荧光式光纤温度传感器
光纤测温传感器

10.2.1
半导体光吸收型光纤温度传感器
许多半导体材料在它的红限波长 g (即其禁带宽度对应 的波长)的一段光波长范围内有递减的吸收特性,超过这 一波段范围几乎不产生吸收,这一波段范围称为半导体材 料的吸收端。 例如 GaAs, CdTe 材料的吸收端在0.9 μm 附近,如图10.1(a)所示。
液作为温度敏感探头,并分别采用波长为 655 nm 和 800nm 的光作为敏感信号和参考信号。
10.2.2
热色效应光纤温度传感器
这种温度传感器的组成如图10.4所示。 光源采用卤素灯泡,光进入光纤之前进行斩波调制。探头 外径 1.5mm,长为 10 mm,内充钴盐溶液,两根光纤插入
图10.11示出了信号检测系统的原理框图。采用这样的系
统,在 500℃ ~ 1800℃ 的高温范围内,测温精度高达 0.1%。如果采用光谱校准技术,测温精度可达 0.05% 。
10.3.3
热辐射光纤高温传感器
图10.11
信号检测系统的原理框图
这个原理的。
热辐射光纤高温传感器
热辐射光纤高温传感器是基于光纤被加热要引起热辐射 接触式热辐射光纤高温传感器通常有两种构成方式:分 布黑体腔和固定黑体腔。 固定黑体腔光纤高温传感器,其构成原理如图10.10所示。
图10.10
固定黑体腔光纤高温传感器的构成原理
10.3.3
式中,t t2 t1
;A是常数; I P (T ) 是停止激励时的荧
(T ) 是荧光余辉寿命, 光峰值强度,t 是温度的函数;
是温度的函数。
式(10.1)表明,I P (T ) 和 (T ) 是两个与温度T 有关的 独立的参数,可用于计量温度。联合使用这两个温度参 数实现温度计量的方法是所谓的余辉强度积分法,即
光纤温度传感器的技术原理和相关应用研究

光纤温度传感器的技术原理和相关应用研究摘要:随着光纤技术研究的不断发展,人类的生活越来越离不开光纤传感器。
光纤传感器以其体积小、质量轻、灵敏度高、不易受到电磁的干扰等优点,人类开发出了各种类型的光纤传感器,逐渐取代了传统传感器在人类生活中的应用。
本文详细介绍了光纤的三种特性及其各自的特点,光纤传感器的工作原理和其按照不同方式的分类。
重点讲述了光纤温度传感器的特点以及分布式光纤温度传感器、光纤荧光温度传感器、光纤光栅温度传感器、干涉型温度传感器的测温原理与性质特点,并利用它们的工作原理及特点将光纤温度传感器应用到医疗、建筑、电力系统、航空航天等应用上。
利用光纤温度传感器的工作原理,进行基于马赫-泽德尔干涉仪的测温实验。
并根据这次的测温实验得到光纤温度传感器测温的优缺点,并对光纤温度传感器测温方法的改进提出自己的见解。
关键词:光纤光纤传感温度传感器测温Technical principles and fiber optic temperature sensorsrelated researchAbstract:With the continuous development of optical fiber technology research, human life increasingly inseparable fiber optic sensors. Fiber Optic Sensors its small size, light weight, high sensitivity, less susceptible to electromagnetic interference and other advantages, humans developed various types of fiber optic sensors, gradually replaced the traditional sensors in human life.This paper describes the three characteristics of the fiber of their characteristics, working principle of fiber sensor and its classification in different ways. Focuses on the characteristics of the fiber optic temperature sensor, and temperature characteristics and properties of the principle of distributed optical fiber temperature sensors, fiber optic fluorescence temperature sensors, fiber grating temperature sensor, interferometric temperature sensor, and the use of their works and the characteristics of the fiber optic temperature sensors to the medical, construction, power systems, aerospace and other applications.The use of fiber optic temperature sensor works, based Mach - Ze Deer interferometer temperature experiments. And give advantages and disadvantages of fiber optic temperature sensor according to the temperature of the temperature experiment, and suggest improvements fiber optic temperature sensor temperature measurement method of his own views.Key words:Fiber;Fiber optic sensing;Temperature sensor;Applications;Measuring temperature引言随着人类社会的进步,光电子技术发展的越来越快,其中以光纤技术的发展最为迅速,半个多世纪以来,人们充分享用了由光纤技术带来的文明与便利后,有充分的理由使人们相信,人类已逐步进入由光主宰的技术世。
荧光光纤温度传感器在变压器应用原理

