载
⎛ P ⎜ dε pq ∂f ∂g dσ ij = ⎜ 1 − i ∂σ ij ⎜ ∂ε pq ∂g dε mn ⎜ ∂ε mn ⎝
⎞ ⎟ ∂g ⎟ dε kl ⎟ ∂ε kl ⎟ ⎠
(条件:
∂g ∂ε ij
dε ij > 0 )
(38)
注意:当材料处于硬化阶段时,采用
∂g ∂ε ij
第一、第二、第三偏应力不变张量:
⎫ ⎪ ⎬ ⎪ ⎭
(7)
J1 = skk = 0 J2 = 1 2
2 sij sij = I 2 + 3σ m
J 3 = det ( sij ) = sij s jk ski
第二偏应力不变张量:
⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭
(8)
J2 =
1

弹塑性力学

弹塑性力学

张量场的右梯度
S∇ = T
Tijk = Sij,k
2→3
16
笛卡儿张量简介(II)
四、笛卡儿张量场 • 几个常用的积分公式
Vu
Sn
u 在V+S上连续可微
∫V ∇ ⋅udV = ∫S n ⋅udS ∫ ∫ V ui,idV = S niuidS
∫V ∇ o UdV = ∫S n o UdS
广义Gauss公式
8
笛卡儿张量简介(II)
3. 二阶张量 • 张量的不变量
笛卡儿张量简介(II)
3. 二阶张量 • 二阶对称张量的主方向和主值
三维二阶对称张量的独立不变量只有3 个,
三维二阶反对称张量的独立不变量只有1 个
9
10
笛卡儿张量简介(II)
4. 各向同性张量
T = αδ ij ei e j
⎜⎛α 0 0 ⎟⎞ ⎜0 α 0⎟ ⎜⎝ 0 0 α ⎟⎠
n个指标,n个坐标转换系数,n阶张量
2
笛卡儿张量简介(II)
商法则:如果它与一个矢量点积得到的是一个 n - 1阶张量,则该指标符号表示的是一个n 阶 张量。也可表示成,如果它连续和n 个矢量点 积得到一个标量,则该量是一个n 阶张量。
3
笛卡儿张量简介(II)
• 三、张量 2. 张量代数
4
笛卡儿张量简介(II)
பைடு நூலகம்
0 →1 1→ 0
矢量场的旋度 curlu = ω = eieijk ∂ juk = ∇ × u ωi = eijk ∂ juk
1→1
12
2
笛卡儿张量简介(II)
四、笛卡儿张量场 • 标量场与矢量场的微分
∇ ⋅ u = (ei∂i ) ⋅ (u j e j ) = (ei ⋅ e j )∂iu j = ∂iui = ui,i ∇ × u = (ei∂i ) × (u j e j ) = (ei × e j )∂iu j = ek ekij∂iu j = ek ekiju j,i

弹塑性力学第09章

弹塑性力学第09章

dSij 2Gdeij
(9-6)
d ii 1-E d ii 2
(9-7)
9-3 全量理论-弹塑性小变形理论
全量理论是直接用一点的应力分量和应变分量表 示的塑性本构关系,其数学表达式比较简单,认为 应力和应变之间存在着一一对应的关系。 历史上,全量理论以伊柳辛的弹塑性小变形理论 应用最为广泛。弹塑性小变形意味着离弹性状态不 远,进入塑性状态后,其变形也是小的。它描述了 强化材料在小变形情况下的塑性应力-应变关系,其 中应变包括弹性应变和塑性应变部分,这是全量理 论一个简单常用的理论,是广义胡克定律的一个自 然推广。
i 2G 1 2 2 3 3 1 3G i
2 2 2

式中
i 3G i
i为应变强度, i 应力强度
(9-2)
类似 因有 2 1 2 3 ,2 1 2 3 ; 2 2 3 1 ,2 2 3 1 ; 2 3 1 2 ,2 3 1 2
故有:
i G i
(9-3)
式中 i 和 i 分别为剪应力强度和剪应变强度。 如果将应力张量和应变张量分解为球张量和偏张量 两部分,则广义胡克定律可表示为如下的张量关系:
1 2v ii ii E
(9-4)
上式表示应力球张量和应变球张量之间的关系
由(9-1)和(9-4)式,
ij
e ij
p ij
因体积变化始终是弹性的,塑性变形部分的体积 变化恒为零,即
1 2 ii ii E
(a)
(2)应变偏量与应力偏量成正比

eij S ij
(b)
这里只是在形式上和广义Hooke定律相似,和广义 Hooke定律表达式(9-5)不同,这里的比例系数λ 不是一个常数,它和点的位臵以及荷载水平有关, 即对物体的不同的点,不同的荷载水平,λ都不相 同,但对同一点,同一荷载水平,λ是常数。所以 这是一个非线性关系。由应力强度和应变强度的表 达,需要考虑三个要素: 1.初始屈服条件:根据这个条件可以判断材料何时 进入塑性,并进一步确定弹性区和塑性区的边界, 在弹性区采用弹性本构关系,在塑性区则采用塑 性本构关系。 2.塑性流动法则:指的是与加载面相关联的应力应 变或其增量之间的定量关系,实质上是应力偏量 与应变偏量或其增量之间的关系。 3.硬化条件:即描述材料硬化特性的关系式,或称 加载函数。 在研究上述因素基础上,下面建立塑性本构关系。

