有限元计算原理与方法..
计算电磁学中的有限元方法

计算电磁学中的有限元方法随着计算机技术的不断发展和应用,计算电磁学研究的范围和深度不断提高,其应用领域也越来越广泛。
有限元方法是计算电磁学研究中重要的数值分析方法之一,其可模拟复杂电磁场问题,有着广泛的应用。
本文将简要介绍计算电磁学中的有限元方法的一些基本原理和应用。
一、有限元法基本理论有限元方法是数值分析中一种重要的数学工具,其基本思想是将整个计算区域分割成若干个简单的单元,然后在每个单元内选取一个适当的基函数,通过求解基函数系数来表示数值解。
这种思想很容易扩展到计算电磁场问题上,因为电磁场分布可以被视为由一些小电磁场单元组成。
有限元方法的基本过程包括建立有限元模型、离散化、求解以及后处理。
其中建模是有限元方法中最重要的一个环节。
在建模过程中,首先需要选取合适的计算区域,并将其离散化为若干个小单元(如三角形、四边形等)。
然后,我们需要选取适当的基函数,并确定它们所对应的系数的初始值。
一旦有限元模型被建立,我们就可以进行求解了。
具体来说,有限元法的求解过程需要求解一个大规模的稀疏矩阵方程,其中系数矩阵和右侧向量都与电磁场有关。
这个过程需要借助计算机的优势,通过矩阵解法算法完成求解。
最后,我们通过后处理来获得我们需要的电磁场信息或工程参数,例如电势、磁场强度、感应电动势等。
二、有限元法应用领域有限元法在计算电磁学中广泛应用。
其应用范围涉及电机、变压器、电力电子、雷达、电磁兼容等多个领域。
有限元法可用于仿真复杂的电磁场分布问题,例如在电机设计中,有限元法可用于电机磁场分析、电机振动分析以及谐波分析等。
在电力电子领域中,有限元法可用于设计电感元件和变压器等。
另外,有限元法在雷达技术中也有着广泛的应用,可用于雷达天线设计和仿真。
三、有限元法的优缺点有限元法作为一种数值分析方法,具有一定优缺点。
有限元法的主要优点在于它具有很强的适应性和通用性,可用于模拟各种复杂的材料和几何形状。
此外,有限元法允许我们针对不同的模型选择不同的元素类型和元素尺寸,因此可以根据实际需求自由选择不同的模型。
有限元和有限体积

有限元和有限体积引言有限元和有限体积方法是数值计算中常用的一种数值方法,用于求解连续介质力学问题。
有限元方法通过将连续介质分割为无数个小单元,通过对小单元进行分析,来近似求解整个问题。
而有限体积方法使用有限体积元胞对区域进行离散化,通过求解元胞边界上的通量和源项来逼近整体问题的解。
本文将详细讨论这两种方法的基本原理、应用领域和优缺点。
有限元方法基本原理有限元方法是将连续介质划分为一个个小的有限元,每个有限元都有自己的形状函数和自由度。
通过将连续问题离散化为有限个自由度上的代数方程,再通过求解代数方程组来近似求解连续问题的解。
具体步骤如下:1.将连续介质划分为有限个小的有限元;2.在每个有限元上选择适当的形状函数;3.建立有限元刚度矩阵和载荷向量;4.组装有限元刚度矩阵和载荷向量;5.边界条件的处理;6.求解代数方程组得到近似解。
有限体积方法基本原理有限体积方法是将连续介质划分为有限个的离散控制体积,通过对每个控制体积内部的平衡方程进行积分,得到离散控制方程。
以控制体积为基本单位,建立离散方程,通过对自由度进行遍历,求解整个问题。
具体步骤如下:1.将连续介质划分为有限个的离散控制体积;2.在每个控制体积内部建立平衡方程并进行积分;3.得到离散控制方程;4.边界条件的处理;5.求解离散方程组得到近似解。
有限元方法和有限体积方法的区别有限元方法和有限体积方法都是数值计算的重要方法,但在求解连续介质力学问题时有一些差异。
离散化方式不同有限元方法对连续介质进行的离散化是基于几何结构的,将连续域划分为小的有限元。
