经济数学建模 (1)
数学建模在经济领域中的应用

数学建模在经济领域中的应用随着时代的发展,经济事务的处理已经变得更加复杂,需要运用更加高级的工具和方法来解决。
数学建模作为一种综合性较强的方法,已被广泛应用于经济领域。
本文将介绍数学建模在经济领域中的应用,并探讨数学建模的意义和局限性。
一、财务规划要达到财务规划的目的,必须了解不同的财务项目之间的相互影响,例如贷款、退休、投资等。
使用数学建模来研究这些问题,可以极大地提高决策者的能力。
例如,使用数学建模可以对储蓄帐户的规划进行预测,并在未来多个时间点考虑到各种费用。
二、市场分析市场分析需要分析消费和销售数据,以确定目标客户的需求。
数学建模可以将市场数据与其他因素(如时间和地理位置)结合起来,以便更好地理解市场趋势和消费者需求。
这样可以根据这些数据更好地预测客户需求,并针对性地提供产品和服务。
三、经济预测经济预测是指根据过去的趋势和预测未来的趋势,预测经济增长和衰退的发展趋势。
数学建模可以帮助预测并评估不同变量之间的关联性,进而预测未来的情况。
这种技术也可以用来帮助投资者制定投资策略和做出决策。
四、投资与分散化在投资和分散化中,数学建模可以为投资者提供更具挑战性的定量方法。
例如,使用统计方法建立资产组合模型,可以帮助投资者确定最佳投资策略,以实现最大的回报。
另外,数学建模还可以帮助投资者了解他们的投资组合在不同市场条件下的表现。
五、决策支持系统决策支持系统为企业提供了处理和分析数据的工具,以便做出更明智的决策。
数学建模是其中的关键因素之一,因为它可以提供预测模型、模拟和优化方法。
这些工具可以帮助企业管理者制定更好的商业计划和决策过程。
六、对数学建模的意义和局限性的探讨尽管数学建模被广泛应用于经济领域,但是它并非没有缺点。
数学模型的正确性取决于数据的准确性,而有时候数据可能不准确或偏差较大。
此外,建模本身也需要大量的时间和资源,以便精准而可靠地预测未来的变化。
总之,数学建模在今天的经济领域中扮演着重要的角色。
经济增长问题的数学建模论文

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规那么.我们完全明白,在竞赛开始后参赛队员不能以任何方式〔包括、电子邮件、网上咨询等〕与队外的任何人〔包括指导教师〕研究、讨论与赛题有关的问题.我们知道,抄袭别人的成果是违反竞赛规那么的, 如果引用别人的成果或其他公开的资料〔包括网上查到的资料〕,必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出.我们郑重承诺,严格遵守竞赛规那么,以保证竞赛的公正、公平性.如有违反竞赛规那么的行为,我们将受到严肃处理.我们参赛选择的题号是〔从A/B/C/D中选择一项填写〕:我们的参赛报名号为〔如果赛区设置报名号的话〕:所属学校〔请填写完整的全名〕:河南理工大学万方科技学院参赛队员〔打印并签名〕:1. 关海超2. 刘源3. 冯艳伟指导教师或指导教师组负责人〔打印并签名〕:日期: 2021 年 8 月 21 日赛区评阅编号〔由赛区组委会评阅前进行编号〕:编号专用页赛区评阅编号〔由赛区组委会评阅前进行编号〕:评阅人评分备注全国统一编号〔由赛区组委会送交全国前编号〕:全国评阅编号〔由全国组委会评阅前进行编号〕:经济增长问题摘 要国内生产总值〔GDP 〕常被公认为衡量国家经济状况的最正确指标.它不但可反映一个国家的经济开展情况,更可以反映一国的国力与财富.因此分析各产业对于GDP 的影响,并研究GDP 的增长规律是具有现实意义的.在问题一中,我们分别做出了GDP 与工业、建筑业及农林渔业产值关系的散点图,分析得出GDP 的值与各产业之间存在明显的线性关系. 回归分析是统计分析的重要组成局部,用回归分析方法来研究自变量与因变量的关系函数是一种常用的有效方法.因此我们建立起了多元线性回归模型,用MATLAB 计算得到的模型为ε++++=32103.049.13.732x x x y .在对该模型进行显著性检验中,我们对各参数进行了显著性分析,得到模型的复相关系数R =0.999,统计量F =30900. 统计量F 的值远超过检验的临界值,因此可以验证模型是可用的.最后,我们利用所建立的模型对2021~2021年的GDP 值做出了预测,分析了各产业对GDP 的影响.通过处理预测的数据,我们得出平均每年GDP 的增长率为10%左右,其中建筑业与工业对GDP 的影响较大,而农林渔业对GDP 的影响较小,这也符合中国的产业结构与经济开展情况.在问题二中,为了讨论国内生产总值增长与资本及劳动之间的关系,我们通过分析数据、查阅相关资料,了解到了国内生产总值的大小通常取决于相关的生产资料和劳动力等相关重要因素.于是,我们通过建立柯布—道格拉斯生产函数()0,,>=βαβαA L AK Q ,定义了三个指数分别为:投资金额指数()t i K ,就业人数指数()t i L 和国内生产总值指数()t i Q .利用定义的三个指数公式,计算出1981年到2021年的国内生产总值指数()t i Q ,投资金额指数()t i K 和就业人数指数()t i L 的一组数据,并探讨国内生产总值增长与资本及劳动之间的关系.但是上述三个指标都是随时间增长的,很难直接从表中发现具体的经济规律.为了定量分析,我们定义两个新的变量分别()()t t ψξ,,通过做散点图发现这两个变量根本上成正比例关系.我们用MATLAB 软件中的curvefit 〔〕函数来作数据拟合,求得函数Q 中的未知参数88380.A =,8471.0=α,4991.0=β,通过检验进而得处道格拉斯生产函数为4991.08471.08838.0K L Q =,这就是产值Q 随资金K 、劳动力L 的变化规律.为了验证第二问中的结果,我们用求得的道格拉斯生产函数来预测每年的国内生产总值,然后与题目提供的数据进行比较来进行检验.通过检验可以发现预测值的误差很小,因此道格拉斯生产函数可以表示出国内生产总值增长与资本及劳动之间的关系.关键字:多元线性回归 显著性检验 道格拉斯函数 数据拟合1.问题重述国内生产总值〔Gross Domestic Product,简称GDP〕是指在一定时期内〔一个季度或一年〕,一个国家或地区的经济中所生产出的全部最终产品和服务的价值,常被公认为衡量国家经济状况的最正确指标.它不但可反映一个国家的经济表现,更可以反映一国的国力与财富.(1)建立国内生产总值与工业值、建筑业及农林渔业产值之间的数量模型,利用数据对未来经济做出预测;(2)讨论国内生产总值增长与资本及劳动之间的关系,利用数据验证其结果.2.问题分析2.1 建立GDP与工业值、建筑业及农林渔业产值之间的数量模型,并对未来经济做出预测.在问题一中,我们通过分析材料得出这是研究对象的内在特性和各个因素间关系的问题,即研究GDP与工业值、建筑业及农林渔业产值关系.一般用机理分析的方法建立数学模型.由于经济问题是一种随机的问题,所以通常的方法是搜集大量的数据,基于对数据的统计分析去建立模型.