了解SOR法迭代矩阵谱半径和迭代参数的关系

合集下载

sor迭代法手算例题

sor迭代法手算例题

sor迭代法手算例题SOR迭代法是求解线性方程组的一种经典方式,其基本思想是通过不断迭代来逼近方程组的解。

这种方法在大规模问题上具有很好的效率,因此得到了广泛的应用。

本文将介绍SOR迭代法的基本原理,并以一个手算例题来展示其具体步骤和计算结果。

一、SOR迭代法的基本原理在介绍SOR迭代法的原理之前,我们先来看一下迭代法本身的思想。

假设有一个线性方程组:$$Ax=b$$其中,A是一个$n\times n$的系数矩阵,b是一个$n\times 1$的常数向量,x是一个$n\times 1$的未知向量。

迭代法的基本思想是将方程组表示为:$$x^{(k+1)}=Tx^{(k)}+C$$其中,$x^{(k)}$表示第k次迭代的近似解,$T$是一个$n\times n$的矩阵,$C$是一个$n\times 1$的常数向量。

迭代法的步骤是从一个初始点$x^{(0)}$开始,不断应用上述公式来寻找更好的解$x^{(k+1)}$。

当接近真解时,迭代的过程会不断收敛,即$x^{(k+1)}$会不断逼近真解$x$。

那么,如何确定矩阵$T$和向量$C$呢?最简单的方法是将方程组表示为:$$x^{(k+1)}=(I-\omega A)x^{(k)}+\omega b$$其中,I是$n\times n$的单位矩阵,$\omega$是一个常数,称作松弛因子。

当$\omega=1$时,这就是最基本的迭代法——雅克比迭代法。

但是,雅克比迭代法的收敛速度比较慢,因此需要调整$\omega$的值,从而得到更好的迭代效果。

SOR迭代法就是一种改良的迭代方法,其基本思想是通过加速松弛因子的变化来改善雅克比迭代法的效率。

具体来说,SOR迭代法的公式为:$$x_i^{(k+1)}=(1-\omega)x_i^{(k)}+\frac{\omega}{a_{ii}}\left(b_i-\sum_{j<i}a_{ij}x_j^{(k+1)}-\sum_{j>i}a_{ij}x_j^{(k)}\right)$$其中,$i=1,2,\cdots,n$。

sor方法

sor方法

sor方法
SOR方法是一种迭代数值解法,主要被用于求解线性系统Ax=b,其中A是系数矩阵,b是右端向量。

SOR方法的全称为"Successive Over-Relaxation Method",意为迭代超松弛法。

在使用SOR方法求解线性方程组时,首先需要将系数矩阵A分解为L、D和U 三个部分,其中L是A的严格下三角矩阵,D是A的对角线矩阵,U是A的严格上三角矩阵。

同时,SOR方法还需要一个松弛因子w。

SOR方法的迭代公式为:
x(k+1) = (1-w)x(k) + w(D-wL)^(-1)(b-Ux(k))
其中x(k)表示第k次迭代求得的解向量,x(k+1)表示x(k)的下一次迭代,^(−1)表示逆矩阵。

