弹塑性力学-09张量概念及其基本运算
合集下载
弹塑性力学PPT

P
研究对象:
P
与其他学科的关系:
课程 理论力学 材料力学 结构力学 弹性力学 塑性力学 研究对象 刚体 弹性杆件 (一维) 弹性杆系 (二维) 弹性体(三维) 塑性体 解决的问题 力的静力平衡、运动 学、动力学 杆的拉、压、弯、 剪、扭 杆系的内力位移 应力、应变、位移 塑性加工 工程力学 固体力学 力学范畴 一般力学
哑标号:
三、求和约定:
当一个下标符号在一项中出现两次时,这个下标符号应理解为 取其变程N中所有的值然后求和,这就叫做求和约定。
ai xi a1 x1 a2 x2 a3 x3
ii 11 22 33 (i : 哑标,i 1, 2,3) S Ni ij l j i1l1 i 2l2 i 3l3
2 2 2
uy
2
主要参考书目
1 、杨伯源 《工程弹塑性力学》 2 、杨桂通 《弹塑性力学》 3 、徐秉业 《应用弹塑性力学》
二阶以上的张 量已不可能在 三维空间有明 显直观的几何 意义。
二、下标记号法:
为了书写上的方便,在张量的记法中,都采用下标字母符号 来表示和区别该张量的所有分量。这种表示张量的方法,就 称为下标记号法。
( x, y, z) ( x1, x2 , x3 ) xi (i 1, 2,3)
一、张量的概念
只需指明其大小即足以被说明的物理量,称为标量 温度、质量、力所做的功 除指明其大小还应指出其方向的物理量,称为矢量 物体的速度、加速度 在讨论力学问题时,仅引进标量和矢量的概念是不够的 如应力状态、应变状态、惯性矩、弹性模量等
张量
具有多重方向性的物理量,称为张量
关于三维空间,描述一切物理恒量的 分量数目可统一地表示成: M=rn=3n 标量:n=0,零阶张量 矢量:n=1,一阶张量 应力,应变等:n=2,二阶张量
研究对象:
P
与其他学科的关系:
课程 理论力学 材料力学 结构力学 弹性力学 塑性力学 研究对象 刚体 弹性杆件 (一维) 弹性杆系 (二维) 弹性体(三维) 塑性体 解决的问题 力的静力平衡、运动 学、动力学 杆的拉、压、弯、 剪、扭 杆系的内力位移 应力、应变、位移 塑性加工 工程力学 固体力学 力学范畴 一般力学
哑标号:
三、求和约定:
当一个下标符号在一项中出现两次时,这个下标符号应理解为 取其变程N中所有的值然后求和,这就叫做求和约定。
ai xi a1 x1 a2 x2 a3 x3
ii 11 22 33 (i : 哑标,i 1, 2,3) S Ni ij l j i1l1 i 2l2 i 3l3
2 2 2
uy
2
主要参考书目
1 、杨伯源 《工程弹塑性力学》 2 、杨桂通 《弹塑性力学》 3 、徐秉业 《应用弹塑性力学》
二阶以上的张 量已不可能在 三维空间有明 显直观的几何 意义。
二、下标记号法:
为了书写上的方便,在张量的记法中,都采用下标字母符号 来表示和区别该张量的所有分量。这种表示张量的方法,就 称为下标记号法。
( x, y, z) ( x1, x2 , x3 ) xi (i 1, 2,3)
一、张量的概念
只需指明其大小即足以被说明的物理量,称为标量 温度、质量、力所做的功 除指明其大小还应指出其方向的物理量,称为矢量 物体的速度、加速度 在讨论力学问题时,仅引进标量和矢量的概念是不够的 如应力状态、应变状态、惯性矩、弹性模量等
张量
具有多重方向性的物理量,称为张量
关于三维空间,描述一切物理恒量的 分量数目可统一地表示成: M=rn=3n 标量:n=0,零阶张量 矢量:n=1,一阶张量 应力,应变等:n=2,二阶张量
弹塑性力学 陈明祥版的 课后习题答案++汇总

阐明了应力、应变的概念和理论; 弹性力学和弹塑性力学的基本理论框架 得以确立。
七、张量概念及其基本运算(附录一)
1、张量概念
◆ 张量分析是研究固体力学、流体力学及连续介 质力学的重要数学工具 。
◆ 张量分析具有高度概括、形式简洁的特点。
◆ 任一物理现象都是按照一定的客观规律进行的, 它们是不以人们的意志为转移的。
静力学:研究力系或物体的平衡问题,不涉及 物体运动状态的改变;如飞机停在地 面或巡航。
运动学:研究物体如何运动,不讨论运动与受 力的关系; 如飞行轨迹、速度、 加速度。
动力学:研究力与运动的关系。 如何提供加速度?
