一次函数追击问题PPT讲稿
合集下载
人教版七年级上册数学:实际问题与一元一次方程相遇追及问题打印ppt课件

AB 36千米
甲
乙
2 、解放军某部从营地出发,以每小时6千米的速 度向目的地前进,8小时后部队有急事,派通讯员 骑摩托车以每小时54千米的速度前去联络.多长 时间后,通讯员能赶上队伍?
家
4×0
4X
.5
8 X
学校
地追 及
变式 练习
分
析
1、 A、B两车分别
线段图分析:
停靠在相距115千米的
A
B
甲、乙两地,A车每小
老师寄语:
千里之行始于足下, 抓住今天就是成功的开始。
任何事,只要努力就精彩!
人教版七年级上册数学:实际问题与 一元一 次方程 相遇追 及问题 打印ppt 课件
列方程是解决实际问题的有效途径之一
1、审题:分析题意,找出题中的已知量、 未知量 及其 相等关系 2、设元:选择一个适当的未知数用字母表示(如X) 3、列方程:根据题意找出的相等关系列出方程 4、解方程:求出未知数的值 5、检验:检查求得的值是否正确和符合实际情形 6、答:写出答案
(2)若两人同时同地同 向出发,多长时间两人 首次相遇?
●
列方程:5x + 400 = 7.5x
相等关系: 小王路程 + 400 = 叔叔路程
变式 练习
分
析
1、 A、B两车分别 停靠在相距115千米的
线段图分析:
甲、乙两地,A车每小
A
B
时行50千米,B车每小
甲
乙
时行30千米,A车出发
1.5小时后B车再出发。
人教版七年级上册数学:实际问题与 一元一 次方程 相遇追 及问题 打印ppt 课件
人教版七年级上册数学:实际问题与 一元一 次方程 相遇追 及问题 打印ppt 课件
追及问题讲课课件

题型1:甲、乙两名同学练习百米赛跑,甲
每秒跑5米,乙每秒跑4米,如果甲让乙先跑3
秒,那么甲经过几x 秒可以追上乙?
5x米
起点
3×4
A
B
4x米
5x=3 ×4+4x 路程相等
追上 C
变式1:甲、乙两名同学练习百米赛跑,甲每
秒跑5米,乙每秒跑4米,如果甲让乙先跑10米,
那么甲经过几x 秒钟可以追上乙?
甲:
乙:
10米
5x
4x
10+4x=5x
变式2:甲、乙两名同学练习百米赛跑,甲每秒跑5米, 乙每秒跑4米,如果甲乙同时到达终点,那么甲应该让
乙先跑多x少秒?
甲:
100米
乙:
4x
4 ×?20
4x+ 4 ×20 = 100
题型2:甲、乙两站相距300千米,一列快车
变式1:甲、乙两站相距300千米,一列快车从
甲站开出,每小时行100千米,一列慢车从乙站 开出,每分钟行800米。
若两车同时开出,同向而行,快车在慢车的后面,
多少小时后快车追上慢车?
800米 = 0.8千米
甲
300千米
乙 0.8 × 60=48千米/时
快
慢
48x
100x
快
100x = 300 + 48x
解:设乙登上山顶需要x分钟,根据题意得: 15x-10x=30 × 10 解得:x=60 30+60= 90(分) 15 ×60 = 900(米)答:
变式2:甲、乙两站相距300千米,一列快车
从甲站开出,每小时行100千米,一列慢车从 乙站开出,每小时行50千米。 若两车同时开出,同向而行,快车在慢车的后 面,多少小时后快车与慢车相距50千米?
追及问题PPT课件

小胖X分钟后行的路程
爸爸
170米/分
爸爸追上小胖用了X分钟
离学校还有多远? 学校
CHENLI
8
*拓展.
小胖家离学校1000米,小胖早上以70米/分的速度 从家出发去学校上学,5分后,小胖的爸爸发现他忘了带语文书。 于是,爸爸立即以170米/分的速度去追小胖,并且在途中追上了他。 爸爸追上小胖用了多长时间?追上小胖时,离学校还有多远?