因为影响GDP的因素有三个,即工业值、建筑业及农林渔业产值,且各个产业与GDP都为线性关系.所以我们建立起一个多元线性回归模型,并检验模型显著性,通过对模型的反复修改与检验,建立更合理的模型.2.2 讨论国内生产总值增长与资本及劳动之间的关系,并验证其结果.在问题二中,为了讨论国内生产总值增长与资本及劳动之间的关系,通过查阅相关资料,我们了解到国内生产总值通常取决于相关的生产资料和劳动力等相关重要因素. 要建立道格拉斯生产函数,我们只需要讨论产值和资金,劳动之间的关系,从而到达我们的目的.这样处理不仅能简化问题,而且是合理的在生产产值上的预测,柯布-道格拉斯〔Cobb-Douglas〕生产函数预测的结果近似就是准确生产值.于是我们通过建立柯布—道格拉斯生产函数,来探讨国内生产总值增长与资本及劳动之间的关系,进而利用已有的数据验证其结果.3.模型假设1.假设所统计的数据都在误差允许的范围之内;2.忽略由于非正常条件下的引起的数据的巨大波动;3.假设在短期内国内生产总值只取决于投资和劳动力因素;4.假定在一段不太长的时间内技术水平不变.4.定义与符号说明y国内生产总值R复相关系数F统计量ε随机误差'α置信水平x工业产值1x建筑业产值2x农林渔业产值3Q国内生产总值增长L劳动投入量K资本投入数量α劳动对产出的奉献程度β资本对产出的奉献程度()t i投资金额指数K()t i就业人数指数L()t i国内生产总值指数QA道格拉斯函数常数5.模型的建立与求解5.1 问题一模型的建立与求解:回归分析方法是统计分析的重要组成局部,用回归分析方法来研究自变量与变量的关系函数是一种常用的有效方法.我们通过回归模型的建立,定量预测了未来经济的开展.5.1.1 GDP 与工业值、建筑业及农林渔业产值数量模型:通过在互联网上搜集到1978年~2021年,中国GDP 与工业值、建筑业及农林渔业产值的数据〔见附表1〕,可以定性的看出GDP 与工业、建筑业及农林渔业产值为整体上升的趋势.为了大致分析GDP 与工业值、建筑业及农林渔业产值关系,我们首先利用附录数据做出了GDP 与工业产值的关系散点图〔如图1〕.图1 工业产值与GDP 散点图从图可以发现,随着工业产值的增加,GDP 的值有比较明显的线性增长趋势.图中的直线是用线性模型ε++=145.295.143x y拟合的.同理我们也分别作出了建筑业产值与GDP 的关系散点图〔图2〕、农林渔业产值与GDP 的关系散点图〔图3〕.图2建筑业产值与GDP散点图图3 农林渔业产值与GDP散点图通过图2,图3可以看出建筑业产值与农林渔业产值同样有很强的线性关系,同样也分别用直线模型对其拟合.建筑业产值与GDP线性模型ε++=25.163612x y农林渔业产值与GDP 线性模型ε++-=3925784x y因此,综上所述四者之间有很强的线性关系,可建立多元线性回归模型εββββ++++=3322110x x x y在模型中除了工业,建筑业,农林渔业外,影响国内生产总值的其他因素的作用都包含在随机误差ε内,这里假设ε相互独立,且服从均值为零的正态分布,n t ,,2,1 =.对模型直接利用matlab 统计工具箱求解,得到回归系数估计值及其置信区间〔置信水平'α= 0.05〕,检验统计量2R ,F ,P 的结果见表1.参数参数估计 置信区间 0β732.3 [-589.6 2054.2] 1β1.9 [1.72.0] 2β 4.0 [2.9 5.1] 3β0.03[-0.03 0.4]9989.02=R 30900=F 0001.0<p表1 模型的计算结果5.1.2 结果分析:表1显示,9989.02=R 指因变量y 〔国内生产总值〕的99.89%可由模型确定,F 值远远超过F 检验的临界值,p 远小于α,因而模型从整体上来看是可用的.表1的回归系数给出了模型中0β,1β,2β,3β的估计值,即3.7320=∧β 9.11=∧β,0.42=∧β,03.03=∧β.检查它们的置信区间发现0β与3β的置信区间都包含零点,这说明回归模型常数与回归变量3x 对模型的影响不太显著.这也符合这一事实,农林渔业产值对GDP 的影响较小,工业与建筑业对GDP 的影响较大.但是一般情况下常数的值都保存在模型中,不剔除.回归变量系数3β区间右端点相对距零点较远,所以我们也保存在模型中.因此最终确定的模型为:εββββ++++=3322110x x x y5.1.3 未来经济预测将回归系数的估计值代入模型,即可预测未来的GDP 情况.代入得到的模型 即ε++++=32103.049.13.732x x x y只要能预测未来的工业值、建筑业及农林渔业产值即能预测未来GDP 的产值.根据统计数据〔见附表1〕,我们用matlab 计算得到各产值的平均年增长率的中位数,工业值增长率13.5%,建筑业产值增长率16.8%,农林渔业产值10.7%.我们对GDP 的值做短期的预测,预测未来五年的GDP 情况见以以下图4.39.08943.864249.227355.247462.006420304050607020102011201220132014年份(年)G D P (万亿)GDP预测图4 2021-2021中国GDP 情况预测从模型中看,工业值、建筑业及农林渔业产值的预测直接影响GDP 预测的准确性.其中工业与建筑业对预测的影响较大,农林渔业影响较小.从预测结果中看中国GDP 总值成上升趋势,从数值中计算得平均值为12.3%.当然GDP 的增长率的计算还应除去通货膨胀、消费指数等因素的影响,所以实际中应小一些.2021年的GDP 为39.789万亿,这也与预测结果相符合,说明模型的合理性.5.2 问题二模型的建立与求解:在问题二中为了讨论国内生产总值增长与资本及劳动之间的关系,通过查阅相关资料,我们了解到国内生产总值通常取决于相关的生产资料和劳动力等相关重要因素.于是我们通过建立柯布—道格拉斯生产函数,来探讨国内生产总值增长与资本及劳动之间的关系,进而利用已有的数据验证其结果.5.2.1 模型的建立:在经济学的分析中,为了简化分析,通常假定生产中只有劳动和资本这两种生产要素.假设以L 表示劳动投入量,以K 表示资本投入数量,那么生产函数可以写为:()K L f Q ,=生产函数表示生产中的投入量和产出量之间的依存关系,这种关系普遍存在于各种生产过程中.一家工厂必然具有一个生产函数,一家饭店也是如此,甚至一所学校或者医院同样会存在着各自的生产函数,产品可能是实实在在的有形产品,也可能是无形产品比方效劳.估计和研究生产函数,对于经济理论和实践经验都具有一定意义.柯布—道格拉斯〔Cobb-Dauglas 〕生产函数是由数学家柯布和经济学家道格拉斯于20世纪30年代初一起提出来的.柯布—道格拉斯生产函数被认为是一种很有用的生产函数,因为该函数以极简单的形式描述了经济学家所关心的一些性质,它在经济理论的分析和实证研究中都有具有一定意义.