● 按研究对象分:
◆ 一般力学: 研究对象是刚体。研究力及其与
运动的关系。分支学科有理论力学,分析力学等。
五、 弹塑性力学的基本假设
(1)连续性假设:假定物质充满了物体所 占有的全部空间,不留下任何空隙。
(2)均匀性与各向同性的假设:假定物体内 部各点处,以及每一点处各个方向上的 物理性质相同。
(3)力学模型的简化假设: (A)完全弹性假设 ; (B)弹塑性假设。
⑷ 几何假设——小变形条件
假定物体在受力以后,体内的位移和变形是微小 的,即体内各点位移都远远小于物体的原始尺寸,而 且应变( 包括线应变与角应变 )均远远小于1。根据 这一假定: (A)在弹塑性体产生变形后建立平衡方程时,可以
◆ 分析研究物理现象的方法和工具的选用与人们 当时对客观事物的认识水平有关,会影响问题 的求解与表述。
◆ 所有与坐标系选取无关的量,统称为物理恒量。
◆ 在一定单位制下,只需指明其大小即足以被说明
的物理量,统称为标量。例如温度、质量、功等。
◆ห้องสมุดไป่ตู้在一定单位制下,除指明其大小还应指出其方向
七、张量概念及其基本运算(附录一)
1、张量概念
◆ 张量分析是研究固体力学、流体力学及连续介 质力学的重要数学工具 。
◆ 张量分析具有高度概括、形式简洁的特点。
◆ 任一物理现象都是按照一定的客观规律进行的, 它们是不以人们的意志为转移的。
静力学:研究力系或物体的平衡问题,不涉及 物体运动状态的改变;如飞机停在地 面或巡航。
运动学:研究物体如何运动,不讨论运动与受 力的关系; 如飞行轨迹、速度、 加速度。
动力学:研究力与运动的关系。 如何提供加速度?
● 按研究对象分:
◆ 一般力学: 研究对象是刚体。研究力及其与
运动的关系。分支学科有理论力学,分析力学等。
五、 弹塑性力学的基本假设
(1)连续性假设:假定物质充满了物体所 占有的全部空间,不留下任何空隙。
(2)均匀性与各向同性的假设:假定物体内 部各点处,以及每一点处各个方向上的 物理性质相同。
(3)力学模型的简化假设: (A)完全弹性假设 ; (B)弹塑性假设。
⑷ 几何假设——小变形条件
假定物体在受力以后,体内的位移和变形是微小 的,即体内各点位移都远远小于物体的原始尺寸,而 且应变( 包括线应变与角应变 )均远远小于1。根据 这一假定: (A)在弹塑性体产生变形后建立平衡方程时,可以
◆ 分析研究物理现象的方法和工具的选用与人们 当时对客观事物的认识水平有关,会影响问题 的求解与表述。
◆ 所有与坐标系选取无关的量,统称为物理恒量。
◆ 在一定单位制下,只需指明其大小即足以被说明
的物理量,统称为标量。例如温度、质量、功等。
◆ห้องสมุดไป่ตู้在一定单位制下,除指明其大小还应指出其方向
弹塑性力学基本知识

dε p =
塑性功增量: dW = σ ij dε ij
p p
2 p p deij deij 3
(13) (14)
等效剪应变 (或剪应变强度) : Γ=
2eij eij
(15)
T = 等效剪应力 (或剪应力强度) : 4 3 1 3
1 2
sij sij
(16)
八面体剪应变: γ8 =
eij eij 2 3
P dε ij = dλ1
∂f1 ∂σ ij
(49)
特殊情况, 若σ1 = σ 2 ≥ σ 3 , 则应力状态处于 f1 = σ 2 − σ 3 − σ s = 0 和 f 2 = σ 1 − σ 3 − σ s = 0
的交点处,则:
dε iP = dλ1
z 硬化模型(三类) 等向硬化:
∂f1 ∂σ i
加载
中性变载
(37)
卸载
⎛ P ⎜ dε pq ∂f ∂g dσ ij = ⎜ 1 − i ∂σ ij ⎜ ∂ε pq ∂g dε mn ⎜ ∂ε mn ⎝
⎞ ⎟ ∂g ⎟ dε kl ⎟ ∂ε kl ⎟ ⎠
(条件:
∂g ∂ε ij
dε ij > 0 )
(38)
注意:当材料处于硬化阶段时,采用
∂g ∂ε ij
第一、第二、第三偏应力不变张量:
⎫ ⎪ ⎬ ⎪ ⎭
(7)
J1 = skk = 0 J2 = 1 2
