实验目的:了解SOR法迭代矩阵谱半径和迭代参数的关系

合集下载

迭代法解线性方程组数值分析实验报告

迭代法解线性方程组数值分析实验报告

迭代法解线性方程组数值分析实验报告一、实验目的本次实验旨在深入研究和掌握迭代法求解线性方程组的基本原理和方法,并通过数值实验分析其性能和特点。

具体目标包括:1、理解迭代法的基本思想和迭代公式的推导过程。

2、掌握雅克比(Jacobi)迭代法、高斯赛德尔(GaussSeidel)迭代法和超松弛(SOR)迭代法的算法实现。

3、通过实验比较不同迭代法在求解不同类型线性方程组时的收敛速度和精度。

4、分析迭代法的收敛性条件和影响收敛速度的因素。

二、实验原理1、线性方程组的一般形式对于线性方程组$Ax = b$,其中$A$ 是$n×n$ 的系数矩阵,$x$ 是$n$ 维未知向量,$b$ 是$n$ 维常向量。

2、迭代法的基本思想迭代法是从一个初始向量$x^{(0)}$出发,按照某种迭代公式逐步生成近似解序列$\{x^{(k)}\}$,当迭代次数$k$ 足够大时,$x^{(k)}$逼近方程组的精确解。

3、雅克比迭代法将系数矩阵$A$ 分解为$A = D L U$,其中$D$ 是对角矩阵,$L$ 和$U$ 分别是下三角矩阵和上三角矩阵。

雅克比迭代公式为:$x^{(k+1)}= D^{-1}(b +(L + U)x^{(k)})$。

4、高斯赛德尔迭代法在雅克比迭代法的基础上,每次计算新的分量时立即使用刚得到的最新值,迭代公式为:$x_i^{(k+1)}=(b_i \sum_{j=1}^{i-1}a_{ij}x_j^{(k+1)}\sum_{j=i+1}^{n}a_{ij}x_j^{(k)})/a_{ii}$。

5、超松弛迭代法在高斯赛德尔迭代法的基础上引入松弛因子$\omega$,迭代公式为:$x_i^{(k+1)}= x_i^{(k)}+\omega((b_i \sum_{j=1}^{i-1}a_{ij}x_j^{(k+1)}\sum_{j=i}^{n}a_{ij}x_j^{(k)})/ a_{ii} x_i^{(k)})$。

线性方程组的J-迭代,GS-迭代,SOR-迭代,SSOR-迭代方法

线性方程组的J-迭代,GS-迭代,SOR-迭代,SSOR-迭代方法

西京学院数学软件实验任务书课程名称数学软件实验班级数0901学号0912020119姓名王震实验课题雅克比迭代、高斯—赛德尔迭代、超松弛迭代实验目的熟悉雅克比迭代、高斯—赛德尔迭代、超松弛迭代实验要求运用Matlab/C/C++/Java/Maple/Mathematica等其中一种语言完成实验内容雅克比迭代法高斯—赛德尔迭代法、超松弛迭代法成绩教师【实验课题】雅克比迭代、高斯—赛德尔迭代、超松弛迭代【实验目的】学习和掌握线性代数方程组的雅克比迭代、高斯—赛德尔迭代、超松弛迭代法,并且能够熟练运用这些迭代法对线性方程组进行求解。

【实验内容】1、问题重述:对于线性方程组,即:A b X = (1),1111221n 12112222n 21122nn n n n n n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 其中,111212122111 0 - - 0 - 0 0 () - - - 0 n ij n nn n nn nn a a a a a a a a a a ⨯--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥A ==--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 0n D L U ⎡⎤⎢⎥⎢⎥≡--⎢⎥⎢⎥⎣⎦()1,n b b b T= 如何运用雅克比迭代、高斯—赛德尔迭代、超松弛迭代法对线性方程组进行求解。