柯布—道格拉斯生产函数的函数表达式如下:()0,,>=βαβαA L AK Q其中,Q 代表产出量,K 代表资本投入量,L 代表劳动投入量,A 、α、β为未知参数.A 表示技术或管理等参数对经济增长的影响系数, α和β分别表示劳动和资本对产出的奉献程度,且10,10<<<<βα.对该生产函数取对数得:InK InL InA InQ βα++=由于柯布―道格拉斯生产函数假设技术、管理水平不变,即A 是一个常数, 在此可以忽略A 的影响.所以,可简化为:InK InL InQ βα+=求出道格拉斯函数以后,我们通过道格拉斯函数可以预测出来每一年的GDP 总产值,然后利用题目所提供的数据进行检验,可以发现道格拉斯很好的表示出来了国内生产总值的增长和投资与劳动之间的关系.5.2.2 模型的求解:为了求解上述模型,通过分析题目所给数据和从网上查找相关数据,我们列出了我国从1981年到20**的GDP 总值,投资金额总和和我国就业人数的表2如下:年份GDP 总值投资金额就业人数 1981 4889.5 961.0 4.5126 1982 5330.5 1230.44.63581983 5985.6 1430.14.7286 1984 7243.8 1832.94.8179 1985 9040.7 2543.24.9873 1986 10274.4 3120.65.1282 1987 12050.6 3791.75.2783 1988 15036.8 4653.85.4334 1989 17000.9 4410.45.5329 1990 18718.3 4517.56.4749 1991 21826.2 5594.56.5491 1992 26937.3 8080.16.6152 1993 35260.0 13072.36.6808 1994 48108.5 17827.16.7455 1995 59810.5 20524.96.8065 1996 70142.5 23358.66.8951 1997 78060.8 25259.76.9821 1998 83024.3 28716.97.0637 1999 88479.2 29754.67.1394 2000 98000.5 33110.47.2085 2022 108068.2 37987.07.3025 20** 119095.7 45046.97.3741 20**135174.058616.37.4432 GDP:亿元;投资金额:亿元;就业人数:亿人;在实际生产中,人们关心的往往是生产的增长量,而不是绝对量,因此定义投资金额指数()t i K ,就业人数指数()t i L 和国内生产总值指数()t i Q 分别为()()()()()()()()().0,0,0K t K t i L t L t i Q t Q t i K L Q ===利用上述定义的三个指数公式,通过使用matlab 软件计算出表3中1981年到2021年的国内生产总值指数()t i Q ,投资金额指数()t i K ,和就业人数指数()t i L 的一组数据,取1990年为基年,那么t =0.t()t i Q()t i L()t i K-9 0.2127 0.6969 0.2612 -80.27240.71600.2848-7 0.3166 0.7303 0.3198 -6 0.4057 0.7441 0.3870 -5 0.5630 0.7703 0.4830 -4 0.6908 0.8125 0.5489 -3 0.8396 0.7920 0.6438 -2 1.0302 0.8391 0.8033 -1 0.9763 0.8545 0.9083 0 1 1 1 1 1.2384 1.0115 1.166 2 1.7886 1.0217 1.4391 3 2.8937 1.0318 1.8837 4 3.9462 1.0418 2.5701 5 4.5434 1.0512 3.1953 6 5.1707 1.0649 3.7473 7 5.5915 1.0783 4.1703 8 6.3568 1.0909 4.4355 9 6.5865 1.1026 4.7269 10 7.3294 1.1133 5.2355 11 8.4089 1.1278 5.7734 12 9.9716 1.1389 6.3625 13 12.9754 1.1495 7.2215从表中可知,在正常的经济开展过程中〔除个别年份外〕,上述三个指标都是随时间增长的,但是很难直接从表中发现具体的经济规律.为了定量分析,定义两个新的变量()()()()()().ln ,ln t i t i t t i t i t K Q K L ==ψξ ()13,,9 -=t根据表中数据,在直角坐标系上做出()()(){}27,,9|, -=t t t ψξ的散点图,发现()()t t ψξ,根本上成正比例关系〔散点位于一条直线的附近〕,如图5ξ,散点图图5 ()()ttψ我们可以用MATLAB软件中的curvefit〔〕函数来作数据拟合,即寻求函数Q 〔K,L〕中的未知参数A,α,β,使这个函数尽量逼近表5-2-2所给出的统计数据.那么可以得到:A=,88380.α,=.08471β.=4991.0于是公式变为:.08471.04991Q=L.0K8838这就是产值Q随资金K、劳动力L的变化规律.5.2.3 模型的检验:为了对所建立的模型进行检验,我们利用得出的道格拉斯函数对每年的GDP 指数做出了预测,结果如下表4所示,然后利用已有的GDP指数进行比较,最后得出所建立的道格拉斯函数是有意义的,可以正确表示出国内生产总值与资金与劳动之间的关系.t 预测值实际值-9 0.2761 0.2612-8 0.3362 0.2848-7 0.3793 0.3198-6 0.4615 0.3870-5 0.5991 0.4830-4 0.7061 0.5489-3 0.8262 0.6438-2 0.9742 0.8033-1 0.9382 0.90830 0.9889 11 1.1697 1.16602 1.5580 1.43913 2.2655 1.88374 2.8862 2.57015 3.2250 3.19536 3.5745 3.74737 3.8079 4.17038 4.2159 4.43559 4.3433 4.726910 4.7276 5.235511 5.2727 5.773412 6.0289 6.362513 7.4063 7.2215表4为了形象的表示出预测值与实际值之间的关系,我们做出了以以下图6,通过图表可以发现,道格拉斯函数已经可以很精确的表示来国内生产总值的变化趋势:图6 国内生产总值的预测与实际比较图增加生产、开展经济所依靠的主要因素有增加投资、增加劳动力以及技术革新等,在研究国民经济产值与这些因素的数量关系时,由于技术水平不像资金、劳动力那样容易定量化,作为初步的模型,可认为技术水平不变,只讨论产值和资金、劳动力之间的关系.在科学开展不快时,如资本主义经济开展的前期,这种模型是有意义的.