24个
8x个
14x个
CHENLI
7
*拓展.
小胖家离学校1000米,小胖早上以70米/分的速度 从家出发去学校上学,5分后,小胖的爸爸发现他忘了带语文书。 于是,爸爸立即以170米/分的速度去追小胖,并且在途中追上了他。 爸爸追上小胖用了多长时间?追上小胖时,离学校还有多远?
70米/分
小胖
5分钟行的路程 家
CHENLI
9
CHENLI
10
小胖上学时忘了带文具盒,爸爸发现时,小胖刚好离家512米, 正以72米/分的速度走向学校,爸爸骑车以200米/分的速度追赶, 爸爸几分钟后在途中追上小胖?
小胖
爸爸 第一段路程512米
( 第二段路程 )
( 爸爸一共行的路程 )
等量关系:
小胖第一段路程+小胖第二段路程 = 爸爸一共行的路程
512米
72x米
200米
5x米
5x170 米
CHENLI
6
(2)师徒两人加工同样的零件。徒弟每小时做8个ቤተ መጻሕፍቲ ባይዱ 师傅每小时做14个,徒弟先做了24个后,师傅做了几小时后, 师徒两人做的零件数量相等?
( 徒弟 ) ( 先做24个 ) ( x小时后做的零件)
( 师傅 )
一次函数应用经典课件pptPPT课件

在牛顿第二定律中,力和加速度之间的关系是一次函数。通过测量力和加速度,我们可以确定物体的 质量。此外,在分析物体的运动时,我们也需要用到一次函数来描述力和加速度随时间的变化关系。
在实际应用中,一次函数在解决车辆动力学问题、航空航天器设计等领域中具有广泛的应用。
03
一次函数的实际案例
人口增长模型
总结词
练习题
某股票价格在过去一年内从10元上涨到20元,如果市场环境发生 变化,股票价格可能会如何变化?
THANKS
感谢观看
在实际应用中,线性回归分析被广泛应用于经济、金融、医 学、农业等领域,例如预测股票价格、评估广告效果、研究 疾病与年龄之间的关系等。
速度和加速度的计算
速度和加速度是一次函数在物理学中的重要概念。速度是 描述物体位置变化快慢的物理量,而加速度是描述速度变 化快慢的物理量。
通过一次函数,我们可以表示物体在直线运动中的速度和 加速度随时间的变化关系。这对于理解运动学的基本原理 以及解决相关问题具有重要意义。
一次函数应用经典课件pptppt课 件
• 一次函数的基本概念 • 一次函数的应用场景 • 一次函数的实际案例 • 一次函数与其他数学知识的结合 • 一次函数在实际问题中的应用练习
01
一次函数的基本概念
一次函数的定义
一次函数是形如$y = ax + b$的函数,其 中$a$和$b$是常数, 且$a neq 0$。
Hale Waihona Puke 经济学中的成本和收益问题在经济学中,成本和收益是核心概念之一。通过一次函数,我们可以表示成本和 收益与生产量之间的关系。例如,固定成本、可变成本与总成本之间的关系,以 及总收入与销售量之间的关系。
了解成本和收益的变化规律对于企业制定生产计划、进行市场预测以及制定价格 策略等具有重要意义。
在实际应用中,一次函数在解决车辆动力学问题、航空航天器设计等领域中具有广泛的应用。
03
一次函数的实际案例
人口增长模型
总结词
练习题
某股票价格在过去一年内从10元上涨到20元,如果市场环境发生 变化,股票价格可能会如何变化?