弹塑性力学(浙大课件)_图文

弹塑性力学(浙大课件)_图文
物体的速度、加速度
在讨论力学问题时,仅引进标量和矢量的概念是不够的
如应力状态、应变状态、惯性矩、弹性模量等
张量
关于三维空间,描述一切物理恒量的 分量数目可统一地表示成:
M=rn=3n
标量:n=0,零阶张量 矢量:n=1,一阶张量 应力,应变等:n=2,二阶张量
二阶以上的张量 已不可能在三维 空间有明显直观 的几何意义。
(a)
显然,方向余弦l1,l2,l3将由式(a)中
的任意两式和l12+l22+l32=1所确定。
若设偏应力状态 :
由于:
主方向的方向余弦为l1’,l2’,l3’,则由式(1.9)同样得
(b)
显然,方向余弦l1’,l2’,l3’将由式(b)中
的任意两式和l1’2+l2’2+l3’ 2=1所确定

可见式(a)与式(b)具有相同的系数, 且已知l12+l22+l32= l1’2+l2’2+l3’ 2=1
I2’应用较广,又可表达为:
(1.52)
1.3 应变张量
等效应变(应变强度):
(1.54)
等效剪应变(剪应变强度):
(1.55)
1.4 应变速率张量
一般来说物体变形时,体内任一点的变形不但与坐标有关,
而且与时间也有关。如以u、v、w表示质点的位移分量,则:
设应变速率分量为:
质点的运动速度分量
1.4 应变速率张量
斜截面外法线n的方向余弦:
令斜截面ABC 的面积为1
(1.3)
(1.4)
i :自由下标;j为求和下标 (同一项中重复出现)。
1.1 应力张量
斜截面OABC上的正应力:

《弹塑性力学》课件

《弹塑性力学》课件
结构弹塑性分析的方法包括有限元法、有限差分法、边界元法等数值计算 方法。
材料的弹塑性行为模拟
材料的弹塑性行为模拟是研究材料在 不同应力状态下表现出的弹塑性性质 ,对于理解材料的力学行为和优化材 料设计具有重要意义。
材料弹塑性行为模拟的方法包括分子 动力学模拟、有限元分析等。
通过实验和数值模拟相结合的方法, 可以研究材料的微观结构和宏观性能 之间的关系,预测材料的弹塑性行为 。
THANKS
感谢观看
弹塑性力学在工程实践中的挑战与解决方案
工程实践中,由于材料和结 构的复杂性,弹塑性力学应 用面临诸多挑战,如非线性 行为、边界条件和初始条件
的确定等。
为了解决这些挑战,需要采 用先进的数值计算方法和实 验技术,提高模拟精度和可
靠性。
此外,加强跨学科合作,将 弹塑性力学与计算机科学、 物理学等学科相结合,可以 推动工程实践中的弹塑性力 学应用不断发展。
《弹塑性力学》课件
目录
• 弹塑性力学概述 • 弹性力学基础 • 塑性力学基础 • 材料弹塑性性质 • 弹塑性力学在工程中的应用
01
弹塑性力学概述
弹塑性力学的定义

弹塑性力学是一门研究材料在弹性和 塑性范围内行为的学科。它主要关注 材料在外力作用下发生的变形行为, 以及这种行为与材料内部应力、应变 的关系。
塑性
材料在应力超过屈服极限后发生的不可逆变形。
屈服准则
描述材料开始进入塑性状态的应力条件。
塑性力学的基本方程
应力平衡方程
01
描述受力物体内部应力分布的平衡关系。
几何方程
02
描述材料在塑性变形过程中应变与位移的关系。
屈服准则
03
确定材料进入塑性状态的条件。