而有限体积方法则是基于控制体积划分,离散化程度相对较小。
近似程度不同有限元方法是在各个有限元上进行近似,通过调节有限元的数量和自由度的精度来改变近似程度。
有限体积方法是在每个控制体积上进行平衡方程的积分,通过选取不同大小的控制体积来改变近似程度。
单元法程度的力学意义不同有限元方法中的单元法是具有力学意义的,可以通过单元的应力、应变等物理量来反映力学本质。
有限元计算原理

有限元计算原理
有限元计算原理是一种工程分析的方法,用于求解各种结构及连续体的力学问题。
其基本思想是将结构或连续体分割成有限数量的小单元,然后通过对这些小单元进行计算,再将其组合起来求解整体问题。
这种方法可以将结构或连续体的力学行为分析得非常精确,可以获得结构的应力应变分布、位移分布等信息。
有限元计算的原理可以概括为以下几个步骤:
1. 网格划分:将结构或连续体划分成许多小单元,即有限元,这些小单元通过节点连接起来构成整个结构。
2. 求解力学方程:根据结构或连续体的几何形状和物理特性,建立相应的力学方程组。
通常采用弹性力学理论来描述结构或连续体的力学行为。
3. 边界条件的处理:给定结构或连续体的边界条件,如固支、约束力等,在有限元网格中对应的节点上施加相应的约束。
4. 单元刚度矩阵的组装:通过计算每个小单元的刚度矩阵,将其组装成整个结构或连续体的整体刚度矩阵。
5. 单元荷载向量的组装:根据给定的荷载条件,在每个小单元上计算相应的荷载向量,将其组装成整个结构或连续体的荷载向量。
6. 求解位移和应力:根据组装好的整体刚度矩阵和荷载向量,通过求解线性方程组,得到结构或连续体中每个节点的位移和应力。
7. 后处理:根据求解得到的位移和应力,可以计算出结构或连续体的各种物理量,比如应变、应力、变形等。
通过这种有限元计算的方法,可以对各种复杂的结构或连续体进行力学分析和优化设计。
材料力学中的有限元方法分析

材料力学中的有限元方法分析材料力学是研究物质初始状态至最终破坏状态之间的力学行为及其规律的科学。
有限元分析是一种数值计算方法,可以求解各种工程问题的数学模型。
有限元方法在材料力学研究中有着重要的应用,本文将从有限元方法的基本原理、材料力学中的有限元分析、有限元模拟在材料力学中的应用等方面进行分析。
一、有限元方法的基本原理有限元方法是一种通过建立复杂结构的有限元模型,将一个复杂的连续问题转化为离散问题来求解的方法。
其基本思想是将一个连续物体分割成很多小的单元,使用一些简单的解析方法求解每个小单元内的力学问题,然后将所有小单元的解组合在一起来求解整体力学问题。
有限元方法求解的过程分为以下基本步骤:1.建立有限元模型2.离散化3.施加约束4.建立刚度矩阵和荷载向量5.求解未知量二、材料力学中的有限元分析材料力学中的有限元分析是指通过有限元方法对材料力学问题进行分析、计算和评估的方法。
材料力学问题中的目标是通过施加荷载或外界力,来得到物体内部的应力和应变状态,以及其随时间和载荷变化的规律。
在建立材料力学有限元模型时,需要考虑以下因素:1.应力集中和应变集中的位置和程度2.物理边界和几何结构3.材料的力学性质和力学参数材料力学中的有限元分析包含以下几个方面:1.静态分析:研究物体在静态等效荷载下的应力状态,计算物体的静态变形。
2.动态分析:研究物体在动态载荷下的应力和应变状态,计算物体的动力响应。
3.疲劳分析:研究物体在周期性载荷下的损伤状态、损伤机理和寿命预估。
4.热力耦合分析:研究物体在温度场和应力场的共同作用下的应力和应变状态。
5.多物理场分析:研究物体在电、磁、声、液、气、红外、光、辐射等多个物理场的共同作用下的应力和应变状态。