从而可以说明国内生产总值增长与资本及劳动之间满足柯布—道格拉斯〔Cobb-Dauglas 〕生产函数的关系.6. 模型的评价与推广6.1 模型的优点:在问题一中,多元回归模型,因变量国内生产总值的99.89%可由模型确定,说明模型从整体上来看是可用的.在预测2021-2021年的GDP 的值时.我们计算得中国平均年GDP 的增长量为10%左右,这也完全符合中国的经济开展情况.在问题二中,运用了柯布—道格拉斯生产函数,使该模型的建立有理论依据作支撑,且有助于对模型的结果进行分析.在分析国内生产总值与投资和劳动力关系是,忽略其他因素,从而简化了模型,便于大概的预测.6.2 模型的缺点:问题一中,由于国内生产总值受国际经济、政府政策、自然灾害等因素的影响,所以某一时期GDP 波动幅度较大,因此影响了模型整体预测的准确性.问题二中,忽略其他因素对国内生产总值的影响,和实际问题存在的误差.一定历史时期的生产函数是反映当时的社会生产力水平的.6.3 模型的推广与改进:推广:模型一是一类基于统计分析的随机模型,因此适用于大量数据的随机现象.如经济增长,灾害预测等.模型二中,在信息经济时代,所投入的生产要素的核心成分从资本、劳动力逐渐转变为以信息技术为代表的高新技术.当信息资源应用于生产中时,对生产人员、资本、流程等形成革命性的影响作用,极大地提高了生产要素生产率,促进了经济开展.综合上述原因,需要对柯布——道格拉斯生产函数做出了一定的修正,使之适用于信息时代的生产力开展水平.改进:模型一中参数0β与3β的置信区间包含零点,说明模型中还存在缺点,变量之间很可能存在交互作用.因此应在模型中参加交互项,改进原有的模型,建立新的回归模型.模型二较原来的模型增加了信息技术设备的资本投入和信息技术的劳动力投入后,得到dc b a L K L AK Q 1100=使得模型成为更贴近时代的生产模型,改进后的柯布—道格拉斯生产函数是在现代信息工业经济时代构造出的反映了现代信息工业经济时代生产力特征的函数模型.改进后的柯布—道格拉斯生产函数模型更具有时代特色,适用性更广.7.参考文献[1] 姜启源,谢金星,数学模型,高等教育出版社,20**.[2] 韩中庚,数学建模方法及其应用,高等教育出版社,20**.[3] 周品,赵新芬,MATLAB数学建模与仿真,2021.[4] 王兵团,数学建模根底,20**.[5] 齐微,柯布—道格拉斯生产函数模型,中国科技论文在线.8.附录附表1:年份GDP值工业建筑业农林渔业1978 3645.2 1607.0 138.2 1027.5 1979 4062.6 1769.7 143.8 1270.2 1980 4545.6 1996.5 195.5 1371.6 1981 4889.5 2048.4 207.1 1559.5 1982 5330.5 2162.3 220.7 1777.4 1983 5985.6 2375.6 270.6 1978.4 1984 7243.8 2789.0 316.7 2316.1 1985 9040.7 3448.7 417.9 2564.4 1986 10274.4 3967.0 525.7 2788.7 1987 12050.6 4585.8 665.8 3233.0 1988 15036.8 5777.2 810.0 3865.4 1989 17000.9 6484.0 794.0 4265.9 1990 18718.3 6858.0 859.4 5062.0 1991 21826.2 8087.1 1015.1 5342.2 1992 26937.3 10284.5 1415.0 5866.6 1993 35260.0 14188.0 2266.5 6963.8 1994 48108.5 19480.7 2964.7 9572.7 1995 59810.5 24950.6 3728.8 12135.8 1996 70142.5 29447.6 4387.4 14015.4 1997 78060.8 32921.4 4621.6 14441.9 1998 83024.3 34018.4 4985.8 14817.6 1999 88479.2 35861.5 5172.1 14770.0 2000 98000.5 40033.6 5522.3 14944.7 2022 108068.2 43580.6 5931.7 15781.3 20** 119095.7 47431.3 6465.5 16537.0 20** 135174.0 54945.5 7490.8 17381.7 20** 159586.7 65210.0 8694.3 21412.7 20** 185808.6 77230.8 10367.3 22420.0 20** 217522.7 91310.9 12408.6 24040.0 20** 267763.7 110534.9 15296.5 28627.0 2021 316228.8 130260.2 18743.2 33702.0 2021 343464.7 135239.9 22398.8 35226.0附表2:年份投资资金来源国家预算国内贷款利用外资自筹和内资金其他资金总量〔亿元〕1981 269.8 122.0 36.4 532.9 1982 279.3 176.1 60.5 714.5 1983 339.7 175.5 66.6 848.3 1984 421.0 258.5 70.7 1082.7 1985 407.8 510.3 91.5 1533.6 1986 455.6 658.5 137.3 1869.2 1987 496.6 872.0 182.0 2241.1 1988 432.0 977.8 275.3 2968.7 1989 366.1 763.0 291.1 2990.3 1990 393.0 885.5 284.6 2954.4 1991 380.4 1314.7 318.9 3580.4 1992 347.5 2214.0 468.7 5050.0 1993 483.7 3072.0 954.3 8562.4 1994 529.6 3997.6 1769.0 11531.0 1995 621.1 4198.7 2295.9 13409.2 1996 〔629.7〕〔4576.5〕〔2747.4〕〔15465.4〕625.9 4573.7 2746.6 15412.4 1997 696.7 4782.6 2683.9 17096.5 1998 1197.4 5542.9 2617.0 19359.6 1999 1852.1 5725.9 20**.8 20219.7 2000 2109.5 6727.3 1696.3 22577.4 2022 2546.4 7239.8 1730.7 26470.0 20** 3161.0 8859.1 2085.0 30941.9 20** 2687.8 12044.4 2599.4 41284.8 20** 3254.9 