超声波加工技术
超声波加工技术的研究与应用

超声波加工技术的研究与应用超声波是指频率大于20 kHz的机械波,因其具有易于调节、浅表性加工等优势,近年来在加工领域得到广泛应用,成为一种重要的新兴加工技术。
本文将从超声波加工技术的原理、特点、研究现状以及应用领域四个方面进行阐述。
一、超声波加工技术的原理超声波加工技术的核心原理是利用超声波传导的机械振动引起物体的微小位移,从而实现加工目的。
超声波加工技术通常采用高频振荡器产生超声波,其能量通过声波振幅传递到加工工具,再通过工具的振动作用于被加工物体。
这种超声波传导的振动能量有强烈的破坏性,可以使材料迅速产生渐进性断裂,从而进行相应的加工。
超声波加工技术可分为振动智能控制,超声冲击波加工控制,超声波整理和超声波车削几类。
二、超声波加工技术的特点超声波加工技术具有以下特点:(1)易于调节。
由于超声波频率可随意变换,所以加工过程中易于调控,不会对材料本身造成过大的损伤。
(2)针对表面加工。
由于超声波加工的振动频率大,因此只能实现浅表性的加工,通常用于表面修整、去毛刺、去污等精细处理。
(3)高效节能。
超声波加工技术的加工效率高,同时由于其加工方式具有局部性,因此能够充分利用能量,达到高效节能的目的。
三、超声波加工技术的研究现状目前,国内外对于超声波加工技术的研究大部分集中于超声波加工的机理、材料性能变化、加工参数优化等方面。
近年来,超声波加工技术在新材料加工领域得到广泛应用,如新型金属材料、高强度焊接材料等都可以用超声波加工来进行修整、加工、处理等。
此外,超声波加工技术还在精密加工、微机械加工等领域得到广泛应用,其中最典型的应用就是超声波打孔技术,多用于石英和陶瓷等硬质材料的加工。
四、超声波加工技术的应用领域超声波加工技术具有广泛的应用领域。
其中,应用最广的无疑是超声波手术刀,已成为现代微创手术的首选器械。
同时,在汽车、航空、航天、军工等领域,超声波加工技术也得到了广泛的应用,如超声波焊接、超声波清洗、超声波测厚等。
超声波制造加工技术研究

超声波制造加工技术研究一、引言超声波制造加工技术是一种高效、精准、无损的制造加工技术。
它通过超声波的高频振动将工件表面的材料剥离下来,从而实现精密加工。
目前,超声波制造加工技术广泛应用于机械加工、半导体制造、医学、化工、食品加工等领域,并取得了重要进展。
二、超声波制造加工技术原理超声波制造加工技术是一种通过超声波破坏材料的层内结合力、表面锈蚀或微爆作用,将工件上杂质、氧化物等物质与材料表面分离下来的制造加工技术。
超声波加工主要依靠超声波的高频振动+剪切应力加速材料表面或内部的杂质、氧化物等不良物质的脱落。
具体原理如下:1.声振波的传导和作用通常把物体的固定表面划分成许多微小的震动单元,并将这些单元连接成一组使之产生类似于半波振动的声振波。
当这些声振波通过液体屏障时以透反射为主并且与材料相互作用时,由于与固定表面的声阻抗不同,其阻挡的声反射显得更强,而与输送流体的声阻抗不同,则离开物体后的声波示得更弱。
由此,形成的声谱梯度是其作用的主要原因之一。
同时,所产生的这种声波振动和剪切也会引起位于其内部分子间的分布状态的变化,使之发生破裂或受损。
2.疏水性和液-固-气疏水性是由于表面透明活化所引起的,当在由溶液中悬浮的固体粒子与溶液接触时,表面电-键键效应和键键分离时出现锚定的现象。
由于材料表面上的疏水性较高,因此碎片端具有会积作用,易于在其中夹带气体,从而形成气泡和裂纹等影响物体表面物理和化学性能的现象。
超声波剪切和振动作用得以加速疏水液体与固体粒子之间的界面物理化学反应,有利于界面材料的分离和排除。
三、超声波制造加工技术实践研究超声波制造加工技术在实践中具有广泛应用。
以下列举几个常见的实例:1.机械加工超声波制造加工技术在数控加工和精密加工中大显身手。
在零件加工中,超声波加工可以精确切割多种硬度和厚度的金属、非金属材料、玻璃、陶瓷等,同时超声波制造加工技术还可以用于精细刻划等细精加工。
2.医学超声波制造加工技术在医学领域也有着广泛应用。
超声波加工技术课件

超声波加工技术利用磨料在超声波振动下的高速冲击和研磨作用,实现对非金属材料的加工。该技术能够有效地 降低材料硬度、提高加工效率,同时减少对工件的损伤。
05 超声波加工技术发展趋势 与挑战
新材料的应用
总结词
随着新材料行业的快速发展,超声波加工技术在新材料的应用中面临新的挑战和机遇。