2、方法原理:2.1雅克比迭代迭代思想:首先通过构造形如的等式,然后给定一个初值A b X =()x f x =,再通过进行迭代。

(0)(0)(0)(0)12(,,)n x x x X = (1)()()k k f +X =X step1 :对(1)相应第行中的用其它元素表示为:i i x11111121111122,12211111()()11()()11()()n nj j j j j j n ni i ij j i j j j i j i j ii n nn n nj j n n nj j j j nn nn x b a x x b a x a a x b a x x b a x a a x b a x x b a x a a ===≠=-==⎧=-=+-⎪⎪⎪⎪⎨=-=+-⎪⎪⎪=-=+-⎪⎩∑∑∑∑∑∑ 即:()D b L U X =-+XStep 2 :进行迭代,,(0)(0)(0)(0)12(1)11()(,,)()n k k x x x D b D L U +--⎧X =⎨X =-+X ⎩0,1,2k = 取它的判断条件为小于一个确定的误差值,跳出循环。

实验一线性方程组迭代法实验

实验一线性方程组迭代法实验

实验一线性方程组迭代法实验实验一线性方程组迭代法实验一、实验目的1.掌握用迭代法求解线性方程组的基本思想和计算步骤;2.能熟练地写出Jacobi迭代法的迭代格式的分量形式,并能比较它们各自的特点及误差估计;3.理解迭代法的基本原理及特点,并掌握Jacobi迭代Gauss-Seidel迭代和SOR迭代格式的分量形式、矩阵形式及其各自的特点;4.掌握Jacobi迭代Gauss-Seidel迭代和SOR 迭代算法的MATLAB程序实现方法,及了解松弛因子对SOR迭代的影响;5.用SOR迭代法求解线性方程组时,超松弛因子ω的取值大小会对方程组的解造成影响,目的就是能够探索超松弛因子ω怎样对解造成影响,通过这个实验我们可以了解ω的大致取值范围。

二、实验题目1、迭代法的收敛速度用迭代法分别对n=20,n=200解方程组Ax=b,其中n n A ⨯ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫------------------=444...444315131315151313151513131515131315131 (1)选取不同的初值x0和不同的右端向量b ,给定迭代误差,用两种迭代法计算,观测得到的迭代向量并分析计算结果给出结论;(2)取定初值x0和右端向量b ,给定迭代误差,将A 的主对角元成倍放大,其余元素不变,用Jacobi 迭代法计算多次,比较收敛速度,分析计算结果并给出结论。

2、SOR 迭代法松弛因子的选取不同的松弛因子对解得影响。

然后利用雅可比迭代求的的解与它们比较;三、 实验原理1、迭代法的收敛速度运用了Jacobi 迭代,Gauss-Seidel 迭代1)Jacobi 迭代算法:1. 取初始点x(0),精度要求ε,最大迭代次数N ,置k :=0;2. 由n 1i ),x a -(b x n i j 1,j (k)j j i i 11)(k i ,,⋯==∑≠=+ii a ,计算出x (k+1);3. 若ε≤-∞+)()1(k k x x ,则停算,输出x(k+1)作为方程组的近似解; 4. 若k=N ,则停算,输出迭代失败信息;否则置k :=k+1,转步2。

实验报告四线性方程组的求解_迭代

实验报告四线性方程组的求解_迭代

浙江大学城市学院实验报告课程名称 科学计算实验项目名称 线性方程组的求解-迭代法实验成绩 指导老师(签名 ) 日期 2012-4-6一. 实验目的和要求1. 掌握Jacobi 迭代方法.Gauss-Seidel 迭代方法.SOR 迭代方法的编程思想.能够分别用分量形式和矩阵形式编写相关程序。

2. 观察SOR 迭代法中松弛因子变化情况对收敛的影响。

3. 了解Hilbert 矩阵的病态性和作为线性方程组系数矩阵的收敛性。

二. 实验内容和原理编程题2-1要求写出Matlab 源程序(m 文件).并有适当的注释语句;分析应用题2-2.2-3.2-4要求将问题的分析过程、Matlab 源程序和运行结果和结果的解释、算法的分析写在实验报告上。

2-1 编程注释 设11121121222212,n n n n nn n a a a b a a a b A b a a a b ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦对下述求解线性方程组的Matlab 程序添上注释语句.其中A 和b 分别为线性方程组的系数矩阵和右端向量;0x 为迭代初始向量(0)X;max N 为容许迭代最大次数.eps 为迭代终止条件的精度(容许误差).终止条件为前后两次迭代解的差的向量2-范数。