附录I:张量概念及其基本运算

附录I:张量概念及其基本运算

Tx = σ x l + τ yx m + τ zx n ⎫ ⎪ Ty = τ xy l + σ y m + τ zy n ⎬ ⎪ Tz = τ xz l + τ yz m + σ z n ⎭
T j = σ ij li
◆重复出现的角标称为哑标,不重复出现的角标称 为自由标。 ◆自由标不包含求和的意思,但它可表示该表达式 的个数。
[ 弹塑性理论 \ 石家庄铁道大学工程力学系 13
Mechanics of Elasto-Plasticity
2 2 2 a = ∑ aii = a11 + a 22 +a 2 ii j =1 3
(σ ii )
2
⎛ ⎞ = ⎜ ∑ σ ii ⎟ = (σ 11 + σ 22 + σ 33 ) 2 ⎝ i =1 ⎠
石家庄铁道大学工程力学系 16
Mechanics of Elasto-Plasticity
σ = σ x l 2 + σ y m 2 + σ z n 2 + 2 (τ xy lm + τ yz mn + τ zx nl )
σ = σ ij li l j
( i , j = x, y , z ) ( i , j = x, y , z )
(aii ) 2 = (a11 + a 22 + a33 ) 2
[ 弹塑性理论 \ 石家庄铁道大学工程力学系 18
[ 弹塑性理论 \ 石家庄铁道大学工程力学系 17
Mechanics of Elasto-Plasticity
★ 关于求和标号,即哑标有: ◆ 求和标号可任意变换字母表示。 ◆ 求和约定只适用于字母标号,不适用于数字标号。 ◆ 在运算中,括号内的求和标号应在进行其它运算 前优先求和。例:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