可以发现,SOR方法是基于Gauss-Seidel方法的改进,它在每一次迭代中添加了一个松弛因子w,从而使得解向量的迭代更快、更稳定。

在实际应用中,我们需要选择一个合适的松弛因子w,以使得SOR方法能够收敛并且收敛速度较快。

一般来说,选择一个小于1的w能够保证SOR方法的收敛性,而选择一个大于1的w能够加快SOR方法的收敛速度。

需要注意的是,SOR方法只能够求解特定条件下的线性方程组,如系数矩阵为对称正定矩阵、对角占优矩阵等。

当系数矩阵不满足这些条件时,SOR方法可能出现发散的情况。

总的来说,SOR方法是一种简单而有效的数值解法,被广泛应用于工程计算等领域。

在使用时,需要根据具体问题选择合适的松弛因子w,并且注意其收敛性和收敛速度。

第一次迭代解法之SOR

第一次迭代解法之SOR

种相容范数都有 ρ(A)≤||A||
(6.2)
2021/6/17
13
另一个更深刻的结果,对于任意的ε>0,必存在一种相
容的矩阵范数,使
|| A ||≤ ρ(A) +ε
(6.3)
式(6.2)和(6.3)表明,矩阵A的谱半径是它所有相 容范数的下确界。
定义6.4 设有n×n矩阵序列 A(k) (ai(jk) ), k 1, 2, 方阵A=(aij), 如果
多大算病态没有标准。如果主元很小或者元素数量级相差大,可能是病态
cond ( A) A A1 AA1 1
2021/6/17
18
§2 迭代解法与收敛性
一、迭代解法
设有线性方程组
Ax=b
(1)
A∈Rn×n, b∈Rn .
对A 进行分裂, A=A1+A2 , 其中 A1 可逆,
则 (A1+A2)x=b A1x = - A2x+b x = - A1-1 A2 x + A1-1 b
再由 Ax =b,得到 || b||= || Ax || ≤||A || ||x||
2021/6/17
16
于是,由 || △x ||≤||A-1 || ||△b||
及 ||b || ≤||A || ||x|| 1 A
x
b
得到解的相对误差为
x A
A1
b
x
b
令 Cond(A)=||A || ||A-1 || ,并称其为矩阵A的条件数。
14 20
则它的特征方程为:
I AT A 10 14
2 30 4 0
14
20
2021/6/17
10
此方程的根为矩阵ATA的特征值,解得

用sor法解方程组

用sor法解方程组

用SOR法解方程组引言方程组是数学中常见的问题,解决方程组可以帮助我们理解和预测各种实际问题。

解方程组的方法有很多种,其中一种常用的方法是SOR(Successive Over Relaxation)法。

SOR法是一种迭代法,通过不断迭代逼近解的过程来求解方程组。

本文将对SOR法进行详细的介绍和分析。

SOR法概述SOR法是一种求解线性方程组的迭代算法,其基本思想是通过引入松弛因子来加速收敛速度。

对于线性方程组Ax=b,SOR法的迭代公式为:x^(k+1) = (1-w)x^(k) + w * D^(-1) * (b - L * x^(k+1) - U * x^(k))其中,x(k)表示第k次迭代的解向量,x(k+1)表示第k+1次迭代的解向量,w为松弛因子(0 < w< 2),A被分解为下三角矩阵L、上三角矩阵U和对角矩阵D。

算法流程SOR法的算法流程如下:1.初始化解向量x^(0)2.对于每次迭代k = 0, 1, 2, …–计算下一次迭代的解向量x^(k+1): x^(k+1) = (1-w)x^(k) + w * D^(-1) * (b - L * x^(k+1) - U * x^(k))–判断迭代是否收敛:如果迭代误差小于预设的阈值就停止迭代,否则继续迭代3.返回最终的解向量x^(k+1)SOR法特点SOR法具有以下几个特点:1.相对于传统的迭代法,SOR法引入了松弛因子,能够加速迭代的收敛速度。