1) Jacobi 迭代:Jacobimethod(A,b,x0,Nmax,eps)2) Gauss-Seidel 迭代:GaussSeidelmethod(A,b,x0,Nmax,eps)3) 松弛迭代:SORmethod(A,b,x0,Nmax,eps,w)2-2 分析应用题利用2-1中的程序来分析用下列迭代法解线性方程组:123456410100014101050141012101410501014120010146x x x x x x --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----=⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 的收敛性.并求出使(1)()20.0001k k X X +-≤的近似解及相应的迭代次数.其中取迭代初始向量(0)X 为零向量。

sor迭代法手算例题

sor迭代法手算例题

sor迭代法手算例题SOR迭代法是求解线性方程组的一种经典方式,其基本思想是通过不断迭代来逼近方程组的解。

这种方法在大规模问题上具有很好的效率,因此得到了广泛的应用。

本文将介绍SOR迭代法的基本原理,并以一个手算例题来展示其具体步骤和计算结果。

一、SOR迭代法的基本原理在介绍SOR迭代法的原理之前,我们先来看一下迭代法本身的思想。

假设有一个线性方程组:$$Ax=b$$其中,A是一个$n\times n$的系数矩阵,b是一个$n\times 1$的常数向量,x是一个$n\times 1$的未知向量。

迭代法的基本思想是将方程组表示为:$$x^{(k+1)}=Tx^{(k)}+C$$其中,$x^{(k)}$表示第k次迭代的近似解,$T$是一个$n\times n$的矩阵,$C$是一个$n\times 1$的常数向量。

迭代法的步骤是从一个初始点$x^{(0)}$开始,不断应用上述公式来寻找更好的解$x^{(k+1)}$。

当接近真解时,迭代的过程会不断收敛,即$x^{(k+1)}$会不断逼近真解$x$。

那么,如何确定矩阵$T$和向量$C$呢?最简单的方法是将方程组表示为:$$x^{(k+1)}=(I-\omega A)x^{(k)}+\omega b$$其中,I是$n\times n$的单位矩阵,$\omega$是一个常数,称作松弛因子。

当$\omega=1$时,这就是最基本的迭代法——雅克比迭代法。

但是,雅克比迭代法的收敛速度比较慢,因此需要调整$\omega$的值,从而得到更好的迭代效果。

SOR迭代法就是一种改良的迭代方法,其基本思想是通过加速松弛因子的变化来改善雅克比迭代法的效率。

具体来说,SOR迭代法的公式为:$$x_i^{(k+1)}=(1-\omega)x_i^{(k)}+\frac{\omega}{a_{ii}}\left(b_i-\sum_{j<i}a_{ij}x_j^{(k+1)}-\sum_{j>i}a_{ij}x_j^{(k)}\right)$$其中,$i=1,2,\cdots,n$。

数值分析实验报告-Sor法分析

数值分析实验报告-Sor法分析

数值分析实验报告一、 实验目的1、会使用Sor 法求解一个线性方程组2、熟悉matlab 语言并结合原理编程求方程组3、改变ω的值观察实验结果4、会分析实验结果 二、实验题目编制Sor 迭代格式程序进行求解一个线性方程组的迭代计算情况,运行中要选用不同的松弛因子ω进行尝试三、 实验原理Jacobi 迭代和seidel 迭代对具体的线性方程组来说,逼近*x 的速度是固定不变的,遇到收敛很慢的情况时就显得很不实用。

Sor 法是一seidel 迭代为基础,并在迭代中引入参数ω以增加迭代选择的灵活性,具体为:!用seidel 迭代算出的,)()1()()1(k k J k k Jx x x x x -=∆++相减得到差向量与再用参数ω乘之再加上)1()()()1()1()()()1(++++-=∆+=k Jk k k k k k x x x x x x x x ωωω,即的下一步迭代作为,由seidel 迭代的公式可以得到Sor 法的迭代格式为n i x a x a b a x x k j n i j ij k j i j ij i ii k i k i ,2,1),()1()(1)1(11)()1( =--+-=∑∑+=+-=+ωω式中ω称为松弛因子。