详细描述
超声波加工技术课件
目录
CONTENTS
• 超声波加工技术概述 • 超声波加工设备与工具 • 超声波加工工艺 • 超声波加工技术应用实例 • 超声波加工技术发展趋势与挑战 • 结论
01 超声波加工技术概述
定义与特点
定义
超声波加工技术是一种利用超声 波振动对材料进行加工的工艺方 法。
特点
具有加工精度高、表面质量好、 适用范围广等优点,尤其适合于 难加工材料的加工。
根据不同的加工需求,选择合 适的工具头能够提高加工效率
、降低表面粗糙度。
工具头的设计和制造需要充分 考虑其与工件的相互作用机制
,以提高加工效果。
冷却系统
冷却系统是保证超声波加工设 备稳定运行的必要部件。
在高强度的超声波振动下,设 备会产生大量的热量,冷却系 统可以有效降低设备温度,防
止过热造成设备损坏。
微细结构的加工
总结词
利用超声波的高频振动和微小磨料, 实现微细结构的加工,满足高精度、 高效率的加工需求。
详细描述
超声波加工技术利用微小磨料在超声 波振动下的高速冲击和研磨作用,实 现对微细结构的加工。该技术能够有 效地提高加工精度和效率,同时减少 对工件的损伤。
非金属材料的加工
总结词
利用超声波的高频振动和磨料冲击作用,实现对非金属材料的加工。
超声波加工技术在制造业中的应用及发展

超声波加工技术在制造业中的应用及发展超声波加工技术是一种利用超声波对物质进行机械加工、分解、焊接、切割等加工的技术。
它是一种非接触式的加工方式,具有精度高、能耗低、对周围环境污染少等优点,在现代制造业中得到了广泛的应用。
本文将从加工原理、加工方法和应用领域三个方面对超声波加工技术在制造业中的应用及发展进行介绍和分析。
一、加工原理超声波加工技术利用超声波在物质中传播的特性进行加工。
超声波是指频率高于20kHz的机械波,其较高的频率和短波长使得其穿透物质时能够对物质产生微小的振动和摩擦,从而引起物质的变形或者分解,实现加工的目的。
在超声波加工中,超声波通过换能器(transducer)转化成为机械振动,振动的幅度通常为微米级别,而频率通常在20kHz以上。
这种高频机械振动将加工部件(如工具或者刀具)的摩擦系数和压力增加了几倍以上,从而达到了超声波加工的目的。
二、加工方法1. 超声波冲击加工超声波冲击加工利用机械冲击和高频超声波的相互作用,将超声波的能量转化成冲击能量,实现对金属、陶瓷、石材等硬脆材料的加工。
冲击加工具通常是锥形、球形或者螺旋形的,通过超声波的震动驱动,加工部分会发生爆炸性的形变和裂纹,从而实现加工的目的。
超声波冲击加工的优点是能够进行精细加工,但加工速度较慢,只适用于小加工量的生产。
2. 超声波切割加工超声波切割加工是利用超声波在物质中产生的高频振动,通过对切割工具施加高频振动,实现对材料的切割。
切割工具通常是金属薄板、金属丝、钻头和锯片等。
切割时,超声波的能量通过切割工具传递到材料中,使其发生振动和变形,从而实现切割的目的。
超声波切割加工的优点是能够进行高速切割,不会产生粉尘和机床磨损,但是对材料有一定的厚度限制。
3. 超声波焊接超声波焊接是利用超声波在物质中产生的高频振动,通过对金属表面施加振动,从而实现金属的焊接。
焊接时,将金属部分挤压在一起,在部件接触面上施加高频振动,使金属表面微观颗粒之间不断摩擦和碰撞,达到焊接的目的。
机械制造超声波加工技术

机械制造超声波加工技术超声波加工技术是一种基于超声波振动原理的先进制造技术。
机械制造界一直致力于开发新的工艺和技术,以提高生产效率、降低成本,并改善产品的质量和性能。
超声波加工技术正是应运而生的一种创新技术,其在机械制造领域具有广阔的应用前景。
超声波加工技术是利用超声波的能量来完成材料的切削、焊接、清洗等一系列加工操作。
通过超声波的高频振动,可使切削刀具或焊接头在材料表面产生微小的振动,从而实现对材料的切割和连接。
与传统机械加工相比,超声波加工技术具有以下几个优势。
首先,超声波加工技术可以实现对硬脆材料的高效加工。
传统机械加工对于硬脆材料的加工往往面临着困难,易导致材料的断裂和损伤。
而超声波加工技术通过高频振动的方式,在切削或焊接过程中可以减小切削力或焊接温度,从而有效降低材料的碎裂风险。
其次,超声波加工技术可实现对复杂形状材料的加工。
由于超声波加工技术不需要依赖于切削刀具的尺寸和形状,因此可以对复杂形状的材料进行加工,如曲面零部件、微细结构等。
