大地测量学基础第一章
注册测绘师讲义第一章 大地测量 第一节教案

第一章大地测量第一节大地测量概论主要内容(基准问题):1、坐标系统;2、高程系统;3、深度基准4、重力基准;5、时间基准知识点1:参心坐标系统:根据其原点位置不同,分为地心坐标系统和参心坐标系统。
大地测量常数是指与地球一起旋转且和地球表面最佳吻合的旋旋转椭球(即地球椭球)几何参数和物理参数。
54坐标系、80坐标系所采用参考椭球、大地原点;54坐标系:克拉索夫斯基椭球,前苏联的普尔科沃;80坐标系:1975年国际椭球体;陕西西安;三个概念:大地线、子午圈、卯酉圈;高斯投影、兰伯特投影;知识点2:地心坐标系国际地面参考框架(itrf)是国际地面参考系统(itrs)的具体实现。
它以甚长基线干涉测量(vlbi)、卫星激光测距(slr)、激光测月(llr)、gps和卫星多普勒定轨定位(doris)等空间大地测量技术构成全球观测网点,经数据处理,得到itrf点(地面观测点)站坐标和速度场等。
2000国家大地控制网是定义在itf's 2000地心坐标系统中的区域性地心坐标框架。
区域性地心坐标框架一般由三级构成。
第一级为连续运行站构成的动态地心坐标框架,它是区域性地心坐标框架的主控制;第二级是与连续运行站定期联测的大地控制点构成的准动态地心坐标框架;第三级是加密大地控制点.(itrf)已成为国际公认的应用最广泛、精度最高的地心坐标框架。
知识点3:高程系统:1985国家高程基准是我国现采用的高程基准,青岛水准原点高程为72. 260 4 m。
水准原点网由主点-----原点、参考点、附点共6个点组成我国高程系统采用正常高系统,正常高的起算面是似大地水准面。
正常高:由地面点沿垂线向下至似大地水准面之间的距离,就是该点的正常高,即该点的高程。
正高:沿重力(垂)到大地水准面的距离大地高:沿法线到椭球面的距离n为大地水准面差距,为高程异常(参考椭球面,法线)存在水准面不平行性,需要进行水准概算;知识点4:例题:gps点大地高h,正常高h和高程异常ξ三者之间的正确关系是(a)。
大地测量学基础(第1章 绪论New)

发现活跃、综合性强:
范围:全球、深空 学科:地球物理、地质学、空间科学、天文学、大气科学、 海洋学; 手段:测绘仪器、计算机
测绘科学技术的基础 :是测绘科学技术进步的标志
3
第一章 绪 论
§1大地测量学的定义和基本内容 1.1大地测量学的定义
大地测量学 是指在一定的时间与空间参考系中,测量和描绘地球形状及 其重力场并监测其变化,为人类活动提供关于地球的空间信息的 一门学科。 经典大地测量:地球刚体不变、均匀旋转的球体或椭球体; 范围小。 现代大地测量:空间测绘技术(人造地球卫星、空间探测器), 空间大地测量为特征,范围大。
3) 重力测量有了进展:1673年荷兰的惠更斯
(C.Huygens)提出用摆进行重力测量的原理;设计和生 产了用于绝对重力测量以及用于相对重力测量的便携 式摆仪。极大地推动了重力测量的发展。
15
第三阶段:大地水准面阶段
从19世纪下半叶至20世纪40年代,人们将对椭球的认 识发展到是大地水准面包围的大地体。 几何大地测量学进展: 天文大地网的布设有了重大发展。全球三大天文大地 网的建立(1800-1900印度,一等三角网2万公里,平 均边长45公里;1911-1935美国一等7万公里;19241950苏联,7万多公里) 因瓦基线尺出现,平行玻璃板测微器的水准仪及因瓦 水准尺使用。