四、 实验内容用matlab 编程得到Sor 法求线性方程组的算法为:function [x,n]=SOR(A,b,x0,w,eps,M)if nargin==4eps= ;M = 200;elseif nargin<4errorreturn:elseif nargin ==5M = 200;endif(w<=0 || w>=2)error;return;endD=diag(diag(A)); %求A的对角矩阵L=-tril(A,-1); %求A的下三角阵(U=-triu(A,1); %求A的上三角阵B=inv(D-L*w)*((1-w)*D+w*U);f=w*inv((D-L*w))*b;x=B*x0+f;n=1; %迭代次数while norm(x-x0)>=epsx0=x;x =B*x0+f;n=n+1;if(n>=M)(disp('Warning: 迭代次数太多,可能不收敛!'); return;endend输入数据:>> A=[20 1 -3 -1;3 18 0 7;-1 2 40 -2;1 0 -1 5];b=[1;2;10;-1];x0=[0;0;0;0];w=1;eps=1e-4;;M=100;>> [x,n]=SOR(A,b,x0,w,eps,M)x =n =;5error;>> A=[20 1 -3 -1;3 18 0 7;-1 2 40 -2;1 0 -1 5];b=[1;2;10;-1];x0=[0;0;0;0];w=;eps=1e-4;M=100;[x,n]=SOR(A,b,x0,w,eps,M)/x =n =@21>>A=[20 1 -3 -1;3 18 0 7;-1 2 40 -2;1 0 -1 5]; b=[1;2;10;-1];x0=[0;0;0;0];w=;eps=1e-4;M=100;[x,n]=SOR(A,b,x0,w,eps,M)Error using ==> errorNot enough input arguments.,Error in ==> SOR at 13用实验3中的线性方程组作为例子比较得当ω=时,x = 迭代次数为n=21当ω=1时,x = 迭代次数为n=5当ω=时,出现error五、实验分析由定理,Sor法收敛的必要条件是0<ω<2,因此,当ω=和1时,算法收敛,能够求出根,并且迭代次数根据ω的不同而不同,在求方程组的根时,只要选择恰当的ω,收敛是很快的。