这使得超声波加工技术在航空航天、电子器件制造等领域具有重要的应用价值。
此外,超声波加工技术还可以实现对敏感材料的非接触式加工。
对于某些特殊材料,如光学玻璃、陶瓷等,传统机械加工技术会对其表面造成划伤和变形,降低其性能。
而超声波加工技术可以通过非接触的方式进行加工,避免对材料表面的损伤,从而保证了材料的质量和性能。
此外,超声波加工技术还可以实现对微细材料的加工。
在微细加工领域,小尺寸的刀具和高精度的加工设备十分重要。
而传统机械加工技术往往无法满足微细材料的加工需求。
超声波加工技术通过微小振动的方式,可以实现对微细材料的精密加工。
综上所述,机械制造超声波加工技术是一种具有广泛应用前景的先进制造技术。
通过超声波的高频振动,可以实现对硬脆材料、复杂形状材料、敏感材料和微细材料的高效加工。
随着技术的不断发展和创新,相信超声波加工技术将在机械制造领域发挥重要的作用,为产业的发展提供强大支持和推动力。
超声波加工

超声波加工
▪ 超声波加工具有如下特点:
3)由于去除加工材料是靠极细小磨粒的瞬时局部 的撞击作用,故工件表面的宏观作用力很小, 不会引起变形和烧伤,表面粗糙度也较好,加 工精度可达0.01~0.02mm ,而且可以加工薄 璧、窄缝、低刚性工件。
超声波加声波加工设备
4 超声波加工的应用
模具制造工艺学
超声波加工
▪ 超声波加工具有如下特点:
1)适于加工各种硬脆材料,特别是不导电的非金 属材料(如陶瓷、玻璃、宝石、金刚石等), 扩大了模具材料的选用范围。
超声波加工
▪ 超声波加工具有如下特点:
2)工具可用较软的材料做成较复杂的形状,不需 要工具相对于工件做复杂的运动,机床结构也 很简单,操作方便。
超声波加工
▪ 2 超声波加工设备
(3)机床及磨料工作液,超声波加工机床一般比 较简单,包括支撑声学部件的机架、工作台 面,以及使工具以一定压力作用在工件上的 进给机构等。平衡锤是用于调节加工压力的。 工作液一般为水,为了提高表面质量,也有 用煤油的。磨料常用碳化硼、碳化硅或氧化 铝。简单机床的磨料是靠人工输送和更换的。
模具制造工艺学
▪ 超声波加工
超声波加工也称超声加工,是利用工具端面做超声频振动, 并通过悬浮液中的磨料加工脆硬材料的一种加工方法。
超声波加工
▪ 1 基本原理与特点
超声波加工
▪ 1 基本原理与特点
加工时,在工具和工件之间加入液体和磨料混 合的悬浮液,并使工具以很小的力 F 轻轻压在工 件上。超声换能器产生16000HZ以上的超声频纵 向振动,并借助于变幅杆把振幅放大到0.05— 0.1mm左右,驱动工具端面做超声振动,从而产 生高频、交变的液压冲击波,迫使工作液中的悬 浮磨粒以很大的速度和加速度不断撞击、抛磨被 加工表面,把加工区的工件局部材料粉碎成很细 的微粒,并从工件上撞击下来。
简述超声波加工的特点和应用范围

简述超声波加工的特点和应用范围
超声波加工是一种利用超声波来进行物体加工和处理的技术。
这种技
术具有许多独特的特点和应用范围,下面将对其进行简要介绍。
一、特点
1. 高精度:超声波可以精确地控制物体表面的处理程度,从而实现高
精度的加工效果。
2. 高效率:超声波加工速度快、效率高,可以大大提高生产效率。
3. 低损耗:超声波可以在不损坏物体表面的情况下进行处理,因此不
会造成物体的损耗,保持物体完整性。
4. 处理范围广泛:超声波可以用于处理各种材料,如金属、陶瓷、塑料、纸张等。
5. 节能环保:超声波加工不需要使用化学物质或其他有害物质,可以
减少环境污染,因此具有良好的节能环保效果。
二、应用范围
1. 加工生产:超声波加工可用于制造各种零部件及产品的加工,如飞机、汽车、电器等产品。
2. 精密加工:超声波加工可用于精密的加工领域,例如制造电子元件、医疗器械、钟表等精密产品。
3. 清洗处理:超声波还可用于清洗处理,例如清洗机器零件、玻璃器
皿、金属零件等。
4. 软物料处理:超声波可用于软物料的加工处理,如医用棉、食品、生物学样品等。
5. 医疗领域:超声波在医疗领域的应用范围也很广泛,如超声波胶囊内镜、超声治疗、透析等。
总之,超声波加工成为现代工业生产中不可或缺的一种技术。
其应用范围广泛,能够提高生产效率、降低成本,同时还有良好的节能环保效果。
随着技术的不断发展,相信超声波加工在未来还会发挥更加重要的作用。
第7章 超声波加工技术.