13
•
物理大地测量标志性成就:
1) 克莱罗定理的提出:法国学者克莱罗(A.C.Clairaut) 假设地球是由许多密度不同的均匀物质层圈组成的椭 球体,这些椭球面都是重力等位面(即水准面)。该椭 球面上纬度φ 的一点的重力加速度按下式计算:
e (1 sin )
2
中国矿业大学大地测量学基础课件

§1.1 大地测量学的定义
大地测量学与普通测量学的区别: (1)精度等级高。
(2)测量范围广。
(3)普通测量学更侧重于如何测绘地形图以及 进行一般工程的施工测量。大地测量学侧重于 如何建立大地坐标系、建立大地控制网并精确 测定控制网点的坐标。
1、实用大地测量学:研究建立大地控制网的
理论与方法,介绍角度测量、边长测量和高 程测量的原理与观测方法、作业程序、以及 测量成果的质量检核,提供一系列地面点的 平面和高程成果
2、椭球大地测量学:研究参考椭球的建立以
及椭球面上处理大地测量观测成果的各种理 论与方法,提供大地控制点的大地坐标和平 面坐标;
——作为地学基础学科: ——作为应用地学学科:
§1.1 大地测量学的定义
主要理论、技术与方法: ——天文测量 ——三角测量 ——导线测量 ——卫星大地测量 ——水准测量 ——重力测量 ——椭球大地测量 ——地球形状理论 ——测量平差 。。。。。。。。
§1.1 大地测量学的定义
普通测量学(或称测量学)是研究地 球表面较小区域内测绘工作的基本理论、 技术、方法和应用的学科。
4、大地控制网的建立(包括国家大地控制网、 工程控制网。形式有三角网、导线网、高 程网、GPS网等);
5、大地测量数据处理(概算与平差计算)。
本章纲要
一、大地测量学的定义 二、大地测量学的基本任务和作用(重点) 三、大地测量学的主要研究内容(重点) 四、大地测量的发展历程 五、现代大地测量技术简介
GJ01 GJ02
GJ03
1
JZ05
GJ59
GJ04
长大大地测量学基础第一章_绪论

绪论 >大地测量学研究的基本内容 大地测量学研究的基本内容
大地测量学研究的基本内容
• 几何大地测量学 • 物理大地测量学 • 卫星大地测量学
辽宁工程技术大学 测绘学院
§1.4大地测量学发展与展望 大地测量学发展与展望
辽宁工程技术大学 测绘学院
绪论 >大地测量学发展与展望 大地测量学发展与展望
大地测量学的发展简史
大地测量学基础
隋心 辽宁工程技术大学 测绘学院
问题? 问题?
•测量外业的基准面与基准线是什么?测量内 测量外业的基准面与基准线是什么? 测量外业的基准面与基准线是什么 业计算的基准面与基准线是什么? 业计算的基准面与基准线是什么? •我们通常以什么样的形式来表示空间点的位 我们通常以什么样的形式来表示空间点的位 测量的坐标系有哪些? 置?测量的坐标系有哪些?我国目前所采用的 坐标系统有哪些?各坐标系统如何进行转换? 坐标系统有哪些?各坐标系统如何进行转换? •我们所测的高程属于哪一高程系统?高程系 我们所测的高程属于哪一高程系统? 我们所测的高程属于哪一高程系统 统有哪些? 统有哪些?