2 sij sij = I 2 + 3σ m
J 3 = det ( sij ) = sij s jk ski
第二偏应力不变张量:
⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭
(8)
J2 =
1
弹塑性力学

张量场的右梯度
S∇ = T
Tijk = Sij,k
2→3
16
笛卡儿张量简介(II)
四、笛卡儿张量场 • 几个常用的积分公式
Vu
Sn
u 在V+S上连续可微
∫V ∇ ⋅udV = ∫S n ⋅udS ∫ ∫ V ui,idV = S niuidS
∫V ∇ o UdV = ∫S n o UdS
广义Gauss公式
8
笛卡儿张量简介(II)
3. 二阶张量 • 张量的不变量
笛卡儿张量简介(II)
3. 二阶张量 • 二阶对称张量的主方向和主值
三维二阶对称张量的独立不变量只有3 个,
三维二阶反对称张量的独立不变量只有1 个
9
10
笛卡儿张量简介(II)
4. 各向同性张量
T = αδ ij ei e j
⎜⎛α 0 0 ⎟⎞ ⎜0 α 0⎟ ⎜⎝ 0 0 α ⎟⎠
n个指标,n个坐标转换系数,n阶张量
2
笛卡儿张量简介(II)
商法则:如果它与一个矢量点积得到的是一个 n - 1阶张量,则该指标符号表示的是一个n 阶 张量。也可表示成,如果它连续和n 个矢量点 积得到一个标量,则该量是一个n 阶张量。
3
笛卡儿张量简介(II)
• 三、张量 2. 张量代数
4
笛卡儿张量简介(II)
பைடு நூலகம்
0 →1 1→ 0
矢量场的旋度 curlu = ω = eieijk ∂ juk = ∇ × u ωi = eijk ∂ juk
1→1
12
2
笛卡儿张量简介(II)
四、笛卡儿张量场 • 标量场与矢量场的微分
∇ ⋅ u = (ei∂i ) ⋅ (u j e j ) = (ei ⋅ e j )∂iu j = ∂iui = ui,i ∇ × u = (ei∂i ) × (u j e j ) = (ei × e j )∂iu j = ek ekij∂iu j = ek ekiju j,i
弹塑性力学第09章

dSij 2Gdeij
(9-6)
d ii 1-E d ii 2
(9-7)
9-3 全量理论-弹塑性小变形理论
全量理论是直接用一点的应力分量和应变分量表 示的塑性本构关系,其数学表达式比较简单,认为 应力和应变之间存在着一一对应的关系。 历史上,全量理论以伊柳辛的弹塑性小变形理论 应用最为广泛。弹塑性小变形意味着离弹性状态不 远,进入塑性状态后,其变形也是小的。它描述了 强化材料在小变形情况下的塑性应力-应变关系,其 中应变包括弹性应变和塑性应变部分,这是全量理 论一个简单常用的理论,是广义胡克定律的一个自 然推广。
i 2G 1 2 2 3 3 1 3G i
2 2 2
即
式中
i 3G i
i为应变强度, i 应力强度
(9-2)
类似 因有 2 1 2 3 ,2 1 2 3 ; 2 2 3 1 ,2 2 3 1 ; 2 3 1 2 ,2 3 1 2
故有:
i G i
(9-3)
式中 i 和 i 分别为剪应力强度和剪应变强度。 如果将应力张量和应变张量分解为球张量和偏张量 两部分,则广义胡克定律可表示为如下的张量关系:
1 2v ii ii E
(9-4)
上式表示应力球张量和应变球张量之间的关系
由(9-1)和(9-4)式,
ij
e ij
p ij
因体积变化始终是弹性的,塑性变形部分的体积 变化恒为零,即
1 2 ii ii E
(a)
(2)应变偏量与应力偏量成正比
即
eij S ij
(b)