4)磨料悬浮液的类型及浓度的影响 • 磨料悬浮液有水、汽油、煤油、酒精、亚麻仁油、变 压器油、甘油等,其中水的冷却性和湿润性良好,相 对生产率最高,其次是汽油或煤油。 • 磨料悬浮液的浓度,直接影响加工速度。磨料悬浮液 浓度低,加工间隙内磨粒少,特别在加工面积和深度 较大时可能造成加工区局部无磨料的现象,使加工速 度大大降低。随着悬浮液中磨料浓度的增加,加工速 度也增加。 • 但浓度太高时,磨粒在加工区域的循环和对工件的冲 击都受到影响,也会导致加工速度降低。通常采用的 浓度为磨料对水的重量比约 0.5~1左右。
5.1.2 超声加工的特点 1)适合加工各种硬脆材料,尤其是玻璃、陶瓷、宝石、石 英、锗、硅、石墨等不导电的非金属材料。也可加工淬火钢、 硬质合金、不锈钢、钛合金等硬质或耐热导电的金属材料, 但加工效率较低。 2)由于去除工件材料主要依靠磨粒瞬时局部的冲击作用, 故工件表面的宏观切削力很小,切削应力、切削热更小,不 会产生变形及烧伤,表面粗糙度也较低,可达Ra0.63-0. 08um,尺寸精度可达正负0.03mm,也适于加工薄壁、窄 缝、低刚度零件。 3)工具可用较软的材料、做成较复杂的形状,且不需要工 具和工件作比较复杂的相对运动,便可加工各种复杂的型腔 和型面。一般,超声加工机床的结构比较简单,操作、维修 也比较方便。 4)超声加工的面积不够大,而且工具头磨损较大,故生产 率较低。
• 3)要求超声波发生器结构简单、工作可靠、价格便宜、体积小等。
7.2.2 超声波振动系统
• 超声波振动系统主要包括换能器、变幅杆、工具。其作用 是将由超声波发生器输出的高频电信号转变为机械振动能, 并通过变幅杆使工具端面作小振幅的高频振动,以进行超 声加工。
• 1、换能器 换能器的作用是将高频电振荡转换成机械振动。目前,根 据其转换原理的不同,有磁致伸缩式和压电式两种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超声波加工技术
一.简介
我们这组这次讲的是超声波加工技术.超声波加工利用超声振动的工具,带动工件和工具间的磨料悬浮液,冲击和抛磨工件的被加工部位,使其局部材料被蚀除而成粉末,以进行穿孔、切割和研磨等,以及利用超声波振动使工件相互结合的加工方法。
超声加工技术是特种加工技术之一,往往能应用于传统加工难以完成的难加工材料上。
超声去除加工、超声表面光整加工、超声焊接加工、超声处理等超声加工技术。
二.超声波及其特点
1.声波类型
振动在弹性介质内的传播称为波动, 简称波。
波动的物理实质是能量的传递过程。
可闻声波:频率在16~160000 Hz之间的声波。
次声波:频率低于16 Hz的声波。
超声波:频率高于16000 Hz的声波。
特超声波:频率高于1010 Hz的声波。
2、超声波的基本特性
(1)超声波与声波一样,在气体、液体和固体等不同弹性介质中传播时,其传播速度不同。
(2)超声波能传递很强的能量,它对其传播方向上的障碍物施加压力(声压)。
超声波是一种纵波,其振动能量的强弱可用能量密度来衡量, 其能量密度可达100W/cm2 以上。
(3)超声波在液体介质中传播时,可在界面上
产生强烈的冲击和空化作用,强化加工过程的进
行。
(4)超声波会产生反射、干涉和共振现象,出
现波的叠加作用,从而获得更大的加工能量。
三.超声波加工的原理与特点
1、超声波加工的基本原理
超声波加工是利用超声波作动力,推动磨料
以极高的速度冲击工件表面,工件材料在磨料打击下被破坏、脱落。
A.超声发生器将交流电转变为超声电振荡;
B.换能器将电振荡转变为机械振动;