辽宁工程技术大学 测绘学院
辽宁工程技术大学 测绘学院
绪论 >大地测量学发展与展望 大地测量学发展与展望
大地测量学的发展简史( 大地测量学的发展简史(续)
第三阶段: 第三阶段:大地水准面阶段
世纪下半叶至20世纪 年代, 从19世纪下半叶至 世纪 年代,人们将对椭球的认识发 世纪下半叶至 世纪40年代 展到是大地水准面包围的大地体。 展到是大地水准面包围的大地体。
辽宁工程技术大学 测绘学院
课程主要内容
•掌握大地测量的任务和内容,地球形状和坐标系等 掌握大地测量的任务和内容, 掌握大地测量的任务和内容 •掌握平面控制网的测量方法、布设原则 掌握平面控制网的测量方法、 掌握平面控制网的测量方法 •了解我国天文大地网的布设概况 了解我国天文大地网的布设概况 •了解国家水准网的布设 了解国家水准网的布设 •了解 •了解GPS在测绘工作中的应用 了解GPS在测绘工作中的应用 •掌握精密水准测量及外业计算、三角高程测量 掌握精密水准测量及外业计算、 掌握精密水准测量及外业计算 •了解高程系统概念 了解高程系统概念 •了解地球椭球的基本元素,坐标及相互关系 了解地球椭球的基本元素, 了解地球椭球的基本元素 •掌握椭球面上的各种曲率半径及弧长计算 掌握椭球面上的各种曲率半径及弧长计算 •了解相对法截线和大地线的概念 了解相对法截线和大地线的概念
《大地测量学基础》课件

1
地球自转是指地球围绕自己的轴线旋转的运动, 其周期为24小时,即一天。
2
地球参考系是大地测量的基准,包括国际地球参 考系(ITRS)和世界时(UTC)等。
3
地球自转对大地测量具有重要的意义,因为地球 自转会导致天文经度变化,从而影响大地测量结 果。
大地水准面和地球椭球
大地水准面是指与平均海水面重合且与地球表面大致相吻合的虚拟静止水准面。
合成孔径雷达干涉测量技术
01
合成孔径雷达干涉测量技术是一种利用雷达信号干涉原理获取 地球表面形变的测量技术。
02
该技术在地壳形变监测、地震预报、冰川运动监测等领域具有
广泛的应用前景。
合成孔径雷达干涉测量技术具有全天候、全天时、高精度等优
03
点,但也存在数据处理复杂、对信号源要求高等挑战。
人工智能和大数据在大地测量中的应用
为地球第一偏心率。
地球重力场
地球重力场是由地球质量分布不均匀 引起的引力场,其特点是随地理位置 和时间变化。
地球重力场的研究方法包括大地测量 、卫星轨道测量和地球物理等方法。
地球重力场对大地测量具有重要的意 义,因为大地水准面是大地测量中重 要的参考面,而大地水准面的变化与 地球重力场密切相关。
地球自转和地球参考系
三角测量和导线测量
三角测量
利用三角形原理进行距离和角度的测 量,主要用于建立大地控制网和精密 测量。
导线测量
通过布设导线,逐段测量导线的长度 、角度等参数,以确定点的平面位置 。
GPS定位技术
GPS定位原理
利用卫星信号接收机接收多颗卫星信号,通过测距交会原理确定接收机所在位置。
GPS在大地测量中的应用
海洋大地测量的方法
大地测量学

© 2000 McGraw-Hill
Introduction to Object-Oriented Programming with Java--Wu
Chapter 0 - 7
§1.1 大地测量学的定义和作用
2)要有一个精确的全球重力场模型,用来描述对飞行器 的约束。 重力场模型中位展开系数是卫星轨道动力方程中的 决定性参数。 在国防中的这种保障作用体现在: 从古代战争到现代战争,以及未来战争,都需要军事测 绘做保障,1)超前储备保障; 2)动态实时保障。 例如,战争区域中的电子地图,数字地图,军事目标的 三维坐标是现代战争中不可缺少的测绘文件,而这 些军事测绘资料都离不开大地测量手段取得。 4、在当代地球科学研究中的地位越来越重要。
© 2000 McGraw-Hill