这里只是在形式上和广义Hooke定律相似,和广义 Hooke定律表达式(9-5)不同,这里的比例系数λ 不是一个常数,它和点的位臵以及荷载水平有关, 即对物体的不同的点,不同的荷载水平,λ都不相 同,但对同一点,同一荷载水平,λ是常数。所以 这是一个非线性关系。由应力强度和应变强度的表 达,需要考虑三个要素: 1.初始屈服条件:根据这个条件可以判断材料何时 进入塑性,并进一步确定弹性区和塑性区的边界, 在弹性区采用弹性本构关系,在塑性区则采用塑 性本构关系。 2.塑性流动法则:指的是与加载面相关联的应力应 变或其增量之间的定量关系,实质上是应力偏量 与应变偏量或其增量之间的关系。 3.硬化条件:即描述材料硬化特性的关系式,或称 加载函数。 在研究上述因素基础上,下面建立塑性本构关系。
弹塑性力学(浙大课件)_图文

物体的速度、加速度
在讨论力学问题时,仅引进标量和矢量的概念是不够的
如应力状态、应变状态、惯性矩、弹性模量等
张量
关于三维空间,描述一切物理恒量的 分量数目可统一地表示成:
M=rn=3n
标量:n=0,零阶张量 矢量:n=1,一阶张量 应力,应变等:n=2,二阶张量
二阶以上的张量 已不可能在三维 空间有明显直观 的几何意义。
(a)
显然,方向余弦l1,l2,l3将由式(a)中
的任意两式和l12+l22+l32=1所确定。
若设偏应力状态 :
由于:
主方向的方向余弦为l1’,l2’,l3’,则由式(1.9)同样得
(b)
显然,方向余弦l1’,l2’,l3’将由式(b)中
的任意两式和l1’2+l2’2+l3’ 2=1所确定
。
可见式(a)与式(b)具有相同的系数, 且已知l12+l22+l32= l1’2+l2’2+l3’ 2=1
I2’应用较广,又可表达为:
(1.52)
1.3 应变张量
等效应变(应变强度):
(1.54)
等效剪应变(剪应变强度):
(1.55)
1.4 应变速率张量
一般来说物体变形时,体内任一点的变形不但与坐标有关,
而且与时间也有关。如以u、v、w表示质点的位移分量,则:
设应变速率分量为:
质点的运动速度分量
1.4 应变速率张量
斜截面外法线n的方向余弦:
令斜截面ABC 的面积为1
(1.3)
(1.4)
i :自由下标;j为求和下标 (同一项中重复出现)。
1.1 应力张量
斜截面OABC上的正应力:
在讨论力学问题时,仅引进标量和矢量的概念是不够的
如应力状态、应变状态、惯性矩、弹性模量等
张量
关于三维空间,描述一切物理恒量的 分量数目可统一地表示成:
M=rn=3n
标量:n=0,零阶张量 矢量:n=1,一阶张量 应力,应变等:n=2,二阶张量
二阶以上的张量 已不可能在三维 空间有明显直观 的几何意义。
(a)
显然,方向余弦l1,l2,l3将由式(a)中
的任意两式和l12+l22+l32=1所确定。
若设偏应力状态 :
由于:
主方向的方向余弦为l1’,l2’,l3’,则由式(1.9)同样得
(b)
显然,方向余弦l1’,l2’,l3’将由式(b)中
的任意两式和l1’2+l2’2+l3’ 2=1所确定
。
可见式(a)与式(b)具有相同的系数, 且已知l12+l22+l32= l1’2+l2’2+l3’ 2=1
I2’应用较广,又可表达为:
(1.52)
1.3 应变张量
等效应变(应变强度):
(1.54)
等效剪应变(剪应变强度):
(1.55)
1.4 应变速率张量
一般来说物体变形时,体内任一点的变形不但与坐标有关,
而且与时间也有关。如以u、v、w表示质点的位移分量,则:
设应变速率分量为:
质点的运动速度分量
1.4 应变速率张量
斜截面外法线n的方向余弦:
令斜截面ABC 的面积为1
(1.3)
(1.4)
i :自由下标;j为求和下标 (同一项中重复出现)。
1.1 应力张量
斜截面OABC上的正应力:
《弹塑性力学》课件

结构弹塑性分析的方法包括有限元法、有限差分法、边界元法等数值计算 方法。
材料的弹塑性行为模拟
材料的弹塑性行为模拟是研究材料在 不同应力状态下表现出的弹塑性性质 ,对于理解材料的力学行为和优化材 料设计具有重要意义。
材料弹塑性行为模拟的方法包括分子 动力学模拟、有限元分析等。
通过实验和数值模拟相结合的方法, 可以研究材料的微观结构和宏观性能 之间的关系,预测材料的弹塑性行为 。
THANKS
感谢观看
弹塑性力学在工程实践中的挑战与解决方案