C.变幅杆将振幅放大至0.05~0.1mm,驱动工具作超声振动。
D.工具推动磨料高速撞击、抛磨工件,击碎工件表面材料,并使之去除;
E.工作液产生的液压冲击波和空化作用加快了表面材料的裂纹扩展和破坏。
F.超声波加工是机械撞击、抛磨、空化作用的综合结果。
其中撞击起主要作用。
2、超声波加工的特点
(1)适合加工各种硬脆材料,特别是不导电的非金属材料,
例如玻璃、陶瓷、石英、宝石、金刚石等。
(2)工具可用较软的材料做较复杂的形状。
(3)工具与工件相对运动简单,使机床结构简单。
(4)切削力小、切削热少,不会引起变形及烧伤,加工精
度与表面质量也较好。
四.超声波加工设备
超声波加工设备又称超声波加工装置,尽管不同功率
大小、不同公司生产的超声波加工设备在结构形式上各不相
同,但其组成部分基本相同。
超声波加工装置一般都由超声发生器、超声振动系统
(声学部件)、机床本体和磨料工作液循环系统等部分组成。
超声波加工装置 1234
56781—冷却器;2—磨料悬浮液抽出;3—工具;4—工件;5—磨料悬浮液送出;6—变幅杆;
7—换能器;8—高频发生器1-冷却器 2-磨料悬浮液抽出 3-工具 4-工件 5-磨料悬浮液送入 6-变幅杆 7-换能器 8-超声波发生器
1、超声发生器
作用:将工频交流电转变为具有一定功率输出的超声频电振荡。
2、声学部件(换能器、变幅杆和工具。
)
作用:将超声波发生器输出的高频率电能转变为机械振动能,并通过变幅杆使工具端面作高频率、小振幅振动以进行超声加工。
五.超声波技术加工应用
A.超声波加工的生产率虽然比电火花加工和电解加工低,但其加工精度和表面质量都优于它们。
B.更重要的是可以加工它们难以加工的半导体和非金属的硬脆材料,如玻璃、陶瓷、石英、硅、玛瑙、宝石、金刚石等。
C.对于电火花加工后的一些淬火钢、硬质合金冲模、拉丝模、塑料模等,最后还经常用超声波抛磨、光整加工,使表面粗糙度进一步降低。
1、型(腔)孔加工
超声波目前主要应用在脆硬材料的圆孔、型孔、型腔、套料、微细孔等的加工。
2、切割加工
对于难以用普通加工方法切割的脆硬材料如陶瓷、石英、硅、宝石等用超声波加工具有切片薄、切口窄、精度高、生产率高、经济性好等优点。
3、超声波清洗
原理:基于清洗液在超声波作用下产生空化效应的结果。
空化效应产生的强烈冲击液直接作用到被清洗的部位,使污物遭到破坏,并从被清洗表面脱落下来。
应用:主要用于几何形状复杂、清洗质量要求高而用其它方法清洗效果差的中小精密零件,特别是工件上的深小孔、微孔、弯孔、盲孔、沟槽、窄缝等部位的精清洗,生产率和净化率都很高。
目前在半导体和集成电路元件、仪器仪表零件、电真空器件、光学零件、医疗器械等的清洗中应用。
4、超声波焊接
原理:利用超声振动作用去除工件表面的氧化膜,使工件露出本体表面,使两个被焊工件表面在高速振动撞击下摩擦发热并亲和粘在一起。
应用:用于焊接尼龙、塑料及表面易生成氧化膜的铝制品,还可以在陶瓷等非金属表面挂锡、挂银,从而改善这些材料的可焊性;焊接一般很难焊接的稀有金属,如钛、钼等。
5、复合加工
采用超声波加工硬质合金、耐热合金等硬质金属材料时加工速度低,工具损耗大,为了提高加工速度和降低工具损耗,采用超声波、电解加工或电火花加工相结合来加工喷油嘴、喷丝板上的孔或窄缝,这样可大大提高生产率和质量。
6、无损检测
利用超声波定向发射、反射、穿透大多数材料特性,在测距、控制、监测及材料测量方面进行无损检测。
7、超声波在生活中的应用
超声波除尘、超声波促进植物生长、超声波侦察海底、超声波诊断疾病等。
总之,超声波加工技术的前景是可观的,无量的。