Introduction to Object-Oriented Programming with Java--Wu
Chapter 0 - 8
§1.1 大地测量学的定义和作用
和重力测 块边界 用卫星测高技术SLR和重力测量数据测定海底板块边界 高技术 和重力 量数据测定海底板块边 分布情况,监测海水面变 分布情况,监测海水面变化,以高分辨率测定海底地形。 海水面 以高分辨率测定海底地形。 利用VLBI及SLR能以 及 能以1mm/秒的分辨率精确地测定板块 秒的分辨率精确地测 利用 能以 秒的分辨率精确地 定板块 相对运动,监测地壳运动,为解释板块运动、断裂、地震 监测地壳运动 地壳运 断裂、 活动提供科学依据。 提供科学依据。 总之,大地测量学是测绘科学的各个分支学科(包括工 大地测量学是测绘科学的各个分支学科( 测绘科学的各个分支学科 程测量、海洋测绘、矿山测量、航测、地图制图及GPS等) 海洋测绘、 测绘 等 的基础学科。 的基础学科。因为大地测量学的基础理论、手段和方法 大地测量学的基础 为这些测绘学科提供了先决条件。 为这些测绘学科提供了先决条件。 学科提供研究全球或相当大范围内的地球, 各个测 不相互平行, 各个测站铅垂线不相互平行,同时 及地球重力场及形状, 顾及地球重力场及形状,因为地球 重力场对研究地球形状, 场对研究地球形状 重力场对研究地球形状,对高精度 量及数据处理有着不可忽视 测量及数据处理有着不可忽视的作 用和影响。 用和影响。
大地测量学第一章绪论

六、大地测量学的发展简史
第一阶段:地球圆球阶段,从远古至17世纪,人们 用天文方法得到地面上同一子午线上两点的纬度 差,用大地法得到对应的子午圈弧长,从而推得 地球半径(弧度测量 )。
公元前3世纪,亚历山大学者埃拉托色尼进行了弧度测量, 估算出地球半径(与现代值大约差100km)
用这种方法解决地球大小问题分为两种测量:
物理大地测量标志性成就:
2) 重力位函数的提出:为了确定重力与地球形状的关系, 法国的勒让德提出了位函数的概念。所谓位函数,即是 有这种性质的函数:在一个参考坐标系中,引力位对被 吸引点三个坐标方向的一阶导数,等于引力在该方向上 的分力。研究地球形状可借助于研究等位面。因此,位 函数把地球形状和重力场紧密地联系在一起。
5q
q 2a 1
2
当 90时 ,可 得 重 力 扁 率 :p ee
e
288
q为赤道上的离心力与赤道上重力加速度之比,α为椭球扁率
①同一水准面上的重力值随纬度变化而变化; ②同一水准面上赤道上重力值有最小值,两极处有最大值; ③通过重力测量可以推求地球的大小。
• 几何大地测量学
• 物理大地测量学 • 空间大地测量学 (一)几何大地测量学(即天文大地测量学)
• 基本任务:是确定地球的形状和大小及确定地面 点的几何位置。
• 主要内容:国家大地测量控制网(包括平面控制网 和高程控制网)建立的基本原理和方法,精密角度 测量,距离测量,水准测量;地球椭球数学性质, 椭球面上测量计算,椭球数学投影变换以及地球 椭球几何参数的数学模型等。
从19世纪下半叶至20世纪40年代,人们将对椭球 的认识发展到是大地水准面包围的大地体。
几何大地测量学在这阶段的进展主要体现在以下几 方面:
大地测量学基础

大地测量学基础:《大地测量学基础》是2010年5月1日武汉大学出版社出版的图书,作者是孔祥元。
图书简介:该书是“十一五”国家级规划教材,也是国家精品课程教材。
本教材严格按照教育部批准的“十一五”国家级规划教材立项要求和全国高等学校测绘学科教学指导委员会以及武汉大学的具体要求进行编写,是全国高等学校测绘工程专业本科教学用教材,也可供从事测绘工程专业及相关专业的科技人员、管理人员及研究生等参考。