工程实践中,由于材料和结 构的复杂性,弹塑性力学应 用面临诸多挑战,如非线性 行为、边界条件和初始条件
的确定等。
为了解决这些挑战,需要采 用先进的数值计算方法和实 验技术,提高模拟精度和可
靠性。
此外,加强跨学科合作,将 弹塑性力学与计算机科学、 物理学等学科相结合,可以 推动工程实践中的弹塑性力 学应用不断发展。
《弹塑性力学》课件
目录
• 弹塑性力学概述 • 弹性力学基础 • 塑性力学基础 • 材料弹塑性性质 • 弹塑性力学在工程中的应用
01
弹塑性力学概述
弹塑性力学的定义
弹塑性力学是一门研究材料在弹性和 塑性范围内行为的学科。它主要关注 材料在外力作用下发生的变形行为, 以及这种行为与材料内部应力、应变 的关系。
塑性
材料在应力超过屈服极限后发生的不可逆变形。
屈服准则
描述材料开始进入塑性状态的应力条件。
塑性力学的基本方程
应力平衡方程
01
描述受力物体内部应力分布的平衡关系。
几何方程
02
描述材料在塑性变形过程中应变与位移的关系。
屈服准则
03
确定材料进入塑性状态的条件。
材料的弹塑性行为模拟
材料的弹塑性行为模拟是研究材料在 不同应力状态下表现出的弹塑性性质 ,对于理解材料的力学行为和优化材 料设计具有重要意义。
材料弹塑性行为模拟的方法包括分子 动力学模拟、有限元分析等。
通过实验和数值模拟相结合的方法, 可以研究材料的微观结构和宏观性能 之间的关系,预测材料的弹塑性行为 。
THANKS
感谢观看
弹塑性力学在工程实践中的挑战与解决方案
工程实践中,由于材料和结 构的复杂性,弹塑性力学应 用面临诸多挑战,如非线性 行为、边界条件和初始条件
的确定等。
为了解决这些挑战,需要采 用先进的数值计算方法和实 验技术,提高模拟精度和可
靠性。
此外,加强跨学科合作,将 弹塑性力学与计算机科学、 物理学等学科相结合,可以 推动工程实践中的弹塑性力 学应用不断发展。
《弹塑性力学》课件
目录
• 弹塑性力学概述 • 弹性力学基础 • 塑性力学基础 • 材料弹塑性性质 • 弹塑性力学在工程中的应用
01
弹塑性力学概述
弹塑性力学的定义
弹塑性力学是一门研究材料在弹性和 塑性范围内行为的学科。它主要关注 材料在外力作用下发生的变形行为, 以及这种行为与材料内部应力、应变 的关系。
塑性
材料在应力超过屈服极限后发生的不可逆变形。
屈服准则
描述材料开始进入塑性状态的应力条件。
塑性力学的基本方程
应力平衡方程
01
描述受力物体内部应力分布的平衡关系。
几何方程
02
描述材料在塑性变形过程中应变与位移的关系。
屈服准则
03
确定材料进入塑性状态的条件。
附录I:张量概念及其基本运算

Tx = σ x l + τ yx m + τ zx n ⎫ ⎪ Ty = τ xy l + σ y m + τ zy n ⎬ ⎪ Tz = τ xz l + τ yz m + σ z n ⎭
T j = σ ij li
◆重复出现的角标称为哑标,不重复出现的角标称 为自由标。 ◆自由标不包含求和的意思,但它可表示该表达式 的个数。
[ 弹塑性理论 \ 石家庄铁道大学工程力学系 13
Mechanics of Elasto-Plasticity
2 2 2 a = ∑ aii = a11 + a 22 +a 2 ii j =1 3
(σ ii )
2
⎛ ⎞ = ⎜ ∑ σ ii ⎟ = (σ 11 + σ 22 + σ 33 ) 2 ⎝ i =1 ⎠
石家庄铁道大学工程力学系 16
Mechanics of Elasto-Plasticity
σ = σ x l 2 + σ y m 2 + σ z n 2 + 2 (τ xy lm + τ yz mn + τ zx nl )
σ = σ ij li l j
( i , j = x, y , z ) ( i , j = x, y , z )
(aii ) 2 = (a11 + a 22 + a33 ) 2
[ 弹塑性理论 \ 石家庄铁道大学工程力学系 18
[ 弹塑性理论 \ 石家庄铁道大学工程力学系 17