THANKS
感谢观看
在实际应用中,线性回归分析被广泛应用于经济、金融、医 学、农业等领域,例如预测股票价格、评估广告效果、研究 疾病与年龄之间的关系等。
速度和加速度的计算
速度和加速度是一次函数在物理学中的重要概念。速度是 描述物体位置变化快慢的物理量,而加速度是描述速度变 化快慢的物理量。
通过一次函数,我们可以表示物体在直线运动中的速度和 加速度随时间的变化关系。这对于理解运动学的基本原理 以及解决相关问题具有重要意义。
一次函数应用经典课件pptppt课 件
• 一次函数的基本概念 • 一次函数的应用场景 • 一次函数的实际案例 • 一次函数与其他数学知识的结合 • 一次函数在实际问题中的应用练习
01
一次函数的基本概念
一次函数的定义
一次函数是形如$y = ax + b$的函数,其 中$a$和$b$是常数, 且$a neq 0$。
Hale Waihona Puke 经济学中的成本和收益问题在经济学中,成本和收益是核心概念之一。通过一次函数,我们可以表示成本和 收益与生产量之间的关系。例如,固定成本、可变成本与总成本之间的关系,以 及总收入与销售量之间的关系。
了解成本和收益的变化规律对于企业制定生产计划、进行市场预测以及制定价格 策略等具有重要意义。
《一次函数》ppt完美课件3

x y=-x+1
的正、负对函数图象有 什么影响?
当k>0时,y随x的增
大而增大;当k<0时,y
随x的增大而减小.
y=-2x+1
《一次函数》完美实用课件3(PPT优 秀课件 )
《一次函数》完美实用课件3(PPT优 秀课件 )
五、回顾与反思
在本节课中,我们经历了怎样的过程?有怎 样的收获?
1.一次函数的图象与性质,常数k,b的意义 和作用.
《一次函数》完美实用课件3(PPT优 秀课件 )
3.备选题.
(1)将直线y=3x向下平移2个单位,得到直
线
.
(2)下列一次函数中,y随x的增大而减小的
是( )
A.y3x2 B.y 1 x 1 3
C.y3 3x D.y 31 x
《一次函数》完美实用课件3(PPT优 秀课件 )
《一次函数》完美实用课件3(PPT优 秀课件 )
第十九章 一次函数
19.2 一次 函数 19.2.2 一次函数(第二课时)
学习目标
1、正确理解一次函数的图象与k,b之间的关系。 2.体会研究函数的一般步骤与方法。
一、复习与反思
1.正比例函数的图象与性质.
一般地,正比例函数y=kx(k是常数,k≠0)的图象 是一条经过原点的直线,我们称它为直线y=kx.
《一次函数》完美实用课件3(PPT优 秀课件 )
三、巩固与应用
画出函数y=2x-1与y=-0.5x+1的图象.
x
01
y=2x-1 y
y=2x-1 -1 1
y=-0.5x+1 1 0.5
1
-1 O
-1
1
x
y=-0.5x+1
(完整版)追及问题优质ppt讲义

小游戏
数学谜语
1 2 5 6 7 8 9 打一成语 丢三落四
7÷2
打一成语 不三不四
八分之七
打一成语 七上八下
大同小异 打一数学名词 近似值
周而复始 打一数学名词
循环
3 3 3 ,5 5 5 打一成语 三五成群
爷爷打先锋 打一数学家的名字 祖冲之
话题 同学们一起协商讨论,自编一道复杂的追及问题并且解答
80千米/时
20千米/时
乌龟先走4小时的路程=路程差
?小时追上 路程差:20×4=80(千米)
路程差÷速度差=追及时间
80÷(60-20)=2(小时)
我爱展示2
黄艳以75米/分的速度步行去县城,出发1小时后,陆军以575米/分的速度从同一地点出发 沿同一条路线去追黄艳。追上时,黄艳还没到县城,求陆军出发后几分钟追上黄艳?
客1×96
甲
货
乙 路程差
(96-80)×(5-1)=64(千米) 64+1×96=160(千米)
我爱展示1
甲、乙两人分别从A、B两地出发,同向而行,甲在乙的后面,甲每小时走6 千米,乙每小时走4千米。甲比乙先出发2小时,出发6小时后追上乙。求A、B两 地相距多少千米?
(6-4)×(6-2)=8(千米) 6×2+8/分
黄艳先走1小时的路程=路程差 75×(1×60)=4500(米)
4500÷(575-75)=9(分钟)
我爱展示3
哥哥以80米/分的速度步行放学回家,12分钟后弟弟以200米/分的速度骑自行车从同一学 校放学回家,追上时哥哥还没到家。经过几分钟后弟弟可以追上哥哥?