图书目录:序第二版前言前言第1章绪论1.1 大地测量学的定义和作用1.1.1 大地测量学的定义1.1.2 大地测量学的地位和作用1.2 大地测量学的基本体系和内容1.2.1 大地测量学的基本体系1.2.2 大地测量学的基本内容1.2.3 大地测量学同其他学科的关系1.3 大地测量学的发展简史及展望1.3.1 大地测量学的发展简史1.3.2 大地测量的展望第2章坐标系统与时间系统2.1 地球的运转2.1.1 地球绕太阳公转2.1.2 地球的自转2.2 时间系统2.2.1 恒星时(ST)2.2.2 世界时(UT)2.2.3 历书时(ET)与力学时(DT)2.2.4 原子时(AT)2.2.5 协调世界时(UTC)2.2.6 卫星定位系统时间2.3 坐标系统2.3.1 基本概念2.3.2 惯性坐标系(ClS)与协议天球坐标系2.3.3 地固坐标系2.3.4 坐标系换算第3章地球重力场及地球形状的基本理论3.1 地球及其运动的基本概念3.1.1 地球概说3.1.2 地球运动概说3.1.3 地球基本参数:3.2 地球重力场的基本原理3.2.1 引力与离心力3.2.2 引力位和离心力位3.2.3 重力位3.2.4 地球的正常重力位和正常重力3.2.5 正常椭球和水准椭球,总的地球椭球和参考椭球3.3 高程系统3.3.1 一般说明3.3.2 正高系统3.3.3 正常高系统3.3.4 力高和地区力高高程系统3.3.5 国家高程基准3.4 关于测定垂线偏差和大地水准面差距的基本概念3.4.1 关于测定垂线偏差的基本概念3.4.2 关于测定大地水准面差距的基本概念3.5 关于确定地球形状的基本概念3.5.1 天文大地测量方法3.5.2 重力测量方法3.5.3 空间大地测量方法第4章地球椭球及其数学投影变换的基本理论4.1 地球椭球的基本几何参数及其相互关系4.1.1 地球椭球的基本几何参数4.1.2 地球椭球参数间的相互关系4.2 椭球面上的常用坐标系及其相互关系4.2.1 各种坐标系的建立4.2.2 各坐标系间的关系4.2.3 站心地平坐标系4.3 椭球面上的几种曲率半径4.3.1 子午圈曲率半径4.3.2 卯酉圈曲率半径4.3.3 主曲率半径的计算4.3.4 任意法截弧的曲率半径4.3.5 平均曲率半径4.3.6 M,N,R的关系4.4 椭球面上的弧长计算4.4.1 子午线弧长计算公式4.4.2 由子午线弧长求大地纬度4.4.3 平行圈弧长公式4.4.4 子午线弧长和平行圈弧长变化的比较4.4.5 椭球面梯形图幅面积的计算4.5 大地线4.5.1 相对法截线4.5.2 大地线的定义和性质4.5.3 大地线的微分方程和克莱劳方程4.6 将地面观测值归算至椭球面4.6.1 将地面观测的水平方向归算至椭球面4.6.2 将地面观测的长度归算至椭球面4.7 大地测量主题解算概述4.7.1 大地主题解算的一般说明4.7.2 勒让德级数式4.7.3 高斯平均引数正算公式4.7.4 高斯平均引数反算公式4.7.5 白塞尔大地主题解算方法4.8 地图数学投影变换的基本概念4.8.1 地图数学投影变换的意义和投影方程4.8.2 地图投影的变形4.8.3 地图投影的分类4.8.4 高斯投影简要说明4.9 高斯平面直角坐标系4.9.1 高斯投影概述4.9.2 正形投影的一般条件4.9.3 高斯投影坐标正反算公式4.9.4 高斯投影坐标计算的实用公式及算例4.9.5 平面子午线收敛角公式4.9.6 方向改化公式4.9.7 距离改化公式4.9.8 高斯投影的邻带坐标换算4.10通用横轴墨卡托投影和高斯投影族的概念4.10.1 通用横轴墨卡托投影概念4.10.2 高斯投影族的概念4.11兰勃脱投影概述4.11.1 兰勃脱投影基本概念4.11.2 兰勃脱投影坐标正、反算公式4.11.3 兰勃脱投影长度比、投影带划分及应用第5章大地测量基本技术与方法5.1 国家平面大地控制网建立的基本原理5.1.1 建立国家平面大地控制网的方法5.1.2 建立国家平面大地控制网的基本原则5.1.3 国家平面大地控制网的布设方案5.1.4 大地控制网优化设计简介5.2 