2.当松弛因子w=1时,SOR法等价于高斯-赛德尔迭代法。

3.大部分情况下,SOR法是收敛的。

收敛速度与松弛因子w有关,一般来说,选择一个合适的松弛因子可以加快算法的收敛速度。

4.SOR法对于对角占优的线性方程组具有较好的收敛性能,但对于一般的线性方程组效果可能不理想。

SOR法的数值实验为了验证SOR法的性能,我们进行了一系列的数值实验。

我们选取了不同规模的线性方程组,通过对比SOR法的迭代次数和收敛速度来评估其性能。

sor迭代法

sor迭代法

SOR迭代法的Matlab程序function [x]=SOR_iterative(A,b)% 用SOR迭代求解线性方程组,矩阵A是方阵x0=zeros(1,length(b)); % 赋初值tol=10^(-2); % 给定误差界N=1000; % 给定最大迭代次数[n,n]=size(A); % 确定矩阵A的阶w=1; % 给定松弛因子k=1;% 迭代过程while k<=Nx(1)=(b(1)-A(1,2:n)*x0(2:n)')/A(1,1);for i=2:nx(i)=(1-w)*x0(i)+w*(b(i)-A(i,1:i-1)*x(1:i-1)'-A(i,i+1:n)*x0(i+1:n)')/A(i,i);endif max(abs(x-x0))<=tolfid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n');fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'x的值\n\n');fprintf(fid, '%12.8f \n', x);break;endk=k+1;x0=x;endif k==N+1fid = fopen('SOR_iter_result.txt', 'wt');fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n');fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,'超过最大迭代次数,求解失败!');fclose(fid);end常微分方程的数值解法实验目的:熟悉在Matlab平台上直接求解常微分方程初值问题试验方法1、利用改进欧拉法解方程:程序内容为:fun=@(x,y)x^(-2)-y/x;h=0.05;X=1:h:2;Y(1)=1;for i=2:21Y(i)=Y(i-1)+h/2*(fun(X(i-1),Y(i-1))+fun(X(i),Y(i-1))+h*fun(X(i-1),Y(i-1))); end;Y运行结果为:Y =Columns 1 through 91.0000 0.9989 0.9957 0.9909 0.9848 0.9778 0.9701 0.9618 0.9530Columns 10 through 180.9440 0.9348 0.9254 0.9160 0.9065 0.8971 0.8876 0.8783 0.8690Columns 19 through 210.8598 0.8508 0.8418真实解的求法为:x=1:0.05:2;y=1./x.*(log(x)+1)y =Columns 1 through 81.0000 0.9988 0.9957 0.9911 0.9853 0.9785 0.9710 0.9630Columns 9 through 160.9546 0.9459 0.9370 0.9279 0.9188 0.9096 0.9004 0.8912Columns 17 through 210.8821 0.8731 0.8641 0.8553 0.8466用四阶R-K算法解常微分方程的程序为:fun=@(x,y)x^(-2)-y/x;h=0.1;X=1:h:2;Y(1)=1;for n=2:11k1=fun(x(n-1),Y(n-1));k2=fun(x(n-1)+h/2,Y(n-1)+h/2*k1);k3=fun(x(n-1)+h/2,Y(n-1)+h/2*k2);k4=fun(x(n-1)+h,Y(n-1)+h*k3);Y(n)=Y(n-1)+h/6*(k1+2*k2+2*k3+k4)end;Y运行后了结果为:Y =Columns 1 through 91.0000 0.9957 0.9853 0.9710 0.9546 0.9370 0.9188 0.9004 0.8821Columns 10 through 110.8641 0.8466真实解的求法为:x=1:0.1:2;y=1./x.*(log(x)+1)y =Columns 1 through 91.0000 0.9957 0.9853 0.9710 0.9546 0.9370 0.9188 0.9004 0.8821Columns 10 through 110.8641 0.8466可见其精确度至少已达到0.0012、MATLAB中数值解法“ode45”为:[x1,y1] = ode45(@(x,y)x^(-2)-y/x,[1,2],y0);符号解法“dsolve”求解为:dsolve('Dy=x^(-2)-y/x','y(1) = 1','x')ans =(log(x)+1)/x画出两种算法的图形位:[x1,y1] = ode45(@(x,y)x^(-2)-y/x,[1,2],1);fplot('(log(x)+1)/x',[1,2]);hold on, plot(x1,y1,'ro');数值算法同解析算法几乎完全吻合。

SOR与SSOR迭代法收敛速度的关系

SOR与SSOR迭代法收敛速度的关系

P s) 1 I+l() (: ≤1 I+l() 1 Vl 0 1,() 0 1 (: ≤( 一l I J) ≤PL ) 一l I J < , I∈( ,lPJ ∈[ ,] , , p , , p ,
这推广了 W zi i on k 的结果 。 c 最后给 出一个例子来 验证 我们的结果 。 关键词 : S R迭代方 法;S R迭代方法 ; O SO 谱半径
中图分类号 : 04 . 文献标识码 : A 2 16 文章 编 号 : 10 9 9 (0 8 0 0 0 0 0 7— 73 20 )4— 0 7— 3
对于线 性方程 组
A x=b ・ () 1
其 中 A=( R 非 奇异 , bE 口)∈ , R . 设 A=D— L—U, 中 D、 和 一 分 别是 A的对 角 、 格下 三 角 和严 格 上 三角 矩 阵 。不 失一 般 其 一 严 性 , D=, 取 。则 S R与 SO 0 S R迭代 方法分 别 为
Vo . 8 No 4 12 .
J1 0 8 u .2 0
S R与 S O 0 S R迭 代 法 收敛 速 度 的 关 系 ‘
李 爱 娟
( 山东理工大学数学与信息科学学院 , 山东 淄博 254 ) 509
摘 要: 当 A 为非奇异的 肘一 阵时, zii Wo c 只指出了 SO nk S R迭代矩阵的谱半径P .) S R迭代 (:小于 0 s
维普资讯

8‘
云南师范大学学报 ( 自然科学 版) Nhomakorabea第2 8卷
P ) I 一∞I t ( ) ( ≤ I + o J p p ) I 一∞I t ( ) ( ≤ I +o J ) p
() 8 () 9

数值分析Python实现系列——二、逐次超松弛迭代法(SOR)

数值分析Python实现系列——二、逐次超松弛迭代法(SOR)