sor迭代法

sor迭代法

SOR迭代法的Matlab程序function [x]=SOR_iterative(A,b)% 用SOR迭代求解线性方程组,矩阵A是方阵x0=zeros(1,length(b)); % 赋初值tol=10^(-2); % 给定误差界N=1000; % 给定最大迭代次数[n,n]=size(A); % 确定矩阵A的阶w=1; % 给定松弛因子k=1;% 迭代过程while k<=Nx(1)=(b(1)-A(1,2:n)*x0(2:n)')/A(1,1);for i=2:nx(i)=(1-w)*x0(i)+w*(b(i)-A(i,1:i-1)*x(1:i-1)'-A(i,i+1:n)*x0(i+1:n)')/A(i,i);endif max(abs(x-x0))<=tolfid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n');fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'x的值\n\n');fprintf(fid, '%12.8f \n', x);break;endk=k+1;x0=x;endif k==N+1fid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n');fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'超过最大迭代次数,求解失败!');fclose(fid);end常微分方程的数值解法实验目的:熟悉在Matlab平台上直接求解常微分方程初值问题试验方法1、利用改进欧拉法解方程:程序内容为:fun=@(x,y)x^(-2)-y/x;h=0.05;X=1:h:2;Y(1)=1;for i=2:21Y(i)=Y(i-1)+h/2*(fun(X(i-1),Y(i-1))+fun(X(i),Y(i-1))+h*fun(X(i-1),Y(i-1))); end;Y运行结果为:Y =Columns 1 through 91.0000 0.9989 0.9957 0.9909 0.9848 0.9778 0.9701 0.9618 0.9530Columns 10 through 180.9440 0.9348 0.9254 0.9160 0.9065 0.8971 0.8876 0.8783 0.8690Columns 19 through 210.8598 0.8508 0.8418真实解的求法为:x=1:0.05:2;y=1./x.*(log(x)+1)y =Columns 1 through 81.0000 0.9988 0.9957 0.9911 0.9853 0.9785 0.9710 0.9630Columns 9 through 160.9546 0.9459 0.9370 0.9279 0.9188 0.9096 0.9004 0.8912Columns 17 through 210.8821 0.8731 0.8641 0.8553 0.8466用四阶R-K算法解常微分方程的程序为:fun=@(x,y)x^(-2)-y/x;h=0.1;X=1:h:2;Y(1)=1;for n=2:11k1=fun(x(n-1),Y(n-1));k2=fun(x(n-1)+h/2,Y(n-1)+h/2*k1);k3=fun(x(n-1)+h/2,Y(n-1)+h/2*k2);k4=fun(x(n-1)+h,Y(n-1)+h*k3);Y(n)=Y(n-1)+h/6*(k1+2*k2+2*k3+k4)end;Y运行后了结果为:Y =Columns 1 through 91.0000 0.9957 0.9853 0.9710 0.9546 0.9370 0.9188 0.9004 0.8821Columns 10 through 110.8641 0.8466真实解的求法为:x=1:0.1:2;y=1./x.*(log(x)+1)y =Columns 1 through 91.0000 0.9957 0.9853 0.9710 0.9546 0.9370 0.9188 0.9004 0.8821Columns 10 through 110.8641 0.8466可见其精确度至少已达到0.0012、MATLAB中数值解法“ode45”为:[x1,y1] = ode45(@(x,y)x^(-2)-y/x,[1,2],y0);符号解法“dsolve”求解为:dsolve('Dy=x^(-2)-y/x','y(1) = 1','x')ans =(log(x)+1)/x画出两种算法的图形位:[x1,y1] = ode45(@(x,y)x^(-2)-y/x,[1,2],1);fplot('(log(x)+1)/x',[1,2]);hold on, plot(x1,y1,'ro');数值算法同解析算法几乎完全吻合。

实验五-解线性方程组的迭代法报告

实验五-解线性方程组的迭代法报告

实验五 解线性方程组的迭代法一、问题提出对实验四所列目的和意义的线性方程组,试分别选用Jacobi 迭代法,Gauss-Seidel 迭代法和SOR 方法计算其解。

二、要求1、体会迭代法求解线性方程组,并能与消去法做以比较;2、分别对不同精度要求,如34510,10,10ε---=由迭代次数体会该迭代法的收敛快慢;3、对方程组2,3使用SOR 方法时,选取松弛因子ω=0.8,0.9,1,1.1,1.2等,试看对算法收敛性的影响,并能找出你所选用的松弛因子的最佳者;4、给出各种算法的设计程序和计算结果。

三、目的和意义1、通过上机计算体会迭代法求解线性方程组的特点,并能和消去法比较;2、运用所学的迭代法算法,解决各类线性方程组,编出算法程序;3、体会上机计算时,终止步骤(1)k k xx ε+∞-<或k>(给予的迭代次数),对迭代法敛散性的意义;4、 体会初始解0x ,松弛因子的选取,对计算结果的影响。