13788.0 3285.7 54236.3 20** 4154.3 16319.0 3978.8 70138.7 20** 4672.0 19590.5 4334.3 90360.2 20** 5857.1 23044.2 5132.7 116769.7 2021 7954.8 26443.7 5311.9 143204.9 构成〔%〕1981 28.1 12.7 3.8 55.41982 22.7 14.3 4.9 58.11983 23.8 12.3 4.7 59.21984 23.0 14.1 3.9 59.01985 16.0 20.1 3.6 60.31986 14.6 21.1 4.4 59.91987 13.1 23.0 4.8 59.11988 9.3 21.0 5.9 63.81989 8.3 17.3 6.6 67.81990 8.7 19.6 6.3 65.41991 6.8 23.5 5.7 64.01992 4.3 27.4 5.8 62.51993 3.7 23.5 7.3 65.51994 3.0 22.4 9.9 64.71995 3.0 20.5 11.2 65.31996 2.7 19.6 11.8 66.01997 2.8 18.9 10.6 67.71998 4.2 19.3 9.1 67.41999 6.2 19.2 6.7 67.82000 6.4 20.3 5.1 68.22022 6.7 19.1 4.6 69.620** 7.0 19.7 4.6 68.720** 4.6 20.5 4.4 70.520** 4.4 18.5 4.4 72.720** 4.4 17.3 4.2 74.120** 3.9 16.5 3.6 76.020** 3.9 15.3 3.4 77.42021 4.3 14.5 2.9 78.3附表3:人口出生率、死亡率和自然增长率单位:‰年份出生率死亡率自然增长率年份出生率死亡率自然增长率1978 18.25 6.25 12.00 1995 17.12 6.57 10.55 1980 18.21 6.34 11.87 1996 16.98 6.56 10.42 1981 20.91 6.36 14.55 1997 16.57 6.51 10.06 1982 22.28 6.60 15.68 1998 15.64 6.50 9.14 1983 20.19 6.90 13.29 1999 14.64 6.46 8.181984 19.90 6.82 13.08 2000 14.03 6.45 7.58 1985 21.04 6.78 14.26 2022 13.38 6.43 6.95 1986 22.43 6.86 15.57 20** 12.86 6.41 6.45 1987 23.33 6.72 16.61 20** 12.41 6.40 6.01 1988 22.37 6.64 15.73 20** 12.29 6.42 5.87 1989 21.58 6.54 15.04 20** 12.40 6.51 5.89 1990 21.06 6.67 14.39 20** 12.09 6.81 5.28 1991 19.68 6.70 12.98 20** 12.10 6.93 5.17 1992 18.24 6.64 11.60 2021 12.14 7.06 5.08 1993 18.09 6.64 11.45 2021 12.13 7.08 5.05 1994 17.70 6.49 11.21模型二计算程序:Q=[4889.5 5330.5 5985.6 7243.8 9040.7 10274.4 12050.6 15036.8 17000.9 18718.3 21826.2 26937.3 35260.0 ...48108.5 59810.5 70142.5 78060.8 83024.3 88479.2 98000.5 108068.2 119095.7 135174.0];IQ=Q/18718.3K=[961 1230.4 1430.1 1832.9 2543.2 3120.6 3791.7 4653.8 4410.4 4517.5 5594.5 8080.1 13072.3 17827.1 20524.9 ...23358.6 25259.7 28716.9 29754.6 33110.4 37987.0 45046.9 58616.3];IK=K/4517.5L=[4.5126 4.6358 4.7286 4.8179 4.9873 5.1282 5.2783 5.4334 5.5329 6.4749 6.5491 6.6152 6.6808 6.7455...6.8065 6.8951 6.98217.0637 7.1394 7.2085 7.3025 7.3741 7.4432];IL=L/6.4749Et=zeros〔23〕;Et=Et〔1,1:23〕;for t=1:1:23;Et〔t〕=log〔IL〔t〕/IK〔t〕〕;endEt;Wt=Et;for t=1:1:23;Wt〔t〕=log〔IQ〔t〕/IK〔t〕〕;endWt;x=Et;y=Wt;plot〔x,y,'*'〕;xlabel〔'E'〕;ylabel〔'W'〕;a=[0.2612 0.2848 0.3198 0.3870 0.4830 0.5489 0.64380.8033...0.9083 1.0000 1.1660 1.4391 1.8837 2.57013.1953 3.7473...4.1703 4.4355 4.72695.2355 5.77346.36257.2215];y=[0.2127 0.2724 0.3166 0.4057 0.5630 0.6908 0.8393 1.0302...0.9763 1.0000 1.2384 1.7886 2.8937 3.94624.54345.1707...5.59156.3568 6.58657.32948.40899.9716 12.9754;0.6969 0.7160 0.7303 0.7441 0.7703 0.7920 0.8152 0.8391...0.8545 1.0000 1.0115 1.0217 1.0318 1.04181.0512 1.0649...1.0783 1.0909 1.1026 1.1133 1.1278 1.1389 1.1495];curvefun=inline〔'x〔1〕*〔y〔1,:〕.^x〔2〕〕.*〔y〔2,:〕.