数值分析Python 实现系列——⼆、逐次超松弛迭代法(SOR )⼆、超松弛迭代法(SOR)1.原理:回顾:在⼀般情况下 : 收敛过慢甚⾄不收敛的B 与f ,经过对系数矩阵A 分裂成A =M −N 的形式, 使得迭代公式变为: x k +1=(I −M −1)Ax k +M −1f 雅克⽐迭代法选取 : 现将A 如下分解A =D −L −U ,D 为对⾓阵,L 为下三⾓阵,U 为上三⾓阵,取M ≡D ,取N ≡L +U ,在这⼀章中我们选取下三⾓矩阵M =1ω(D −ωL ),ω>0,其中ω为松弛因⼦,我们可以发现当ω为1时,M =D −L ,正是⾼思-赛德尔迭代法,下⾯推导迭代公式:x k +1=I −M −1A x k +M −1bx k +1=I −ω(D −ωL )−1A x k +ω(D −ωL )−1bx k +1=(D −ωL )−1((1−ω)D +ωU )x k +ω(D −ωL )−1b推导完毕,我们较为常⽤的是下式:(D −ωL )x k +1=((1−ω)D +ωU )x k +ωb以及:x (0)=(x (0)1,...,x (0)n )T ,x (k +1)i =x (k +)i +Δx i Δx i =ωb i −i −1∑j =1a ij x (k +1)j −n ∑j =1a ij x (k )j a ii i =1,2,...,n ,k =0,1,...,ω为松弛因⼦当ω>1时为超松弛迭代,当ω<1时为低松弛迭代迭代终⽌条件:max 1≤i ≤n |Δx i |=max1≤i ≤n |x (k +1)i −x (k )i |<ε,下⾯我们试试⽤Python 实现这⼀功能.2.实现:import numpy as npimport matplotlib.pyplot as pltMAX = 110 # 遍历最⼤次数A = np.array([[-4, 1, 1, 1], [1, -4, 1, 1], [1, 1, -4, 1], [1, 1, 1, -4]])b = np.array([[1], [1], [1], [1]]) # 注意这⾥取列向量omega_list = [1 + 0.005 * i for i in range(100)] # 取到不同的omega 值,观察趋势length = len(A)count = [] # 记录遍历的次数for omega in omega_list: # 遍历每⼀个omega 值times = 0x_0 = np.zeros((length, 1))x_hold = x_0 + np.ones((length, 1))while (np.linalg.norm(x_hold - x_0, ord=2) >= 10 ** (-5)) and (times <= MAX):# 遍历停⽌条件以k+1次与k 次迭代的向量差的⼆范数以及遍历最⼤次数为标准x_hold = x_0.copy() # 这⾥不要⽤赋值,要⽤copyx_new = x_0.copy()for i in range(length):# 根据迭代公式迭代x_new[i][0] = x_0[i][0] + omega * (b[i][0] - sum([A[i][j] * x_new[j][0] for j in range(i)]) - sum([A[i][j] * x_0[j][0] for j in range(i, length)])) / A[i][i]x_0 = x_new.copy()times += 1count.append(times)plt.plot(omega_list, count) # 观察omega 与迭代次数的关系plt.show()思路:1.遍历设限:第⼀种是到达精度,到达精度停⽌迭代,第⼆种是到达规定最⼤次数,这个可以⾃⼰设定.2.在根据迭代公式改变各个向量分量时,要注意遍历范围.结果:{。

SOR迭代法

SOR迭代法

aij x(jk )
3.1
若记
i1
n
r(k)
i
(bi
a x(k 1) ij j
aij
x
(k j
)
),
j 1
j i
i 1,2,L ,n
则 3.1 式可写为
x( k 1) i
x(k) i
1 aii
r(k)
i
3.2
由此可以看出, Gauss Seidel 迭代法的第 k 1
步 ,相当于在第 k 步的基础上每一个分量增加
SOR迭代法常以这种形式进行计算。
格式(3.4)的矩阵形式为
X (k1) (1 ) X k D1 b LX k UX (k) ,
3.5
其中
a11
D
a22
O
0
0
,
ann
0 a12 L
U
0O
O
0
a1n
an1,n
0
显然,A D L U.
0
0
L
a21
O
OO
上述定理说明,对于任何系数矩阵 A,若要 SOR
法收敛,必须选取松弛因子 0,2 , 然而,当松
弛因子满足条件 0 2 时,并不是对所有系数矩 阵 A 来说,SOR 法都是收敛的。但是,对一些特殊矩 阵来说,这一条件是充分的。
定理7 如果矩阵 A 是对称正定的,则 SOR 法 对于0 2 是收敛的。
其 Gauss Seidel 迭 代 格 式 可写为 (aii 0) :
x(k1) i
x(k) i
1 aii
bi
a x(k1) i1 1
L
a x(k1) i,i1, i1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档