三、有限元模拟在材料力学中的应用有限元模拟在材料力学中的应用范围非常广泛,包括了以下几个方面:1.材料的结构设计和分析2.材料的性质和参数的测试和评估3.材料的制造和加工工艺的模拟4.材料的破坏和损伤机理的研究5.材料的寿命评估和振动疲劳分析最终,有限元分析的结果可以在材料设计、材料优化和制造流程等方面提供准确的数据支持,帮助人们更好地理解材料的力学行为和性质,促进材料科学的发展。
有限元计算原理与方法

有限元计算原理与方法有限元法(Finite Element Method,简称FEM)是一种通过将复杂的物理系统离散成有限的简单子域,并在每个子域上建立适当的解析函数,最终通过数值解法计算系统性质的方法。
它是目前工程界最常用的一种数值分析方法,适用于各种不同领域的问题求解。
有限元法的核心思想是将连续问题转化为离散问题,将复杂的物理系统划分成有限数量的简单几何单元,称为有限元。
每个有限元内只需要考虑有限自由度的变量,然后通过建立方程组,求解出系统的响应。
有限元法的优点是适用于各种复杂的几何形状和边界条件,并且可以处理非线性、动力学和多物理场等问题。
有限元法的基本步骤包括以下几个方面:1.几何建模:根据实际问题,将物体的几何形状抽象为有限的简单几何单元,如线段、三角形、四边形单元等。
2.离散化:将物体划分成有限元,并建立有限元网格。
有限元网格的划分应该足够细致,以保证对模型进行准确的描述。
3.单元及节点自由度的确定:确定每个有限元的节点,以及每个节点对应的自由度,自由度包括位移、应力、温度等。
4.建立元素刚度矩阵和载荷向量:根据单元的几何关系和物理性质,建立单元刚度矩阵和载荷向量。
单元刚度矩阵描述了单元内各个节点之间的相互作用关系,载荷向量描述了单元受到的外部力和边界条件。
5.组装:将各个单元的刚度矩阵和载荷向量组装成整个系统的刚度矩阵和载荷向量。
6.施加边界条件:根据实际问题,将边界条件施加到系统方程中,通常为位移或载荷。
7.解方程:根据边界条件和施加的载荷,求解系统方程,得到节点的位移和应力等解。
8.后处理:根据求解的结果,计算出物体的各种性质,并对结果进行分析和可视化显示。
有限元法具有广泛的应用,例如结构力学、流体力学、电磁场等领域。
它的研究包括有限元离散化方法、有限元解法和计算误差分析等。
随着计算机技术的发展和计算能力的提高,有限元法在科学研究和工程实践中的应用将会更加广泛和深入。
有限元计算

有限元计算有限元计算是一种数值分析方法,用于求解工程问题的数学模型。
它通过将复杂的连续介质划分为离散的有限元素,然后针对每个元素进行力学方程求解,最终得到整个系统的响应。
本文将介绍有限元计算的基本原理和应用领域。
有限元计算的基本原理是以分片函数为基础的。
分片函数是一个在每个元素上定义的形状函数,它可以用来描述元素内部的物理量如位移、应力等。
通常,分片函数采用多项式函数来近似实际的分布。
然后,有限元计算将整个系统分割成多个元素,并在每个元素上使用分片函数进行离散化。
通过对每个元素的力学方程进行求解,可以得到整个系统的响应。
有限元计算可以应用于多个领域,例如结构力学、热传导、流体力学等。
在结构力学中,有限元计算可以用于预测材料的应力、变形以及断裂等。
在热传导中,有限元计算可以用于模拟热流的传递和分布。
在流体力学中,有限元计算可以用于模拟流体的运动和流场的分布。
有限元计算的具体步骤包括几何建模、边界条件的施加、离散化、方程的求解和结果的后处理。
在几何建模中,需要将实际的工程问题转化为几何模型。
边界条件的施加涉及到对问题的边界进行限制,例如施加位移边界条件或载荷边界条件。
离散化阶段是将整个模型分割成多个有限元素,并定义适当的分片函数。
在方程求解中,需要根据给定的边界条件和分片函数对每个元素的力学方程进行求解。