哥哥先走12分钟的路程=路程差
例题2
小李与小张两人下班后,同时从工厂出发去同一个体育场看球赛,小李骑车速 度是200米/分,小张骑车的速度是225米/分,结果小李比小张晚到10分钟。求 从工厂到体育场路程是多少千米?
人教版七年级上册3.4实际问题与一元一次方程(追及问题)课件22精选优质 PPT

(1) 客车 实际问题与一元一次方程
(1)设爸爸追上小明用了x分钟,
货车
小明每天早上要在7:50之前赶到距家1000米的学校上学。
(1)设爸爸追上小明用了x分钟,
A 设经过x小时甲车追上乙车,
于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了她。
B
小明每天早上要在7:50之前赶到距家1000米的学校上学。
两爸匹爸马 走赛的跑路,程黄=1色80马x 的速度慢是6m者/s,先棕走色马的的速路度程是7+m慢/s,者如果后让黄走马的先跑路5m程,棕=色快马再开始跑,几秒后可以追上黄色马? 者走的路程 爸爸走的路程=180x
求甲、乙二人的速度各是多少? 小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书。 (1)设爸爸追上小明用了x分钟, 小明前5分钟走的路程=80×5
(1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?
(1)设爸爸追上小明用了x分钟,
从爸爸出发到追上小
小明前5分钟走的路程=80×明5,这段时间内小明 走的路程=80x
爸爸走的路程 =180x
等量关系:80×5+80x=180x
小明每天早上要在7:50之前赶到距家1000米的学校上学。小明以80米/ 分的速度出发,5分后,小明的爸爸发现他忘了带语文书。于是,爸爸立即 以180米/分的速度去追小明,并且在途中追上了他。
(答2:)棕两色辆马汽5车秒同后向可而以行追则,上货黄甲车色车先马开。x3小h,客时车从跑A站的经路B站程多少为小时7可0x追千上货米车?,乙车x小时跑 (1)设爸爸追上小明用路了x程分钟为, 55x千米。 根据题意 45+55x=70 A、B两站间的路程为45千米.甲、乙两车同时分别从A、B两站出发,速度分别是每小时70千米和每小时55千米,两车同向而行。
《一次函数》PPT课件(第1课时)

探究新知 观察以上出现的四个函数解析式,它们是不是正比例函
数,那么它们共同的特征如何表示呢? (1) c = 7 t - 35 (2) G = h -105 (3) y = 0.1 x + 22 (4) y = -5 x + 50
y = k(常数)x + b(常数)
探究新知
一般地,形如y=kx+b (k, b 是常数,k≠0)的函数,叫 做一次函数.
(2)由题意得:m+1=0 , 解得m= -1.
探究新知
知识点 2 利用一次函数解答实际问题
汽车油箱中原有油50升,如果汽车每行驶50千米耗油9升,
求油箱的油量y(单位:升)随行驶路程x(单位:千米)变化的
函数关系式,并写出自变量的取值范围,y 是 x 的一次函数吗?
解:油量y与行驶时间x的函数关系式为:y
50
9 50
x,
自变量x的取值范围是0≤x≤
2500 9
.
函数
y
50
9x 50
,是x的一次函数.
巩固练习
如果长方形的周长是30cm,长是xcm,宽是ycm. (1)写出y与x之间的函数解析式,它是一次函数吗? (2)若长是宽的2倍,求长方形的面积.
解:(1)y=15-x,是一次函数. (2)由题意可得x=2(15-x). 解得x=10,所以y=15-x=5. ∴长方形的面积为10×5=50(cm2).
课堂检测
拓广探索题
如图,△ABC是边长为x的等边三角形.
(1)求BC边上的高h与x之间的函数解析式.h是x的一次函数吗?
如果是,请指出相应的k与b的值.