国家高程控制网建立的基本原理5.2.1 国家高程控制网的布设原则5.2.2 国家水准网的布设方案及精度要求5.2.3 水准路线的设计、选点和埋石5.2.4 水准路线上的重力测量5.2.5 我国国家水准网的布设概况5.3 工程测量控制网建立的基本原理5.3.1 工程泓量控制网的分类5.3.2 工程平面控制网的布设原则5.3.3 工程平面控制网的布设方案5.3.4 工程高程控制网的布设5.4 大地测量仪器5.4.1 精密测角仪器——经纬仪5.4.2 电磁波测距仪5.4.3 全站仪5.4.4 GPS接收机5.4.5 TPS和GPS的集成——徕卡系统1200-超站仪(system1200-SmartStation5.4.6 精密水准测量的仪器——水准仪5.5 电磁波在大气中的传播5.5.1 一般概念5.5.2 电磁波在大气中的衰减5.5.3 电磁波的传播速度5.5.4 电磁波的波道弯曲5.6 精密角度测量方法5.6.1 精密测角的误差来源及影响5.6.2 精密测角的一般原则5.6.3 方向观测法5.6.4 分组方向观测法5.6.5 归心改正5.7 精密的电磁波测距方法5.7.1 电磁波测距基本原理5.7.2 N值解算的一般原理5.7.3 距离观测值的改正……第6章深空在地测量简介主要参考文献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
物理大地测量学: 物理大地测量学:即理论大地测量学 基本任务:是用物理方法(重力测量 重力测量)确定地球形状 基本任务:是用物理方法 重力测量 确定地球形状 及其外部重力场。 及其外部重力场。 主要内容:包括位理论,地球重力场, 主要内容:包括位理论,地球重力场,重力测量 及其归算,推求地球形状及外部重力场的理论与方法。 及其归算,推求地球形状及外部重力场的理论与方法。 空间大地测量学: 空间大地测量学: 主要研究以人造地球卫星及其他空间探测器为代 表的空间大地测量的理论、技术与方法。 表的空间大地测量的理论、技术与方法。
经典大地测量:地球刚体不变、均匀旋转的球体或椭球体;范围小。 经典大地测量:地球刚体不变、均匀旋转的球体或椭球体;范围小。 现代大地测量:空间测绘技术(人造地球卫星 空间探测器), 人造地球卫星、 现代大地测量:空间测绘技术 人造地球卫星、空间探测器 ,空间大 地测量为特征,范围大。 地测量为特征,范围大。
1
1.2大地测量学的作用 大地测量学的作用
大地测量学是一切测绘科学技术的基础, 大地测量学是一切测绘科学技术的基础,在国民经济 建设和社会发展中发挥着决定性的基础保证作用。 建设和社会发展中发挥着决定性的基础保证作用。如 交通运输、工程建设、土地管理、 交通运输、工程建设、土地管理、城市建设等 大地测量学在防灾,减灾,救灾及环境监测、 大地测量学在防灾,减灾,救灾及环境监测、评价与 保护中发挥着特殊作用。如地震、山体滑坡、 保护中发挥着特殊作用。如地震、山体滑坡、交通事 故等的监测与救援。 故等的监测与救援。 大地测量是发展空间技术和国防建设的重要保障。 大地测量是发展空间技术和国防建设的重要保障。如: 卫星、导弹、航天飞机、宇宙探测器等发射、制导、 卫星、导弹、航天飞机、宇宙探测器等发射、制导、 跟踪、返回工作都需要大地测量作保证。 跟踪、返回工作都需要大地测量作保证。
6
§3大地测量学发展简史及展望 大地测量学发展简史及展望 3.1大地测量学的发展简史 大地测量学的发展简史 第一阶段: 第一阶段:地球圆球阶段
从远古至17世纪, 从远古至 世纪,人们用天文方法得到地面上同一 世纪 子午线上两点的纬度差, 子午线上两点的纬度差,用大地法得到对应的子午圈 弧长,从而推得地球半径( 弧长,从而推得地球半径(弧度测量 )
γ ϕ = γ e (1 + β ⋅ sin 2 ϕ )
5 β = q − α 2
ω 2a q = γ e