^x〔3〕〕','x','y'〕x0=[0.1,0.1,0.2];x=lsqcurvefit〔curvefun,x0,y,a〕a=x〔1〕,alpha=x〔2〕,beta=x〔3〕Q=[4889.5 5330.5 5985.6 7243.8 9040.7 10274.4 12050.6 15036.8 17000.9 18718.3 21826.2 26937.3 35260.0 ...48108.5 59810.5 70142.5 78060.8 83024.3 88479.2 98000.5 108068.2 119095.7 135174.0];IQ=Q/18718.3K=[961 1230.4 1430.1 1832.9 2543.2 3120.6 3791.7 4653.8 4410.4 4517.5 5594.5 8080.1 13072.3 17827.1 20524.9 ...23358.6 25259.7 28716.9 29754.6 33110.4 37987.0 45046.9 58616.3];IK=K/4517.5;L=[4.5126 4.6358 4.7286 4.8179 4.9873 5.1282 5.2783 5.4334 5.5329 6.4749 6.5491 6.6152 6.6808 6.7455...6.8065 6.8951 6.98217.0637 7.1394 7.2085 7.3025 7.3741 7.4432];IL=L/6.4749;Qt=zeros〔23〕;Qt=Qt〔1,:〕;for t=1:1:23;Qt〔t〕=0.9889*IL〔t〕^0.2167*IK〔t〕^0.7738;endQty1=[0.2612 0.2848 0.3198 0.3870 0.4830 0.5489 0.6438...0.8033 0.9083 1.0000 1.1660 1.4391 1.8837 2.5701...3.1953 3.74734.1703 4.4355 4.72695.23555.7734...6.36257.2215];y2=[0.2761 0.3362 0.3793 0.4615 0.5991 0.7061 0.8262...0.9742 0.9382 0.9889 1.1697 1.5580 2.26552.8862...3.2250 3.5745 3.80794.2159 4.3433 4.72765.2727...6.02897.4063];x=1981:1:20**;p1=polyfit〔x,y1,2〕;p2=polyfit〔x,y2,2〕;xi=1981:0.01:20**;y3=polyval〔p1,xi〕;y4=polyval〔p2,xi〕;plot〔x,y1,'*r',xi,y4,'-b'〕legend〔'实际值','预测曲线'〕xlabel〔'年份'〕;title〔'预测值与实际值比较图'〕;。
经济数学模型

1998年全国大学生数学建模竞赛题目
A题 投资的收益和风险
市场上有 n 种资产(如股票、债券、…)Si ( i=1,…,n)供投资者选择,某公司有数额为 M 的一笔 相当大的资金可用作一个时期的投资,公司财务分析人员对 这 n 种资产进行了评估,估算出在这一时期内购买Si的平 均收益率为ri,并预测出购买Si的风险损失率为qi。考虑到 投资越分散,总的风险越小,公司确定,当用这笔资金购买 若干种资产时,总体风险可用所投资的Si中最大的一个风险 来度量。
y
2
1
x
0
2
4
6
8
-1
-2
这样一来,每一条与水平直线Y=-1相遇的折线唯一地确定
一条这种从(0,0)到(m+n , n-m -2)的新折线。
设向上的线段条数为U,向下的线段条数为D,则对于新折线有
U+D=m+n
1*U+(-1)D=-(m-n)-2
两式相加即得
2U=2n-2 可见向上的线段条数为
U=n-1 向下的线段条数为
1.5
2
198
S3 23
5.5
4.5 52
S4 25
2.6
6.5 40
试给该公司设计一种投资组合方案,即用给定的资
金M,有选择地购买若干种资产或存银行生息,使 净收益尽可能大,而总体风险尽可能小。
2)试就一般情况对以上问题进行讨论,并利用以下数据 进行计算。
Si
Ri(%) Qi(%) Pi(%) Ui(元)
(2) 若记存款为1,并用向上的线段来表示, 取款为-1 ,并用向下的线段来表示,
则这一天内2m个储户随意地来存取款的可能 排列分别对应一条从(0,b)到(2m,b)的折线,而无款可 取的情况当且仅当存取款余额出现负值时发生,此时其对应 的折线将穿过X而与水平直线Y=-1相遇。从而
数学建模简介1

数学建模的方法和步骤
模型假设
在明确建模目的,掌握必要资料的基础上, 通过对资料的分析,根据对象的特征和建 模目的,找出起主要作用的因素,对问题 进行必要的、合理的简化,用精确的语言 提出若干符合客观实际的合理假设。
数学建模的方法和步骤
模型假设
作出合理假设,是建模至关重要的一步。 如果对问题的所有因素一概考虑,无疑是 一种有勇气但方法欠佳的行为,所以高超 的建模者能充分发挥想象力、洞察力和判 断力 ,善于辨别主次,而且为了使处理方 法简单,应尽量使问题线性化、均匀化。
看谁答得快
1、某甲早8时从山下旅店出发沿一路径上山,下 午5时到达山顶并留宿。次日早8时沿同一路径下 山,下午5时回到旅店。某乙说,甲必在两天中 的同一时刻经过路径中的同一地点,为什么?
2、两兄妹分别在离家2千米和1千米且方向相反 的两所学校上学,每天同时放学后分别以4千米/ 小时和2千米/小时的速度步行回家,一小狗以6千 米/小时的速度从哥哥处奔向妹妹,又从妹妹处奔 向哥哥,如此往返直至回家中,问小狗奔波了多 少路程?
四、模型的特点:
逼真性和可行性 渐进性 强健性 可移植性 非预测性 条理性 技艺性 局限性
五、建模能力的培养:
具有广博的知识(包括数学和各种实际知 识)、丰富的经验、各方面的能力、注意 掌握分寸。
具有丰富的想象力和敏锐的洞察力
类比法和理想化方法
直觉和灵感
实例研究法
学 习 、 分 析 别 人 的 模 型 亲 手 去 做
模型集中反映了原型中人们需要的那一部分特征
什么是数学建模
什么是数学模型?
简单地说:数学模型就是对实际问题的一种 数学表述。
具体一点说:数学模型是以部分现实世界为某 种研究目的的一个抽象的、简化的数学结构。 这种数学结构可以是数学公式、算法、表格、 图示等。
经济数学建模(西安交通大学,戴雪峰)

C3r (T
T1)2
取每日平均费用作目标函数,记为C(T )
C(T ) C1 C2Q2 C3 (rT Q)2
T 2rT
2rT
(Q
T1
Q r
)
令
C(T ) 0, C(T ) 0
T
Q
得
T 2C1 C2 C3 , Q 2C1r C3
rC2 C3
C2 C2 C3
比较两种情况下的结果,可以看到: 在不允许缺货的情况下(即C3 ),后者公式变 为前者。 在允许缺货的情况下,订货周期应增大,而订货 批量应减小。 (相对于不允许缺货时的批量和周期而言)
数学建模
西安交通大学理学院 戴雪峰
E-mail: daixuefeng@
微分学模型(静态优化模型)、 经济学模型
一、存储模型
存储过多会占用资金多,仓储费高。 但存储量少会增加订货费,缺货还会 造成经营的损失。现只考虑订货费及 存储费,如何使总费用最少?