最后,在结果后处理中,可以对计算结果进行可视化和分析。
有限元计算的优点是可以解决复杂的工程问题,并且具有较高的精度和灵活性。
它可以通过改变网格密度和分片函数的阶数来调节计算精度。
另外,有限元计算可以处理几何形状复杂、边界条件多变的问题,具有广泛的适用性。
总之,有限元计算是一种常用的数值分析方法,可以用于求解工程问题的数学模型。
它通过将系统离散化成多个有限元素,并使用分片函数进行力学方程求解,来获得系统的响应。
有限元计算在结构力学、热传导、流体力学等领域有着广泛的应用。
第3章 有限元分析的数学求解原理-三大步骤

U x x y y z z xy xy yz yz zx zx dV
X u Y v Z w dV X u Y v Z w d W
V V
用 * 表示;引起的虚 应变分量用 * 表示
j Vj
Ui
i Vi
0 X
y
¼ 1-9 Í
ui* * vi wi* * * u j , v* j w*j
x* * y * z * * xy *yz * 18 zx
19
7.间接解法:最小势能原理
20
最小势能原理
W U 0
最小势能原理就是说当一个体系的势能最小时,系统会处于稳定 平衡状态。或者说在所有几何可能位移中,真实位移使得总势能取最小值
0 表明在满足位移边界条件的所有可能位移 最小势能原理: 中,实际发生的位移使弹性体的势能最小。即对于稳定平衡状态,实 际发生的位移使弹性体总势能取极小值。显然,最小势能原理与虚功 原理完全等价。 n m
虚功原理的矩阵表示
在虚位移发生时,外力在虚位移上的虚功是:
* 式中
U i u i* V i v i* W i w i* U j u *j V j v *j W j w *j
* 是 的转置矩阵。
T
*
F
T
同样,在虚位移发生时,在弹性体单位体积内,应力在虚应变上的虚 功是: * * * * * * * T x x y y z z xy xy yz yz zx zx
27
⑴解析法
有限元计算原理与方法

1.有限元计算原理与方法有限元是将一个连续体结构离散成有限个单元体,这些单元体在节点处相互铰结,把荷载简化到节点上,计算在外荷载作用下各节点的位移,进而计算各单元的应力和应变。
用离散体的解答近似代替原连续体解答,当单元划分得足够密时,它与真实解是接近的。
1.1. 有限元分析的基本理论有限元单元法的基本过程如下:1.1.1.连续体的离散化首先从几何上将分析的工程结构对象离散化为一系列有限个单元组成,相邻单元之间利用单元的节点相互连接而成为一个整体。
单元可采用各种类型,对于三维有限元分析,可采用四面体单元、五西体单元和六面体单元等。
在Plaxis 3D Foundation程序中,土体和桩体主要采用包含6个高斯点的15节点二次楔形体单元,该单元由水平面为6节点的三角形单元和竖直面为四边形8节点组成的,其局部坐标下的节点和应力点分布见图3.1,图3.1 15节点楔形体单元节点和应力点分布界面单元采用包含9个高斯点的8个成对节点四边形单元。
在可能出现应力集中或应力梯度较大的地方,应适当将单元划分得密集些;若连续体只在有限个点上被约束,则应把约束点也取为节点:若有面约束,则应把面约束简化到节点上去,以便对单元组合体施加位移边界条件,进行约束处理;若连续介质体受有集中力和分布荷载,除把集中力作用点取为节点外,应把分布荷载等效地移置到有关节点上去。
最后,还应建立一个适合所有单元的总体坐标系。
由此看来,有限单元法中的结构已不是原有的物体或结构物,而是同样材料的由众多单元以一定方式连接成的离散物体。
因此,用有限元法计算获得的结果只是近似的,单元划分越细且又合理,计算结果精度就越高。