荧光光纤温度传感器在变压器应用原理下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
本文下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Downloaded tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The documentscan be customized and modified after downloading, please adjust and use it accordingto actual needs, thank you!In addition, our shop provides you with various types of practical materials, suchas educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!随着现代科技的不断发展,电力行业在逐渐实现自动化的同时,对于变压器的温度监测与保护需求也日益增加。
(完整版)荧光光纤测温原理

1 概述传统的温度测量技术在各个领域的应用已很成熟,如热电偶、热敏电阻、光学高温计、半导体以及其它领域的温度传感器。
它们的敏感特性主要是以电子信号作为传感媒介,即利用温度对电子信号的调制作用。
而在特殊工况和环境下,如在易爆、易燃、高电压、强电磁场、具有腐蚀性气体、液体,以及要求快速响应、非接触等环境下,光纤温度测量技术具有独到的优越性。
由于光纤本身的电磁绝缘性以及固有的宽频带等优点,使得光纤温度传感器突破了电子温度传感器的限制。
同时由于其工作原理是利用温度对光信号的调制作用,传感或传输方式多采用石英光纤,传输的幅值信号损耗低,可远距离传输,使传感器的光电器件脱离测温现场,避开了恶劣的环境。
在辐射测温中,光纤代替了常规测温仪的空间传输光路,使尘雾、水汽等干扰因素对测量结果影响很小。
光纤质量小、截面小、可弯曲传输,因此可测量不可见的工作空间的温度,便于特殊工况下的安装使用。
光纤由于温度测量的机理与结构形式多种多样,基本上可分为两大类:一类是传光型,它利用某种传感元件把光的强度、波长等与温度有关的信息作为测量信号,由光纤将信号传递到探测器;另一类是传感型,它以光纤本身为传感元件,将光的相位、波长、强度等为测量信号。
光纤温度传感器机理及特点如表1所示。
光纤传光型温度传感器通常使用电子式敏感器件,光纤仅为信号的传输通道;传感型光纤温度传感器利用其本身具有的物理参数随温度变化的特性检测温度,光纤本身为敏感元件,其温度灵敏度较高,但由于光纤对温度以外的干扰如振动、应力等的敏感性,使其工作的稳定性和精度受到影响。
其中荧光衰减型、热辐射型光纤温度传感器已达到应用水平。
其中,荧光光纤测温技术可以实现不同工作情况,尤其是电磁干扰下的温度测量。
荧光是辐射的去活化过程。
荧光材料原子受到某一波长的辐射而激发时,辐射去活化,发出辐射。
荧光是发射光,它涉及吸取和再发射2个过程,每个过程都是瞬间的,但在2个过程之间存在一时间间隔,它依赖于荧光去活化过程。
荧光式光纤温度传感器-初步设计方案

根据贵公司所提供的资料和要求,该荧光式光纤温度传感器采用的发光管为约400nm的蓝紫光,接收管的接收光为约700nm的红光,根据西安固态产品硬件的初步破解来看,其具体方案如图1所示。
图1 荧光式光纤温度传感器结构图
1、发光二极管驱动电路:
该部分电路是通过单片机PIC18F1330的PWM控制轨到轨运算放大器MCP6293E,进而驱动场效应管SI2301实现的。
2、光电接收及放大电路:
反射光通过接收管接收后,通过CMOS型输入运放LMV797进行信号放大,然后通过单片机PIC18F1330的AD引脚采集到单片机中。
3、与底板的通信采用单片机PIC18F1330自带的RS232引脚RX、TX进行通讯。
完整版荧光光纤测温原理