10
重力位函数的提出:为了确定重力与地球形状的关系, 2) 重力位函数的提出:为了确定重力与地球形状的关系, 法国的勒让德提出了位函数的概念。所谓位函数, 法国的勒让德提出了位函数的概念。所谓位函数,即 是有这种性质的函数:在一个参考坐标系中, 是有这种性质的函数:在一个参考坐标系中,引力位 对被吸引点三个坐标方向的一阶导数等于引力在该方 向上的分力。研究地球形状可借助于研究等位面。 向上的分力。研究地球形状可借助于研究等位面。因 位函数把地球形状和重力场紧密地联系在一起。 此,位函数把地球形状和重力场紧密地联系在一起。 地壳均衡学说的提出:英国的普拉特(J.H.Pratt) (J.H.Pratt)和艾 3) 地壳均衡学说的提出:英国的普拉特(J.H.Pratt)和艾 (G.B.Airy)几乎同时提出地壳均衡学说 几乎同时提出地壳均衡学说, 黎(G.B.Airy)几乎同时提出地壳均衡学说,根据地壳 均衡学说可导出均衡重力异常以用于重力归算。 重力测量有了进展。 4) 重力测量有了进展。设计和生产了用于绝对重力测量 以及用于相对重力测量的便携式摆仪。 以及用于相对重力测量的便携式摆仪。极大地推动了 重力测量的发展 的发展。 重力测量的发展。
12
•
物理大地测量在这阶段的进展: 物理大地测量在这阶段的进展:
1.大地测量边值问题理论的提出: 大地测量边值问题理论的提出: 大地测量边值问题理论的提出 英国学者斯托克司(G.G.Stokes) (G.G.Stokes)把真正的地球重 英国学者斯托克司(G.G.Stokes)把真正的地球重 力位分为正常重力位和扰动位两部分, 力位分为正常重力位和扰动位两部分,实际的重力分 为正常重力和重力异常两部分, 为正常重力和重力异常两部分,在某些假定条件下进 行简化,通过重力异常的积分, 行简化,通过重力异常的积分,提出了以大地水准面 为边界面的扰动位计算公式和大地水准面起伏公式。 为边界面的扰动位计算公式和大地水准面起伏公式。 后来,荷兰学者维宁·曼尼兹 曼尼兹(F.A.Vening Meinesz)根 后来,荷兰学者维宁 曼尼兹 根 据斯托克司公式推出了以大地水准面为参考面的垂线 偏差公式。 偏差公式。 2.提出了新的椭球参数 提出了新的椭球参数: 2.提出了新的椭球参数: 赫尔默特椭球、海福特椭球、 赫尔默特椭球、海福特椭球、克拉索夫斯基椭球地测量学基本体系和内容 2.1大地测量学的基本体系 大地测量学的基本体系
应用大地测量、椭球大地测量、天文大地测量、 应用大地测量、椭球大地测量、天文大地测量、大地 重力测量、测量平差等;新分支: 海样大地测量、 重力测量、测量平差等;新分支: 海样大地测量、行星大 地测量、卫星大地测量、地球动力学、惯性大地测量。 地测量、卫星大地测量、地球动力学、惯性大地测量。
4
2.2 大地测量学的基本内容
确定地球形状及外部重力场及其随时间的变化, 确定地球形状及外部重力场及其随时间的变化,建立 统一的大地测量坐标系,研究地壳形变(包括垂直升降及 统一的大地测量坐标系,研究地壳形变 包括垂直升降及 水平位移),测定极移以及海洋水面地形及其变化等。 水平位移 ,测定极移以及海洋水面地形及其变化等。 研究月球及太阳系行星的形状及重力场。 研究月球及太阳系行星的形状及重力场。 建立和维持国家和全球的天文大地水平控制网、工程 建立和维持国家和全球的天文大地水平控制网、 控制网和精密水准网以及海洋大地控制网, 控制网和精密水准网以及海洋大地控制网,以满足国民 经济和国防建设的需要。 经济和国防建设的需要。 研究为获得高精度测量成果的仪器和方法等。 研究为获得高精度测量成果的仪器和方法等。研究地 球表面向椭球面或平面的投影数学变换及有关大地测量 计算。 计算。
5
研究大规模、高精度和多类别的地面网、 研究大规模 、 高精度和多类别的地面网 、 空间网及其 联合网的数据处理的理论和方法, 联合网的数据处理的理论和方法 , 测量数据库建立及 应用等。 应用等。