与位移不同,应力和应变是在Gauss 积分点(或应力点)而不是在节点上计算的,而桩的内力则可通过对桩截面进行积分褥到。
1.1.2. 单元位移插值函数的选取在有限元法中,将连续体划分成许多单元,取每个单元的若干节点的位移作为未知量,即{}[u ,v ,w ,...]e T i i i δ=,单元体内任一点的位移为{}[,,]Tf u v w =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.有限元计算原理与方法有限元是将一个连续体结构离散成有限个单元体,这些单元体在节点处相互铰结,把荷载简化到节点上,计算在外荷载作用下各节点的位移,进而计算各单元的应力和应变。
用离散体的解答近似代替原连续体解答,当单元划分得足够密时,它与真实解是接近的。
1.1. 有限元分析的基本理论有限元单元法的基本过程如下:1.1.1.连续体的离散化首先从几何上将分析的工程结构对象离散化为一系列有限个单元组成,相邻单元之间利用单元的节点相互连接而成为一个整体。
单元可采用各种类型,对于三维有限元分析,可采用四面体单元、五西体单元和六面体单元等。
在Plaxis 3D Foundation程序中,土体和桩体主要采用包含6个高斯点的15节点二次楔形体单元,该单元由水平面为6节点的三角形单元和竖直面为四边形8节点组成的,其局部坐标下的节点和应力点分布见图3.1,图3.1 15节点楔形体单元节点和应力点分布界面单元采用包含9个高斯点的8个成对节点四边形单元。
在可能出现应力集中或应力梯度较大的地方,应适当将单元划分得密集些;若连续体只在有限个点上被约束,则应把约束点也取为节点:若有面约束,则应把面约束简化到节点上去,以便对单元组合体施加位移边界条件,进行约束处理;若连续介质体受有集中力和分布荷载,除把集中力作用点取为节点外,应把分布荷载等效地移置到有关节点上去。
最后,还应建立一个适合所有单元的总体坐标系。
由此看来,有限单元法中的结构已不是原有的物体或结构物,而是同样材料的由众多单元以一定方式连接成的离散物体。
因此,用有限元法计算获得的结果只是近似的,单元划分越细且又合理,计算结果精度就越高。
与位移不同,应力和应变是在Gauss 积分点(或应力点)而不是在节点上计算的,而桩的内力则可通过对桩截面进行积分褥到。
1.1.2. 单元位移插值函数的选取在有限元法中,将连续体划分成许多单元,取每个单元的若干节点的位移作为未知量,即{}[u ,v ,w ,...]e Ti i i δ=,单元体内任一点的位移为{}[,,]T f u v w =。
引入位移函数N (x,y,z )表示场变量在单元内的分布形态和变化规律,以便用场变量在节点上的值来描述单元内任一点的场变量。
因此在单元内建立的位移模式为:{}[]{}e f N δ= (3-1)其中:12315[][,,......]N IN IN IN IN =,I 为单位矩阵。
按等参元的特性,局部坐标(,,)ξηζ到整体坐标,,x y z ()的坐标转换也采用与位移插值类似的表达式。
经过坐标变化后子单元与母单元(局部坐标下的规则单元)之间建立一种映射关系。
不管内部单元或边界附近的单元均可选择相同的位移函数,则为它们建立单元特性矩阵的方法是相同的。
因此,对于15节点楔形体单元体内各点位移在整体坐标系,,x y z ()下一般取:151151151(,,)(,,)(,,)i i i i i i i i i u N u v N v w N w ξηζξηζξηζ===⎫=⎪⎪⎪=⎬⎪⎪=⎪⎭∑∑∑32-() 上式中的(,,)i i i u v w 为整体坐标系下节点i 处的位移值,(,,)i N ξηζ为在局部坐标系下节点相应的形函数。