四、实验学时:2学时五、实验步骤:1.进入C 或matlab 开发环境;2.根据实验内容和要求编写程序;3.调试程序;4.运行程序;5.撰写报告,讨论分析实验结果.解:J迭代算法:程序设计流程图:源程序代码:#include<stdlib.h>#include<stdio.h>#include<math.h>void main(){float a[50][51],x1[50],x2[50],temp=0,fnum=0;int i,j,m,n,e,bk=0;printf("使用Jacobi迭代法求解方程组:\n");printf("输入方程组的元:\nn=");scanf("%d",&n);for(i=1;i<n+1;i++)x1[i]=0;printf("输入方程组的系数矩阵:\n");for(i=1;i<n+1;i++){j=1;while(j<n+1){scanf("%f",&a[i][j]);j++;}}printf("输入方程组的常数项:\n");for(i=1;i<n+1;i++){scanf("%f",&a[i][n+1]);}printf("\n");printf("请输入迭代次数:\n");scanf("%d",&m);printf("请输入迭代精度:\n");scanf("%d",&e);while(m!=0){for(i=1;i<n+1;i++){for(j=1;j<n+1;j++){if (j!=i)temp=a[i][j]*x1[j]+temp;}x2[i]=(a[i][n+1]-temp)/a[i][i];temp=0;}for(i=1;i<n+1;i++){fnum=float(fabs(x1[i]-x2[i]));if(fnum>temp) temp=fnum;}if(temp<=pow(10,-4)) bk=1;for(i=1;i<n+1;i++)x1[i]=x2[i];m--;}printf("原方程组的解为:\n");for(i=1;i<n+1;i++){if((x1[i]-x2[i])<=e||(x2[i]-x1[i])<=e){printf("x%d=%7.4f ",i,x1[i]);}}}运行结果:GS迭代算法:#include<iostream.h>#include<math.h>#include<stdio.h>const int m=11;void main(){int choice=1;while(choice==1){double a[m][m],b[m],e,x[m],y[m],w,se,max; int n,i,j,N,k;cout<<"Gauss-Seidol迭代法"<<endl;cout<<"请输入方程的个数:";cin>>n;for(i=1;i<=n;i++){cout<<"请输入第"<<i<<"个方程的各项系数:"; for(j=1;j<=n;j++)cin>>a[i][j];}cout<<"请输入各个方程等号右边的常数项:\n"; for(i=1;i<=n;i++){cin>>b[i];}cout<<"请输入最大迭代次数:";cin>>N;cout<<"请输入最大偏差:";cin>>e;for(i=1;i<=n;i++){x[i]=0;y[i]=x[i];}k=0;while(k!=N){k++;for(i=1;i<=n;i++){w=0;for(j=1;j<=n;j++){if(j!=i)w=w+a[i][j]*y[j];}y[i]=(b[i]-w)/double(a[i][i]);}max=fabs(x[1]-y[1]);for(i=1;i<=n;i++){se=fabs(x[i]-y[i]);if(se>max)max=se;}if(max<e){cout<<endl;for(i=1;i<=n;i++)cout<<"x"<<i<<"="<<y[i]<<endl; break;}for(i=1;i<=n;i++){x[i]=y[i];}}if(k==N)cout<<"迭代失败!!"<<endl;choice=0;}}SOR方法:# include <stdio.h># include <math.h>#include<stdlib.h>/**********定义全局变量**********/float **a; /*存放A矩阵*/float *b; /*存放b矩阵*/float *x; /*存放x矩阵*/float p; /*精确度*/float w; /*松弛因子*/int n; /*未知数个数*/int c; /*最大迭代次数*/int k=1; /*实际迭代次数*//**********SOR迭代法**********/void SOR(float xk[]){int i,j;float t=0.0;float tt=0.0;float *xl;xl=(float *)malloc(sizeof(float)*(n+1)); for(i=1;i<n+1;i++){t=0.0;tt=0.0;for(j=1;j<i;j++)t=t+a[i][j]*xl[j];for(j=i;j<n+1;j++)tt=tt+a[i][j]*xk[j];xl[i]=xk[i]+w*(b[i]-t-tt)/a[i][i];}t=0.0;for(i=1;i<n+1;i++){tt=fabs(xl[i]-xk[i]);tt=tt*tt;t+=tt;}t=sqrt(t);for(i=1;i<n+1;i++)xk[i]=xl[i];if(k+1>c){if(t<=p)printf("\nReach the given precision!\n"); elseprintf("\nover the maximal count!\n");printf("\nCount number is %d\n",k);}elseif(t>p){k++;SOR(xk);}else{printf("\nReach the given precision!\n"); printf("\nCount number is %d\n",k);}}/**********程序*****开始**********/void main(){int i,j;printf("SOR方法\n");printf("请输入方程个数:\n");scanf("%d",&n);a=(float **)malloc(sizeof(float)*(n+1)); for(i=0;i<n+1;i++)a[i]=(float*)malloc(sizeof(float)*(n+1));printf("请输入三对角矩阵:\n");for(i=1;i<n+1;i++)for(j=1;j<n+1;j++)scanf("%f",&a[i][j]);for(i=1;i<n+1;i++)for(j=1;j<n;j++)b=(float *)malloc(sizeof(float)*(n+1)); printf("请输入等号右边的值:\n");for(i=1;i<n+1;i++)scanf("%f",&b[i]);x=(float *)malloc(sizeof(float)*(n+1)); printf("请输入初始的x:");for(i=1;i<n+1;i++)scanf("%f",&x[i]);printf("请输入精确度:");scanf("%f",&p);printf("请输入迭代次数:");scanf("%d",&c);printf("请输入w(0<w<2):\n");scanf("%f",&w);SOR(x);printf("方程的结果为:\n");for(i=1;i<n+1;i++)printf("x[%d]=%f\n",i,x[i]);}程序运行结果讨论和分析:①迭代法具有需要计算机的存贮单元较少,程序设计简单,原始系数矩阵在计算过程中始终不变等优点.②迭代法在收敛性及收敛速度等方面存在问题.[注:A必须满足一定的条件下才能运用以下三种迭代法之一.在Jacobi中不用产生的新数据信息,每次都要计算一次矩阵与向量的乘法,而在Gauss利用新产生的信息数据来计算矩阵与向量的乘法.在SOR中必须选择一个最佳的松弛因子,才能使收敛加速.]经过计算可知Gauss-Seidel方法比Jacobi方法剩点计算量,也是Jacobi方法的改进.可是精确度底,计算量高,费时间,需要改进.SOR是进一步改进Gauss-Seidel 而得到的比Jacobi,Gauss-Seidel方法收敛速度快,综合性强.改变松弛因子的取值范围来可以得到Jacobi,Gauss-Seidel方法.③选择一个适当的松弛因子是关键.结论:线性方程组1和2对于Jacobi 迭代法,Gauss-Seidol迭代法和SOR方法均不收敛,线性方程组3收敛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值实验一
实验目的:了解SOR法迭代矩阵谱半径和迭代参数的关系。