现代大地测量的特征: 现代大地测量的特征:
研究范围大(全球:如地球两极、海洋) ⑴ 研究范围大(全球:如地球两极、海洋) 从静态到动态,从地球内部结构到动力过程。 ⑵ 从静态到动态,从地球内部结构到动力过程。 观测精度越高,相对精度达到10 ⑶ 观测精度越高 , 相对精度达到 -8~10-9 , 绝对精 度可到达毫米。 度可到达毫米。 测量与数据处理周期短,但数据处理越来越复杂。 ⑷ 测量与数据处理周期短 , 但数据处理越来越复杂 。
8
几何大地测量标志性成果: 几何大地测量标志性成果:
长度单位的建立: 1) 长度单位的建立:子午圈弧长的四千万分之一作为长 度单位,称为1m 1m。 度单位,称为1m。 最小二乘法的提出:法国的勒让德(A.M.Legendre) (A.M.Legendre), 2) 最小二乘法的提出:法国的勒让德(A.M.Legendre), 德国的高斯(C.F.Gauss) (C.F.Gauss)。 德国的高斯(C.F.Gauss)。 椭球大地测量学的形成: 3) 椭球大地测量学的形成:解决了椭球数学性质与测量 计算,正形投影方法。在这个领域,高斯、 计算,正形投影方法。在这个领域,高斯、勒让德及 贝塞尔(Bessel)作出了巨大贡献 作出了巨大贡献。 贝塞尔(Bessel)作出了巨大贡献。 弧度测量大规模展开。在这期间主要有以英、 4) 弧度测量大规模展开。在这期间主要有以英、法、西 班牙为代表的西欧弧度测量,以及德国、俄国、 班牙为代表的西欧弧度测量,以及德国、俄国、美国 等为代表的三角测量。 等为代表的三角测量。 推算了不同的地球椭球参数。如贝赛尔、 5) 推算了不同的地球椭球参数。如贝赛尔、克拉克椭球 参数。 参数。
11
第三阶段: 第三阶段:大地水准面阶段
世纪下半叶至20世纪 年代, 从19世纪下半叶至 世纪 年代,人们将对椭球的认 世纪下半叶至 世纪40年代 识发展到是大地水准面包围的大地体。 识发展到是大地水准面包围的大地体。 几何大地测量学进展: 几何大地测量学进展: 天文大地网的布设有了重大发展。 天文大地网的布设有了重大发展。全球三大天文大地 网的建立( 印度, 万公里, 网的建立(1800-1900印度,一等三角网 万公里,平 - 印度 一等三角网2万公里 均边长45公里 公里; 美国一等7万公里 均边长 公里;1911-1935美国一等 万公里;1924- 美国一等 万公里; 1950苏联,7万多公里 苏联, 万多公里 万多公里) 苏联 因瓦基线尺出现, 因瓦基线尺出现,平行玻璃板测微器的水准仪及因瓦 水准尺使用。 水准尺使用。
第一章 绪 论
§1大地测量学的定义和作用 大地测量学的定义和作用 1.1大地测量学的定义 大地测量学的定义
大地测量学
是指在一定的时间与空间参考系中, 是指在一定的时间与空间参考系中,测量和描绘地球形状及 其重力场并监测其变化, 其重力场并监测其变化,为人类活动提供关于地球的空间信息的 一门学科。 一门学科。
9
•
物理大地测量标志性成就: 物理大地测量标志性成就:
克莱罗定理的提出:法国学者克莱罗(A.C.Clairaut) 1) 克莱罗定理的提出:法国学者克莱罗(A.C.Clairaut) 假设地球是由许多密度不同的均匀物质层圈组成的椭 球体,这些椭球面都是重力等位面(即水准面) 球体,这些椭球面都是重力等位面(即水准面)。该椭 球面上纬度φ的一点的重力加速度按下式计算: 球面上纬度φ的一点的重力加速度按下式计算:
第二阶段: 第二阶段:地球椭球阶段
世纪至19世纪下半叶 年期间, 从17世纪至 世纪下半叶,在这将近 世纪至 世纪下半叶,在这将近200年期间,人 年期间 们把地球作为圆球的认识推进到向两极略扁的椭球。 们把地球作为圆球的认识推进到向两极略扁的椭球。