1.1.3. 单元特性分析利用几何方程、本构方程、虚功原理或位能变分方程求解单元节点力与节点位移关系的表达式,即单元刚度矩阵。
根据几何方程可建立单元内的应变矩阵{}{,,,,,}x y z xy yz zx εεεεγγγ=:{}[]{}e B εδ= (3-3)其中1215[][,......]B B B B =,/000/000/[]//00///0/i i i i i i i i i i N x N y N z B N y N x N z N y N z N x ∂∂⎡⎤⎢⎥∂∂⎢⎥⎢⎥∂∂=⎢⎥∂∂∂∂⎢⎥⎢⎥∂∂∂∂⎢⎥∂∂∂∂⎢⎥⎣⎦(34)- 对于小变形线性弹性问题,根据物理方程建立单元内的应力矩阵:{}[]{}[][]{}e D D B σεδ== (3-5)其中,[]B 为几何矩阵,[]D 为弹性矩阵,[]S 为应力矩阵,[][][]S D B =。
根据虚功原理求出单元中的节点力{}e F :{}[]{}e eF k δ= (3-6)其中[]k 为单元的劲度矩阵,[][][][]T e k B D B dxdxdz =⎰⎰⎰{}R 对于整体结构上的任一点 i ,建立平衡方程:{}{}i ie F R =∑ (37)-{}i R 为i 节点上的外荷。
上式表示{}i R 与围绕i 点的各单元在i 点上的节点力之和相平衡。
1.1.4. 总体特性分析对每一个位移未知的节点,都可写出3-7式的方程,利用结构力的平衡条件和边界条件把各个单元按原来的结构重新联接起来,形成分析对象的整体有限元平衡方程组:[]{}{}K R δ= (3-8)其中, 为整体劲度矩阵, ; 为整个结构的节点位移矩阵,为整个结构的节点荷载矩阵,是已知的。
由式(3-8)求出节点位移 ,由式(3-3)、式(3-5)求出各单元的应变和应力。
1.2. 非线性有限元分析非线性现象是在实际的结构分析中经常遇到的问题。
与线性分析相比,非线性分析中荷载与位移之间的关系已不是直线关系,而是曲线关系。
土体的非线性分析一般来说采用非线性的分析方法,选用适当的土体本构系,进行有限元计算。
非线性问题一般有材料非线性和几何非线性两种。
几何非线性即存在大变形,其变化的几何形状可能引起结构的非线性[]k ij ij K k =∑{}δ{}δ响应,即应变与位移的关系不里线性,应变不仅包括位移对坐标的一阶导数,还要包括高阶导数。
在进行小应变或者小变形分析时,假定位移和变形总是足够小(这种假定取决于特定分析要求中的精度等级)可以忽略结构变形对系统刚度的影响,即基于最初几何形状的结构刚度的一次迭代足以计算出分析结果。
随着变形位移增长,一个有限单元的已移动的坐标可以多种方式改变结构的刚度,进行多次迭代来获得一个有效的解,这就是几何非线性。
除了结构大变形引起剐度变化以外。
许多与材料有关的参数同样可以改变结构刚度。
材料的非线性即是材料的应力—应交关系是非线性的。
主要有弹性非线性模型和弹塑性模型两大类。
弹性非线性理论是以弹性理论为基础,在微小的荷载增量范围内,把土看作弹性材料,从一个荷载增量变化到另一个荷载增量,土体的弹性常数发生变化,以考虑非线性;弹塑性模型理论认为土体的变形包括弹性和塑性变形两部分,把弹性理论和塑性理论结合起来建立的本构模型。
土体中的弹塑性本构关系都是用增量形式表示的,因此,计算方法也宜用增量法。
某级荷载增量作用下,各单元的应力状态不同。
有些可能处于弹性区,则刚度矩阵要用弹性矩阵,有些可能产生塑性屈服,则须运用屈服准则、硬化规律和流动法则建立的弹塑性刚度矩阵来代替 。
反映到式(3-5),其中的矩阵 不是常量其随应力或应变改变,由此推导的劲度矩阵 也随应力或变形而变。