Mechanics of Elasto-Plasticity
★ 关于求和标号,即哑标有: ◆ 求和标号可任意变换字母表示。 ◆ 求和约定只适用于字母标号,不适用于数字标号。 ◆ 在运算中,括号内的求和标号应在进行其它运算 前优先求和。例:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
◆ 张量导数就是把张量的每个分量都对坐标参数
求导数。 求导数。 对张量的坐标参数求导数时, ◆ 对张量的坐标参数求导数时,采用在张量下标 符号前上方加“ 的方式来表示。 符号前上方加“ ′”的方式来表示。例如 A′ j , 的方式来表示 i 就表示对一阶张量 A 的每一个分量对坐标参数 i xj求导。 求导。
的作用与计算示例如下: δij 的作用与计算示例如下:
(1) δii = δ11 +δ22 +δ33 = 3 (2) (3) (4) (5) (6)
2 2 2 δijδij = (δ11) + (δ22) + (δ33 ) = 3 δijδ jk = δi1δ1k +δi 2δ2k +δi 3δ3k = δik aijδij = a11δ11 + a22δ22 + a33δ33 = aii aiδij = a1δ1 j + a2δ2 j + a3δ3 j = aj (即a1,或a2 ,或a3 ) σijl j − λli = σijl j − λδijl j = (σij − λδij )l j
4.张量的基本运算 4.张量的基本运算
张量的加减: A、张量的加减: 张量可以用矩阵表示,称为张量矩阵, 张量可以用矩阵表示,称为张量矩阵,如: 张量矩阵
a11 a12 a13 aij = a21 a22 a23 a31 a32 a33
凡是同阶的两个或几个张量可以相加(或相减) 凡是同阶的两个或几个张量可以相加(或相减), 并得到同阶的张量, 并得到同阶的张量,它的分量等于原来张量中标号 相同的诸分量之代数和。 相同的诸分量之代数和。 即:
ai bjk = cijk
张量乘法不服从交换律, ◆ 张量乘法不服从交换律,但张量乘法服从分配 律和结合律。例如: 律和结合律。例如:
(aij + bij )ck = aijck + bijck ; 或 (aijbk )cm = aij (bkcm )
张量函数的求导: C、张量函数的求导:
一个张量是坐标函数, ◆ 一个张量是坐标函数,则该张量的每个分量都 是坐标参数x 的函数。 是坐标参数xi的函数。
3.求和约定 3.求和约定
关于哑标号应理解为取其变程n内所有数值,然后再求和, 关于哑标号应理解为取其变程 内所有数值,然后再求和, 内所有数值 这就叫做求和约定。 例如: 这就叫做求和约定。 例如:
ai bi = ∑ai bi = a1b + a2b2 + a3b3 1
i =1
3
aijbj = ∑aijbj = ai1b1 + ai 2b2 + ai 3b3
j=1
3
a = ∑a = a + a11 2 22
3
2 33
(σii )
2
2 = ∑σii = (σ11 +σ22 +σ33 ) i=1
3
2
σijεij = ∑∑σijεij
= σ11ε11 +σ12ε12 +σ13ε13 +σ21ε21 +σ22ε22 +σ23ε23 +σ31ε31 +σ32ε32 +σ33ε33
2.下标记号法 2.下标记号法
在张量的讨论中,都采用下标字母符号, ◆ 在张量的讨论中,都采用下标字母符号,来表 示和区别该张量的所有分量。 示和区别该张量的所有分量。 不重复出现的下标符号称为自由标号。 ◆ 不重复出现的下标符号称为自由标号。自由标 号在其方程内只罗列不求和。 号在其方程内只罗列不求和。以自由标号的数 量确定张量的阶次。 量确定张量的阶次。 重复出现, ◆ 重复出现,且只能重复出现一次的下标符号称 为哑标号或假标号。哑标号在其方程内先罗列, 为哑标号或假标号。哑标号在其方程内先罗列, 再求和。 再求和。
张量概念及其基本运算
1、张量概念