实验内容:
10.50
010.5
0.501
A
⎡⎤
⎢⎥
=⎢⎥
⎢⎥
⎣⎦
,画出SOR迭代谱半径和ϖ之间的曲线,并据此
分析ϖ的收敛范围及ϖ取何值时,迭代法收敛速递最快。

实验原理:
逐次超松弛迭代法(SOR法)是Gauss-Seidel法的一种加速方法,SOR法的公式为:
其中

方程组收敛的充要条件是:
ρ(Lω)<1
引进超松弛迭代法的思想在于希望能选择松弛因子使得迭代方程式收敛速度较
快,即需选择因子使得
对称正定阵迭代收敛必要条件为0<ϖ<2,而本实验中矩阵并非对称正定阵,故将此范围扩大至-1<ϖ<3,求解分析过程如下:
以下为MATLAB程序:
P=zeros(1,4001); %构造用来储存谱半径的行向量
A=[1 0.5 0;0 1 0.5;0.5 0 1];%建立矩阵A
D=diag(diag(A)); %求对角矩阵D
U=-triu(A,1);%求上三角矩阵U
L=-tril(A,-1);%求下三角矩阵L
n=0;
for w=-1:0.001:3;
n=n+1;
B=(inv(D-w*L))*((1-w)*D+w*U);
P(1,n)=max(abs(eig(B)));
end
w=-1:0.001:3;
plot(w,P);
xlabel('\omega');
ylabel('\rho(L_\omega)'); %画出谱半径随松弛因子变化图title('谱半径与松弛因子的变化关系图');
k=find(P==min(P)); %寻找最小谱半径
wmin=w(k); %最小谱半径对应之因子ϖ
disp(min(P)); %输出最小谱半径数值
disp(wmin); %输出对应因子ϖ值
实验图形:
实验结论:
由上图分析可知当0<ϖ<1.5时,谱半径ρ(Lω)<1,此时方程组迭代收敛经计算可知当ϖ=0.3381时,谱半径ρ(Lω)=0.9410,此时迭代速度最快。

相关文档
最新文档