◆ 张量导数就是把张量的每个分量都对坐标参数
求导数。 求导数。 对张量的坐标参数求导数时, ◆ 对张量的坐标参数求导数时,采用在张量下标 符号前上方加“ 的方式来表示。 符号前上方加“ ′”的方式来表示。例如 A′ j , 的方式来表示 i 就表示对一阶张量 A 的每一个分量对坐标参数 i xj求导。 求导。
的作用与计算示例如下: δij 的作用与计算示例如下:
(1) δii = δ11 +δ22 +δ33 = 3 (2) (3) (4) (5) (6)
2 2 2 δijδij = (δ11) + (δ22) + (δ33 ) = 3 δijδ jk = δi1δ1k +δi 2δ2k +δi 3δ3k = δik aijδij = a11δ11 + a22δ22 + a33δ33 = aii aiδij = a1δ1 j + a2δ2 j + a3δ3 j = aj (即a1,或a2 ,或a3 ) σijl j − λli = σijl j − λδijl j = (σij − λδij )l j
4.张量的基本运算 4.张量的基本运算
张量的加减: A、张量的加减: 张量可以用矩阵表示,称为张量矩阵, 张量可以用矩阵表示,称为张量矩阵,如: 张量矩阵
a11 a12 a13 aij = a21 a22 a23 a31 a32 a33
凡是同阶的两个或几个张量可以相加(或相减) 凡是同阶的两个或几个张量可以相加(或相减), 并得到同阶的张量, 并得到同阶的张量,它的分量等于原来张量中标号 相同的诸分量之代数和。 相同的诸分量之代数和。 即:
ai bjk = cijk
张量乘法不服从交换律, ◆ 张量乘法不服从交换律,但张量乘法服从分配 律和结合律。例如: 律和结合律。例如:
(aij + bij )ck = aijck + bijck ; 或 (aijbk )cm = aij (bkcm )
张量函数的求导: C、张量函数的求导:
一个张量是坐标函数, ◆ 一个张量是坐标函数,则该张量的每个分量都 是坐标参数x 的函数。 是坐标参数xi的函数。
3.求和约定 3.求和约定
关于哑标号应理解为取其变程n内所有数值,然后再求和, 关于哑标号应理解为取其变程 内所有数值,然后再求和, 内所有数值 这就叫做求和约定。 例如: 这就叫做求和约定。 例如:
ai bi = ∑ai bi = a1b + a2b2 + a3b3 1
i =1
3
aijbj = ∑aijbj = ai1b1 + ai 2b2 + ai 3b3
j=1
3
a = ∑a = a + a11 2 22
3
2 33
(σii )
2
2 = ∑σii = (σ11 +σ22 +σ33 ) i=1
3
2
σijεij = ∑∑σijεij
= σ11ε11 +σ12ε12 +σ13ε13 +σ21ε21 +σ22ε22 +σ23ε23 +σ31ε31 +σ32ε32 +σ33ε33
2.下标记号法 2.下标记号法
在张量的讨论中,都采用下标字母符号, ◆ 在张量的讨论中,都采用下标字母符号,来表 示和区别该张量的所有分量。 示和区别该张量的所有分量。 不重复出现的下标符号称为自由标号。 ◆ 不重复出现的下标符号称为自由标号。自由标 号在其方程内只罗列不求和。 号在其方程内只罗列不求和。以自由标号的数 量确定张量的阶次。 量确定张量的阶次。 重复出现, ◆ 重复出现,且只能重复出现一次的下标符号称 为哑标号或假标号。哑标号在其方程内先罗列, 为哑标号或假标号。哑标号在其方程内先罗列, 再求和。 再求和。
张量概念及其基本运算
1、张量概念
◆ 张量分析是研究固体力学、流体力学及连续介 张量分析是研究固体力学、 质力学的重要数学工具 。 张量分析具有高度概括、形式简洁的特点。 ◆ 张量分析具有高度概括、形式简洁的特点。 所有与坐标系选取无关的量,统称为物理恒量 物理恒量。 ◆ 所有与坐标系选取无关的量,统称为物理恒量。 在一定单位制下, ◆ 在一定单位制下,只需指明其大小即足以被说明 的物理量,统称为标量 例如温度、质量、功等。 标量。 的物理量,统称为标量。例如温度、质量、功等。 在一定单位制下, ◆ 在一定单位制下,除指明其大小还应指出其方向 的物理量,称为矢量 例如速度、加速度等。 矢量。 的物理量,称为矢量。例如速度、加速度等。 绝对标量只需一个量就可确定, ◆ 绝对标量只需一个量就可确定,而绝对矢量则需 三个分量来确定。 三个分量来确定。
∂φ ∂φ ∂φ φ'i = , , = ∂xi ∂x1 ∂x2
∂φ ∂x3
∂ui ∂u1 ∂u2 ∂u3 ui 'i = = + + ∂xi ∂x1 ∂x2 ∂x3
aii = a + a + a
2 2 11 2 22
2
2 33
2
(aii ) = (a11 + a22 + a33 )
关于自由标号: ★ 关于自由标号:
在同一方程式中,各张量的自由标号相同, ◆在同一方程式中,各张量的自由标号相同, 即同阶且标号字母相同。 即同阶且标号字母相同。 自由标号的数量确定了张量的阶次。 ◆自由标号的数量确定了张量的阶次。
[a ]± [b ] = [c ]
ij ij ij
其中各分量(元素) 其中各分量(元素)为:
aij ± bij = cij
B、张量的乘积
对于任何阶的诸张量都可进行乘法运算。 ◆ 对于任何阶的诸张量都可进行乘法运算。 两个任意阶张量的乘法定义为: ◆ 两个任意阶张量的乘法定义为:第一个张量的 每一个分量乘以第二个张量中的每一个分量, 每一个分量乘以第二个张量中的每一个分量, 它们所组成的集合仍然是一个张量, 它们所组成的集合仍然是一个张量,称为第一 个张量乘以第二个张量的乘积,即积张量。 个张量乘以第二个张量的乘积,即积张量。积 张量的阶数等于因子张量阶数之和。例如: 张量的阶数等于因子张量阶数之和。例如:
是一个自由下标, ◆ 如果在微商中下标符号i是一个自由下标,则
作用的结果, 算子 ∂i作用的结果,将产生一个新的升高一阶 的张量;如果在微商中,下标符号是哑标号, 的张量;如果在微商中,下标符号是哑标号, 则作用的结果将产生一个新的降低一阶的张量。 则作用的结果将产生一个新的降低一阶的张量。 例如: 例如:
若我们以r表示维度 表示维度, 表示幂次, ◆ 若我们以 表示维度,以n表示幂次,则关于三维 表示幂次 空间, 空间,描述一切物理恒量的分量数目可统一地表 示成: 示成: M
= 3n
◆ 现令 n 为这些物理量的阶次,并统一称这些物 为这些物理量的阶次,
理量为张量。 理量为张量。
当n=0时,零阶张量,M = 1,标量; 时 零阶张量, ,标量; 当n=1时,一阶张量,M = 3,矢量; 时 一阶张量, ,矢量; 、 、 、 当取n时,n阶张量,M = 3n。 当取 时 阶张量, 阶张量

关于Kronecker delta( δ )符号: 符号: 关于Kronecker delta(
ij
δij是张量分析中的一个基本符号称为柯氏符号 是张量分析中的一个基本符号称为柯氏符号
(或柯罗尼克尔符号),亦称单位张量。其定义为: 柯罗尼克尔符号),亦称单位张量。其定义为: ),亦称单位张量
1 0 0 1, 当i = j时; δij = 或: δij = 0 1 0 0 , 当i ≠ j时; 0 0 1
i =1 j=1
3
3

关于求和标号,即哑标有: 关于求和标号,即哑标有:
求和标号可任意变换字母表示 表示。 ◆ 求和标号可任意变换字母表示。 求和约定只适用于字母标号,不适用于数字标号。 ◆ 求和约定只适用于字母标号,不适用于数字标号。 在运算中, ◆ 在运算中,括号内的求和标号应在进行其它运算前 优先求和。例: 优先求和。
相关文档
最新文档