其中订货费指每订一批货需付出的 费用,它与订货量的多少无关;存 储费与货物量、存储时间成正比。
dB
dt 随 t 的增加而增加;开始救火以后,即t1 t t2 , 如果消防队员救火能力足够强,火势会越来越小,
dB
即 dt 随 t 的增加而减小;且当
t
t2
dB
时, dt
0
。
模型假设:
(1)火灾损失与森林被烧面积 B(t2 ) 成正比,比例系 数 C1,即烧毁单位面积的损失费。
(2)从失火到开始救火这段时间(0 t t1 )内,火
问题分析:
(1)火灾损失通常正比于与森林被烧面积,而被 烧面积又与从起火到火灭的时间有关,而这时间又 与消防队员人数有关。
经济数学建模作业及答案

2、如果连续复利时,以什么利率才能使本金在8年内变成3倍?1、在每半年复利一次的情况下,以8%的利率,需要经过多长时间才能使现值增到2.5倍?3、连续收益流量每年按80万元持续5年,若以年利率5%贴现,其现值应是多少?T=11.68年r=13.73%55%00S 80353.92t e dt -==⎰8003S S re =4、某汽车使用寿命为10年,若购买此车需35000元,若租用此车每年租金为7200元,若资金的年利率为14%,按连续复利计算,问买车与租车哪一种方式合算。
计算租车资金流量总值的现值,然后与购买费相比。
租车租金流量总值的现值为所以买车比租车合算。
002.5S S +=2T0.08(1)2101014141172003875635000i i i i i S e e -%-%==≈>=∑∑5、一商家销售某种商品的价格满足关系x p 2.07-=(万元/吨),x 为销售量(单位:吨);商品的成本函数是C =3x +1(万元)。
(1) 若每销售一吨商品,政府要征税t (万元),求该商家获最大利润时商品的销售量;(2) t 为何值时,政府税收总额最大。
6、已知某企业生产的商品的需求弹性为1.2,如果该企业准备明年将价格降低15%,问这种商品的销量预期会增长多少?总收益会增长多少?2'5(2) 10 0 22T tx t t T t ==-=⇒=R18%,3%R Q Q∆∆==令2(70.2)31(4)0.21Px C Tx x x tx t x x --=----=---'''5()0,()0102L x L x x t=<⇒=-(1)利润L(x)=7、某消费者打算购买两种商品q 1和q 2,他的预算约束是240元,两种商品的单价分别是10元和2元,其效用函数为U=q 1q 2,消费者的最优商品组合是什么?一元钱的边际效用是多少?8、效用函数U (q 1,q 2) 应满足的条件是以下的A,B 之一:A. U (q 1,q 2) =c 所确定的函数q 2=q 2(q 1)单调减、下凸;0,0,0,0,0.B 21222221221>∂∂∂<∂∂<∂∂>∂∂>∂∂q q Uq U q U q U q U AB ⇒证明:对U (q ,q 2) =c 两端求q 1的一阶导和二阶导12102240q q +=1212MU MU P P =1212,60q q ==解建立方程组得解出一元钱边际效用为610、在确定性存贮模型中,在费用中增加购买货物本身的费用,确定不允许缺货的最优订货周期和订货批量。
清华大学数学系 建模 价格指数

该定理没有涉及公理1,4,5, 为什么? I满足公理1,2,3 I满足公理4 I满足公理2,3,7 I满足公理5 目前常用的价格指数 I1, I2:满足除公理7外的所有公理,计算简单
定理
不存在同时满足公理2,3,6,7,8的价格指数 满足2,3,6,7的价格指数I必不满足公理8
证明
公理 2
I (CDe, C 1 D 1e | e, e) I (Ce, C 1e | e, e) I (Ce, C 1e | e, e)
公理 7
I ( p, p 1 | e, e)
(**)
I (CDe, C 1 D 1e | Ce, C 1e) I (Ce, C 1e | e, e) I (Ce, C 1e | Ce, C 1e)
n
当λ0时,s0 存在某个i, 当λ0时
I ( e,
i i 1 n
1 i
e | e, e)
lim I ( i e, e | e, e) 0
0
Happy National Day!
(*)
1 I i e, i e | e, e) i 1 i 1
(*)
记Λi=Diag[1,…,λ,…,1](第i位置元素λ >0,其余为1)
公理 2, 6
I ( De, D 1e | e, e) I (Ce, C 1e | e,
(***)
证明
令s I ( i e, e | e, e)
i 1 (**) n
n
与公理8矛盾!
(***)
I e, 1e | e, e I e, 1
公理3
e | e, e
经济数学模型的构建及对库存问题的解决

有 条 件 可 得 ,经 济 批 量
一
=自 , 一 m“ )
年 最 小 存 货 总 费 用 F Tx0 。 2+ 1 5  ̄
查 以获取 大 量 的数 据 资料 ,并 对数 据 进 行加 工 分析 、分 组 整理 。 ( 模 型假 设 。通 过假 设把 实 际经 济 问题简 化 ,明确 模型 中诸 多 的 2)
影 响 因素 .并 从 中抽 象 最 本 质 的 东西 。 即抓 住 主 要 因素 .忽 略次
每年 每 台库存 费 . = 8 0 X5 X4= 1 O ( ) C 0 % 6 元
进行如下假设 : D: 个计 划 期 内 的需 求数 量 ,即生产 或 订货 的总量 :C : 个 一 ,一
对库存问题的解决
张 超 梅 瑞 河北北方学 院
要 ] 文章 介 绍 了在 经 济领 域 中进 行 数 学建 模 的重 要 性 , 探 讨 了数 学经 济 建模 的 基 本 步骤 ,并 把 该 理 论 应 用 到 经 济流 通 领 域 的 重要 问题 库 存 上 ,通 过 建 立 数 学建 模 加 以解 释 说 明 。
由极 值 的 充 分 条 件 : -) (. 口
所以,当批量口 / 时,总费用最小,其值: ‘、 孚 F
C即 ቤተ መጻሕፍቲ ባይዱ D
孚 J J 等 _ 苦=
() 3
这就 得到 了求最 优批 量 及最 小 总费 用 的一般 表达 式 ( ) ( ) 2和 3 。
由上述 理论 可作 解答 :由题设 知 ,D= 1 0 0 0台 C = 5 0 , 0 0元 .
存 货 总 费 用 E与 每 批 生产 台数 Q 的 函数 关 系 : - + e
要 因 素 ,从 而得 到原 始 问题 的 一个 简 化 了 的 理 想 化 的 自然 模 型 。 ( 模 型建 立 。 在 假设 的基 础 上 ,根 据 已经 掌 握 的 经 济 信息 .利 3)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 微积分应用模型
4.2 问题
最优价格模型
经济数学模型
在商品生产的成本函数和市场的需求函数均已知 条件下,在产销平衡条件下如何确定商品价格,使 利润最大。
L p R p C p
使利润 L(p)最大的最优价格 p*满足
dL dp
0
p p*
dR dp
p p*
成正比。
经济数学模型
在实际问题中,价格的制定是非常复杂的, 有许多因素都在影响着最优价格,并没有一成 不变的公式,须针对具体情况采用灵活的数学 模型和方法确定。
4.3
问题
消费者均衡
经济数学模型
消费者对甲乙两种商品的偏爱程度用无差别 曲线族表示,问他如何分配一定数量的资金 来购买这两种商品,以达到最大的满意度。
x( p) a bp, a, b 0
收入 R( p) px 支出
C( p) qx
经济数学模型
R( p) px