某些稀土荧光材料受激励光照射并激发后,发射出可见的线状光谱,即荧光及其余辉。若荧光的某一参数受温度的调制,且它们的关系呈现出单调性,则可利用这种关系进行测温。线状光谱的强度受激励光源强度及荧光材料的温度影响,如果激励光源强度保持不变,线状光谱的强度为温度的单值函数,且随着时间的推移,通常情况下外界温度越低,线状光谱的强度就越强,余辉的衰减也就越慢。利用滤光片将激励光谱滤除后,测量荧光余辉发射光谱线的强度即可求解出温度大小。但该测量方法要求具有稳定的激励光源强度和信号通道,很难实现,故基本上未得到采用。除此之外,荧光余辉的衰变时间常数也是温度的单值函数。
其中
hc?(1)?E?hE? 12?E——电子位于高能级时具有的能量;式中:2E——电子位于低能级时具有的能量;1——普朗克常数;h?——出射光的频率;
——光在真空中的传播速度;c?——出射光的波长。
实际情况中,我们观测到的并不是某一固定波长的出射光,而是波长处于某EE总是分别位于两条能带之中。在入射光一波段的出射光,这主要是因为和21移除后,发光材料仍会维持一段时间的发光现象,若该段时间与电子完成能级跃-6s)相等,则此出射光称之为荧光;若该段时间比电子完成能级迁的时间(≤10-3s~10s),则此出射光称之为磷光。跃迁的时间长很多(通常为10?h)(荧光物质的发光通常遵守斯托克斯定律,即荧光物质只能受到高能量2?h)的光,换句话说,就是波长短的频率高的光激发的光激发,发出低能量(1??????)出波长长的频率低的光(,。荧光物质的发光机理是:按照分子1212原理,稀土掺杂的氧化物中含有高化合价的正离子,离子在高能射线(激光、紫
FOT-301 系列荧光光纤测温仪产品说明书

和其光电——————————————————————FOT-301系列荧光光纤测温仪产品说明书西安和其光电科技有限公司 地址:西安市高新区新型工业园西部大道60号联系人:张文松(先生) 139****1347E-mail:*******************.cn——————————————————————一、测温仪组件FOT-301荧光光纤测温仪共由主机、电源适配器、电源线和通信电缆、光纤探头等部分组成。
1、主机:测温仪主体部分,负责温度的采集和上位机的通信。
和——————————————————————2、电源适配器:为电源主体提供工作电压。
3、电源线:将市电AC220V送入电源适配器。
和其光电——————————————————————4、通信电缆:将测温主机测得数据输送至电脑串口。
5、光纤探头⑥为HP光纤接头⑦为光纤测温探头二、测量原理荧光光纤温度传感器是基于稀土荧光物质的材料特性实现的,当某些稀土荧光物质受紫外线照射并激发后,在可见光谱中发射线状光谱,即荧光及其余辉(余辉为激励停止后的发光)。
荧光余辉的衰变时间常数是温度的单值函数,通常温度越高,时间常数越小。
只要测得时间常数的值,就可以求出温度。
应用这种方法测温的最大优点,就是被测温度只取决于荧光材料的时间常数,而与系统的其他变量无关,例如光源强度的变化、传输效率、耦合程度的变化等都不影响测量结果,较其它测温法原理上有明显优势。
和和其光电——————————————————————三、测量方法1、将电源线接好;2、将HP光纤接头⑥插入HP光纤接口⑤;3、将光纤测温探头⑦放到被测物体表面(接触);4、开启电源开关;5、液晶显示屏显示待机,经过数秒后,显示测试温度,温度测试开始。
四、技术指标型号 FOT-301测温范围 -40~+150℃分辨率 0.1℃测量精度 ±0.5电源 ~220V五、测温仪特点抗电磁干扰高压绝缘精度及灵敏度高耐高压防腐蚀和其光电——————————————————————可远程监测 长寿命能在恶劣的环境下工作,适应性好六、 应用荧光光纤温度传感器及测量系统,具有抗电磁干扰、高压绝缘、稳定可靠、高精度、高灵敏度、微小尺寸、长寿命及耐腐蚀、适应性好等特点,既可以采用接触式的测量方式,也可以采用非接触式的测量方式,非常适合应用于电力、医疗、石油化工、工业微波、食品安全、科学研究和航空航天军事国防等领域的温度实时监测与控制。
光纤温度传感器