A
解: (1)∵BC边上的高AD也是BC边上的中线,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乙:当0 x 1.5时,设乙路程随时间变化的函数关系式为y乙 k2x图像过(1.5,30) 代入解析式有:1.5k=30 解得:k=20,所以y乙=20x
当1.5 x 7.5时,设乙函数关系式为y乙 k3x b图像过(1.5,30),(7.5,60)
代入解析式有:17..55kk
b b
30 60
解得:bk3252.5所以y乙 =5x 22.5
综上所述,乙的函数解析式为y乙
=
20 5x
x
22.5
0 x 1.5 1.5 x 7.5
(2)甲到达终点时,即y 60代入解析式y 10x, 解得x 6
(3)x 1.5时,此时相距15千米
中考链接:
2008年5月12日14时28分四川汶川发生里氏8.0级强力地震。某市接到上级 通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480 千米的灾区。乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲
甲、乙两人相约从A地到B地游玩,由于乙早上睡懒觉,乙比 甲晚出发了1个小时,最后甲乙同时到达了B地。试画出甲、 乙两人路程y(km)随时间x(h)变化的大致的函数图像。(假设 两人均为匀速运动)
y(km)
B
乙
甲
(A)o 1
x(h)
画图小提示:确定横轴,纵轴表示的量; 确定起点,终点及关键点。
例1:甲、乙两人相约从A地到B地游玩,甲骑自行车,乙骑摩托车 ,下图是他们离开A地的路程y(km)随时间x(h)变化的函数图象 ,据图像回答下列问题:
y(km)
60
乙
甲
y0
o
1 x0
4
6 x(h)
(1)A与B地相距多少千米?
(2)甲、乙二人的速度分别是多少? (3)甲与乙两人何时相遇?此时与A地距离是多少?
解:
(3)设甲、乙两人路程随时间变化的函数关系式分别为y甲 k1x和y乙 k2x b2
甲的图像经过(6,60)代入解析式有
60=6k1 k1 10
乙的图像经过(1,0),(4,60)
4k2k2b2b2060Fra bibliotekbk22
20 20
所以,甲:y=10x,乙:y 20x 20
两人相遇,即10x 20x 20
此时y 10x 10 2=20
解得x 2
所以甲、乙两人在甲出发后两小时相遇,此时距离A地20km
变式训练:甲乙两人同时去B地,甲骑自行车,乙骑摩托中途
乙的车出现问题改为步行,下图是他们路程随时间变化的图像。
y(km)
60
乙
30
甲
15
o
1.5
x0
7.5 x(h)
(1)求出甲、乙两人路程与时间的函数关系式;
(2)甲到达终点用了多长时间;
(3)两人何时相距最远,最远距离是多少?
解: (1)设甲路程随时间变化的函数关系式为y甲 k1x,图像过(1.5,15)代入解析式 有:1.5k=15 ,解得k=10,所以y甲=10x
组出发时开始计时)。图中的折线、线段分别表示甲、乙两组的所走路程 (千米)、(千米)与时间x(小时)之间的函数关系对应的图象。请根据 图象所提供的信息,解决下列问题:
(1)由于汽车发生故障,甲组在途中
停留了______小时;
480
y(千米)
DF
甲
乙
(2)甲组的汽车排除故障后,立即提
C
速赶往灾区。请问甲组的汽车在排除故
障时, 距出发点的路程是多少千米?
A B
(3)为了保证及时联络,甲、乙两组 在第一次相遇时约定此后两车之间的路 程不超过25千米,请通过计算说明,按 E 图象所表示的走法是否符合约定?
o 1.25 3 4.9 6 7 7.25 x(小时)
一次函数追击问题课件
两物体在同一直线或封闭图形上运动
所涉及的追及、相遇问题通常归为追及问 题。
甲乙两人一起参加马拉松比赛,下图是他们的 行程图,s表示行走的路程,t表示时间
s(km)
s(km)
10 甲
10 乙
乙 甲
o
3 图(一)
5 t(h) o
t1
t2 t3 5 t4 t(h)
图(二)
读图小提示:读横轴与纵轴,读起点、终点及关键点