◆ 张量分析是研究固体力学、流体力学及连续介 张量分析是研究固体力学、 质力学的重要数学工具 。 张量分析具有高度概括、形式简洁的特点。 ◆ 张量分析具有高度概括、形式简洁的特点。 所有与坐标系选取无关的量,统称为物理恒量 物理恒量。 ◆ 所有与坐标系选取无关的量,统称为物理恒量。 在一定单位制下, ◆ 在一定单位制下,只需指明其大小即足以被说明 的物理量,统称为标量 例如温度、质量、功等。 标量。 的物理量,统称为标量。例如温度、质量、功等。 在一定单位制下, ◆ 在一定单位制下,除指明其大小还应指出其方向 的物理量,称为矢量 例如速度、加速度等。 矢量。 的物理量,称为矢量。例如速度、加速度等。 绝对标量只需一个量就可确定, ◆ 绝对标量只需一个量就可确定,而绝对矢量则需 三个分量来确定。 三个分量来确定。
∂φ ∂φ ∂φ φ'i = , , = ∂xi ∂x1 ∂x2
∂φ ∂x3
∂ui ∂u1 ∂u2 ∂u3 ui 'i = = + + ∂xi ∂x1 ∂x2 ∂x3
aii = a + a + a
2 2 11 2 22
2
2 33
2
(aii ) = (a11 + a22 + a33 )
关于自由标号: ★ 关于自由标号:
在同一方程式中,各张量的自由标号相同, ◆在同一方程式中,各张量的自由标号相同, 即同阶且标号字母相同。 即同阶且标号字母相同。 自由标号的数量确定了张量的阶次。 ◆自由标号的数量确定了张量的阶次。
[a ]± [b ] = [c ]
ij ij ij
其中各分量(元素) 其中各分量(元素)为:
aij ± bij = cij
B、张量的乘积
对于任何阶的诸张量都可进行乘法运算。 ◆ 对于任何阶的诸张量都可进行乘法运算。 两个任意阶张量的乘法定义为: ◆ 两个任意阶张量的乘法定义为:第一个张量的 每一个分量乘以第二个张量中的每一个分量, 每一个分量乘以第二个张量中的每一个分量, 它们所组成的集合仍然是一个张量, 它们所组成的集合仍然是一个张量,称为第一 个张量乘以第二个张量的乘积,即积张量。 个张量乘以第二个张量的乘积,即积张量。积 张量的阶数等于因子张量阶数之和。例如: 张量的阶数等于因子张量阶数之和。例如:
是一个自由下标, ◆ 如果在微商中下标符号i是一个自由下标,则
作用的结果, 算子 ∂i作用的结果,将产生一个新的升高一阶 的张量;如果在微商中,下标符号是哑标号, 的张量;如果在微商中,下标符号是哑标号, 则作用的结果将产生一个新的降低一阶的张量。 则作用的结果将产生一个新的降低一阶的张量。 例如: 例如:
若我们以r表示维度 表示维度, 表示幂次, ◆ 若我们以 表示维度,以n表示幂次,则关于三维 表示幂次 空间, 空间,描述一切物理恒量的分量数目可统一地表 示成: 示成: M
= 3n
◆ 现令 n 为这些物理量的阶次,并统一称这些物 为这些物理量的阶次,
理量为张量。 理量为张量。
当n=0时,零阶张量,M = 1,标量; 时 零阶张量, ,标量; 当n=1时,一阶张量,M = 3,矢量; 时 一阶张量, ,矢量; 、 、 、 当取n时,n阶张量,M = 3n。 当取 时 阶张量, 阶张量
★
关于Kronecker delta( δ )符号: 符号: 关于Kronecker delta(
ij
δij是张量分析中的一个基本符号称为柯氏符号 是张量分析中的一个基本符号称为柯氏符号
(或柯罗尼克尔符号),亦称单位张量。其定义为: 柯罗尼克尔符号),亦称单位张量。其定义为: ),亦称单位张量
1 0 0 1, 当i = j时; δij = 或: δij = 0 1 0 0 , 当i ≠ j时; 0 0 1
i =1 j=1
3
3
★
关于求和标号,即哑标有: 关于求和标号,即哑标有:
求和标号可任意变换字母表示 表示。 ◆ 求和标号可任意变换字母表示。 求和约定只适用于字母标号,不适用于数字标号。 ◆ 求和约定只适用于字母标号,不适用于数字标号。 在运算中, ◆ 在运算中,括号内的求和标号应在进行其它运算前 优先求和。例: 优先求和。