对于相适应流动法则,则:[]R ∆[]D []ep D []D []D []K g f =[D]{}{}[D][D ][D]{}[D]{}T ep T f f f f A σσσσ∂∂∂∂=-∂∂+∂∂(38)-式中A 为塑性硬化模量,是硬化参数函数。
因此,不管是材料非线性还是几何非线性,推出的劲度矩阵将随位移而变。
因此,不管是材料非线性还是几何非线性,推出的劲度矩阵将随位移而变。
(3-10)这是位移的非线性方程组。
直接解这样的方程组是困难的,因此简化为一系列的线性问题的解逐步逼近非线性问题的解,非线性问题可以理解为一些线性解进行迭代的结果。
1.3. 有限单元法解比奥固结方程对于土工问题有限元分析可以采用有效应力法、总应力法和准有效应力法三种。
有效应力法严格区分土体中的有效应力与孔隙水压力。
将土体骨架变形与孔隙水的渗透同步考虑,因而比总应力法更真实反映土体自身特性,能更合理计算土体对荷载的响应。
有效应力法有两个未知量,即土体骨架的变形和孔隙水压力。
对于非饱和土还需要增加一个孔隙气压力这个变量。
有效应力法基本上以Biot 动力固结方程为基础,其计算较为复杂,计算工作量也较大。
土体的总应力有限元法实际上与其他结构有限元分析在计算原理上没有大的区别,主要在材料的本构模型的选择上不同,其实质认为土体是一种由土颗粒和孔隙水组成之间的相互关系,将之合成一个整体,共同一个整体,共同研究其整体的应力与变形状态。
总应力法不能反映土体固结作用。
[()]{}{}K R δδ=在有效应力分析中,如果采用与总应力法同样的土性参数并令孔隙水压力为0,则有效应力等于总应力,相应的有效应力法转变为总应力法。
因此,总应力法是有效应力法的一个特例。
在土体材料采用不捧水指标时,总应力法计算出来的是加荷瞬间或短期应力和变形,而采用排水指标进行的总应力分析则得到的是有效应力分析的最终结果,也就是孔压消散完毕,土体固结完成时的应力和交形结果。
在土工问题分析中有时还用总应力和太沙基固结理论相结合的方法来进行有效应力分析(简称准有效应力法),该法是先用总应力法求得应力和变形,然后根据太沙基固结理论考虑孔压的消散以及有效应力和变形随时间的变化。
这种分析法对于二维和三维渗流而已是近似的,对于只有一个方向渗水的固结问题是精确的。
在Plaxis 3D Foundation程序中,进行最终沉降分析时是材料类型为排水指标的总应力法分析,而进行固结有限元沉降分析时采用的是以Biot固结理论为基础的有效应力法.采用有效应力法可以较为全面地得到桩土的应力、变形和孔压变化的情况。
1.3.1.比奥固结理论太沙基固结理论只在一维情况下是精确的,对二维、三维问题并不精确。
太沙基一伦杜立克理论(扩散方程)将应力应变关系视为常量(E=常数)的同时,假设三个主应力(总应力)之和不变,不满足变形协调条件。
比奥理论从较严格的固结机理出发推导了准确反映孔隙水压力消散与土骨架变形相互关系的三维固结方程。
该理论将水流连续条件与弹性理论结合求解了土体受力后的应力、应变、孔隙水压力的生成和消散过程,一般称为“真三维固结理论”。
两理论均假设土骨架是线弹性体,变形为小变形,土颗粒与孔隙水均不可压缩,孔隙水渗流服从达西定律。
在土工数值计算中,可使用非线性弹塑性模型代替线弹性模型与比奥固结理论耦合求解。
比奥固结理论是严格按照弹性理论,使饱和粘土在固结过程中必须满足应力平衡方程、几何方程及虎克定律,因此对于三维固结问题可导出如下三个平衡方程:(3-11)根据饱和土的连续性在一个元素体中,在一定的时间内单元土体积的压缩量等于流进和流出该单元体的流量变化之和,并引进达西定律,从而推导如下连续方程:(3-12)式(3一11)和式(3一12)联立就是比奥固结方程。