5、荧光光纤温度传感器
传光型
功能型 传光型:采用荧光材料粘接或涂敷在光纤端头或被测
物体表面作为敏感部分
功能型:在光纤中掺杂一定浓度的稀有元素作为敏感部
分。 • 根据对荧光信号处理方式的不同,荧光光纤温度传感器可分为荧光强度 型、荧光寿命型。
外汞灯
光纤荧光温度传感器
测温范围为-30~200℃ ,精度为 5℃ .在0~70℃的测温范围内,连 续测温偏差0.04℃ 简单的工作流程图如右图所示
4.光纤光栅温度传感器
工作原理:借助于某种装置将被测参量的变化转化为作用于光纤光栅上的应变 或温度的变化,从而引起光纤光栅布喇格波长的变化通过建立并标定光纤光栅的 应变或温度响应与被测参量变化的关系,就可以由光纤光栅布喇格波长的变化,测 量出被测量的变化。
将被测参 量的变化
光纤光栅上 的应变或温 度的变化
优点: 1、蓝宝石单晶物理化学性能稳定、机械强度好、本质绝缘, 耐腐蚀 2、在0.3~0.4μm波段范围内透光性很好,熔点高达2 045℃ . 3、蓝宝石单晶光纤既有蓝宝石单晶的优良性能又有光波导 的特点, 测温范围在500~2 000℃
缺点:当温度高于1 700℃时,表面有所变化,应用受到一定的 限制
传输型:光导纤维只起到传输光的作 用,必须在光纤端面加装其它的敏感 元件才能构成新型传感器的传输型传 感器。
三、两种传感器的举例介绍
1
功 能 型
干涉式光纤温度传感器 分布式光纤温度传感器
2 3
4
反射式光纤温度传感器
光纤光栅温度传感器
1.干涉式光纤温度传感器
• 属于相位调制式功能型光纤温度传感器,主要应用于精密测 温领域 • 工作原理:当两根在温度场的光纤在不同的温度场工作时, 其折射率会产生差异,随之光程也会发生差异.若此时进行耦 合,就会产生干涉现象.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京普罗迪科技有限公司
描述
不同于传统的温度传感器,荧光式光纤温度传感器是利用纯光学原理进行参数量测的温度传感器,抗电磁干扰、高压绝缘、尺寸微小、稳定可靠、灵敏度高、寿命长、本质安全,具有传统传感技术所无法比拟的优势(见附表1)。
根据上述特点,荧光式光纤温度传感器的细分市场定位于:高压电气设备监控(如发电机、变压器、开关柜、互感器等)、工业微波(如食品加工、硫化工艺、微波消解/萃取仪、消毒/干燥设备等)、磁医疗设备(如核磁设备、肿瘤热疗仪等)、石油化工/煤炭等防爆工业环境、航空/舰船/高端科研等具有高压、电磁干扰环境的温度监控市场。
荧光式光纤温度传感器性能稳定,可靠性高,在工业应用中受到普遍青睐。
它的出现突破了高压、电磁场环境对电子元器件的束缚,填补了工业微波、大型电力设备等高压、电磁环境中安全温度监控和检测的技术空白,目前,光纤传感技术已成为智能电网建设的关键技术之一。
其发展已经进入摆脱进口、实现技术和服务本地化,通过规模化生产大幅降低成本、进入工业化应用推广的关键阶段。
北京普罗迪科技有限公司荧光式温度传感器技术参数一览表:
测温范围:-40℃~+200℃
精度:±1.0℃
分辨率:0.1℃
光纤长度:1、3、6、9M可选
采样频率:1s
光纤耐温:-50℃~+250℃
数据传输方式:GPRS/CDMA
电源电流:<500mA(24V DC)
电源电压:24V±20%VDC
额定功率:36W
安全标准:EN61010-1:1993/A2:1995
震动:IEC68-2-6:3G;11-200Hz,任意轴向
冲击:IEC68-2-27:50G;11ms,任意轴向
电磁兼容标准:61326-1
电磁干扰:89/336/EWG
环境等级:IP65(NEMA-4)
系统工作温度:-20℃~+65℃
系统储存温度:-40℃~+85℃
相对湿度:10~95%,无冷凝
尺寸:TBD
重量:TBD。