C( p) qx
L( p) R( p) C ( p)
x( p) a bp
*
( p q)(a bp)
q a p 2 2b
经济数学模型
4.4
生猪的最佳出售时机
问 饲养场每天投入c元资金,用于饲料、人力、设备, 题 估计使当前w千克重的生猪体重增加r公斤。
市场价格目前为每千克p元,但是预测每天会降 低 g元,问生猪应何时出售。 如果估计和预测有误差,对结果有何影响。
分 投入资金使生猪体重随时间增加,出售单价随 析 时间减少,故存在最佳出售时机,使利润最大
• 消费者均衡状态下购买两种商品费用之比 与二者价格之比的平方根成正比。 • U(q1,q2)中参数 , 分别表示消费者对甲乙 两种商品的偏爱程度。
经济数学模型
2. U q1 q2 , 0 , 1
p1q1 p2 q2
U q1 p1 U p2 q 2
建模及求解
生猪的增长速度r, 收购价格降低速度g
经济数学模型
若当前出售,利润为wp(元)
t天 出售 生猪体重 w t=w+rt 出售价格 pt= p-gt
销售收入为
R(t ) ( p gt )(w rt )
C t = ct
资金投入
纯利润应扣掉以当前价格(p元/公斤)出售w公 斤的收入,得到t天后出售所获纯利润函数为
L p(t ) R p C p dt 0 ( p q)(a bp) dt 0
T T
约束条件为:
T
0
(a bp) dt =G
经济数学模型
上式为p(t)的泛函,利用拉格朗日乘子法把上述条件极 值转化为无条件极值。 拉格朗日函数为
模型 已知价格 p1,p2,资金 s, 及 求q1,q2,或 p1q1 / p2q2, 求解 使 U(q1,q2)最大
L U (s p1q1 p2q2 ),
L qi 0 (i 1, 2)
max Z U (q1 , q2 ) s.t. p1q1 p2 q2 s
*
(rp wg c 0)
经济数学模型
研究 r, g变化时对模型结果的影响.设g为常数 ,t 对r 的 (相对)敏感指标为
Δ t / t dt r S (t , r ) Δ r / r dr t
* dt r wg c * S t , r * = (rp wg c 0) * dr t 2 grt
* 1
显然 p2* p1* ,所以后半期的售价高于前半期的售价。
经济数学模型
若在销售期T内要求总销量达到Q0,即
1 整理得 Q0 aT bT ( p1 p2 ) 2
Q0 (a bp1 )dt T (a bp2 )dt
2
T 2 0
T
求两阶段的最优价格是有一个约束条件的最值问题,拉格朗日函 数为 1 F L( p1 , p2 ) [aT bT ( p1 p2 ) Q0 ] 2 令
C( pi , t ) qx (q0 + t )(a bpi )
T 2 0 T
i 1, 2
i 1, 2
利润为 L( p1 , p2 ) [ R( p1 ) C ( p1,t )]dt T [ R( p2 ) C ( p2,t )]dt
2
经济数学模型
L( p1 , p2 ) ( p1 q0 t )(a bp1 )dt T ( p2 q0 t )(a bp2 )dt
设r为常数 ,t 对g的(相对)敏感度为
* dt g c rp * S t , g = (rp wg c 0) * * dg t 2 grt
经济数学模型
当生猪目前体重w为80公斤,每天投入费用c= 4元,市 场价格为p=8元/公斤 ,估计生猪每天体重的增加速度为 r=2公斤/天 ,销售价格的降低速度g为0.1元/天 t*对参数r敏感程度为
U U 2U 2U 2U B. 0, 0, 0, 0, 0 2 2 q1 q2 q1 q2 q1q2
B A
经济数学模型
例子
1. U (
q1
q2
) , , 0
1
p1q1 p2 q2
p1 p2
U q1 p1 U p2 q2
x( p) a bp, a, b 0
与“绝对需求量”成正比,与市 场需求对价格的敏感系数成反比
q a p 2 2b
成本q的一半
p 0, x(0) a为绝对需求量; dx b 为边际需求,反映需求对价格的敏感程度。 dp
b p * a p*
(a,b由p,x的统计数据拟合或其他统计方法确定。)
可近似表为(
e 1 t )
t
a G q0 t p = b bT 2
*
从上式看出,商品销售最优价格近似由3部分构成:第一部 分与绝对需求量成正比与市场对价格的敏感系数成反比;第 二部分随销售时间T的增加而提高,随总销售量G的增加而降
低;第三部分与初始成本q0、成本的相对增长率 及时间都
2
T 2 0
T
(a bp1 )
T 1 T 3 ( p1 q0 T ) (a bp2 ) ( p2 q0 T ) 2 4 2 4
L 0 p1 L 0 p2
令
整理得
1 T a p ( q0 ) 2 4 2b 1 3 T a * p2 ( q0 ) 2 4 2b
0
1
l2
s/p1 q1
·
N
结果 解释
U U , q1 q 2
经济数学模型
——边际效用
消费者均衡状态在两种商品 的边际效用之比恰等于它们 价格之比时达到。
U q1 p1 U p2 q 2
构造效用函数U(q1,q2) 应满足的条件
U1 U 2 即 p1 p2
A. U(q1,q2) =c 所确定的函数 q2=q2(q1)单调减、下凸
p q p q 直线 MN: 1 1 2 2 几 何 最优解Q: MN与 l2切点
解 斜率 K MN p1 / p2 释 dq2 U U K l2 / dq1 q1 q2
s
q2 s/p2 M
U q1 p1 U p2 q2
U(q1,q2) = c
·
· l
Q
l3
dC dp
p p*
最大利润在边际收入等于边际支出时达到
分各种情况讨论 R p 、C p 的具体形式
经济数学模型
第一种情况
假设 1)产量等于销量,记作 x
2)收入与销量 x 成正比,系数 p 即价格
3)支出与产量 x 成正比,系数 q 即成本 4)销量 x 依赖于价格 p, x(p)是减函数 进一步设需求函数为
L( p(t )) ( p q)(a bp) dt ( (a bp)dt G)
T T 0 0
令
L( p(t )) 0, p
L( p(t )) 0
解得最优价为
a G p = b bT
*
虽然价格p是时间t的函数,但最优价格是常数。它由两 部分构成:一部分与绝对需求量成正比,与市场对价格的 敏感系数b成反比;另一部分随销售时间T的增加而提高, 随总销售量G的增加而降低。
经济数学模型
第五种情况
商品在销售过程中受存贮费和变质损失费等诸因素的影响, 价格p和成本q都会随着时间变化,即p和q都是时间的函数:
p p(t )
q q(t )
为简单设成本q随时间相对增长率为 ,初始时刻的成本 为 q0 ,即成本函数满足以下微分方程
dq q dt q (0) q0
q2 U(q1,q2) = c
设甲乙数量为q1,q2, 消 费者的无差别曲线族 (单调减、下凸、不相 交)记作 U(q1,q2)=c
l3
0
U(q1,q2) ~ 效用函数
l1
l2
q1
已知甲乙商品的价格 p1,p2, 资金量 s,购买甲 乙数量 q1,q2,试分配s,使 U(q1,q2)最大.
经济数学模型
L(t ) R(t ) C(t ) pw ( p gt )(w rt ) ct pw
经济数学模型
问题归结为求t≥0,使L(t)达到最大。这是求
二次函数最大值问题,用微分法容易得到
rp wg c t 2rg
*
(rp wg c 0)
例如当生猪目前体重 w为80公斤,每天投入费用 c为4 元,市场价格p为8元/公斤 ,估计生猪每天体重的增加 速度r为2公斤/天 ,销售价格的降低速度g为0.1元/天 ,