煤炭液化的原理和工艺方法
煤炭液化原理及工艺概述

煤炭液化原理及工艺概述[摘要]介绍了煤炭液化的方法、原理和国内外研究发展概况,指出我国发展煤炭液化技术,实现煤炭液化工业化生产,是保持煤炭工业可持续发展、确保中国能源战略安全、优化能源结构、解决石油短缺、减少环境污染的一条重要途径。
[关键词]煤炭液化技术;间接液化;直接液化中图分类号:tu245 文献标识码:a 文章编号:1009-914x(2013)13-0301-021 概述世界范围内,能源主要由煤炭、石油、天然气、核电、水电等构成,其中石油与煤炭占世界能源消耗的66%,勘探资料表明,按能量计算,全世界煤的可开采量相当于石油资源的10倍。
我国石油、天然气资源较为贫乏,煤炭资源比较丰富。
随着国民经济的持续快速发展,我国的石油消费量逐年增加,同时由于近年来国际石油价格大幅度上涨,石油供需矛盾日趋严峻。
石油作为一种重要的战略物资,对外依存度越大,风险也就越大;加上国际油价的不断攀升,直接影响到国民经济的发展危及到中国的能源战略安全。
在我国,煤炭的利用主要是通过直接燃烧,平均热能利用率仅为30%左右,并且导致了大气污染、酸雨及温室效应等,造成了严重的能源浪费和环境污染。
把煤炭转化为高效、清洁和使用方便的新型燃料势在必行。
煤炭液化是通过化学加工过程把煤炭转化为液体产品的技术,是优质洁净的液体燃料。
因此,为促进能源与环境协调发展,摆脱对石油的依赖和减少煤炭利用造成的环境污染,为了提高煤炭热能利用率,发挥煤炭资源优势,发展煤炭液化技术,实现煤炭液化工业化生产,已成为保障我国能源供应安全、促进经济可持续发展的战略举措。
2 煤炭液化技术的方法和原理通过脱碳和加氢,煤炭可以直接或间接转化成液体燃料,一种方法是焦化或热解,另一种方法是液化。
煤炭液化是将煤经化学加工转化成洁净的便于运输和使用的液体燃料、化学品或化工原料的一种先进的洁净煤技术。
煤炭液化方法包括直接液化、间接液化和共同液化。
2.1 直接液化技术在直接液化过程中,煤的大分子结构首先受热分解,而使煤分解成以结构单元缩合芳烃为单个分子的独立的自由基碎片。
煤炭液化技术

煤炭液化技术[编辑本段] 煤炭液化技术煤炭液化是把固体煤炭通过化学加工过程产品的先进洁净煤技术。
根据不同的加工,使其转化成为液体燃料路线,煤炭液化可分为直接、化工原料和液化和间接液化两大类:一、直接液化直接液化是在高温(400℃以上)、高压(10MPa以上),在催化剂和溶剂作用下使煤的分子进行裂解加氢,直接转化成液体燃料,再进一步加工精制成汽油、柴油等燃料油,又称加氢液化。
1、发展历史煤直接液化技术是由德国人于1913 年发现的,并于二战期间在德国实现了工业化生产。
德国先后有12套煤炭直接液化装置建成投产,到1944年,德国煤炭直接液化工厂的油品生产能力已达到423万吨/年。
二战后,中东地区大量廉价石油的开发,煤炭直接液化工厂失去竞争力并关闭。
70年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。
日本、德国、美国等工业发达国家,在原有基础上相继研究开发出一批煤炭直接液化新工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。
目前世界上有代表性的直接液化工艺是日本的NEDOL 工艺、德国的IGOR工艺和美国的HTI工艺。
这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa降低至17~30MPa,产油率和油品质量都有较大幅度提高,降低了生产成本。
到目前为止,上述国家均已完成了新工艺技术的处理煤100t/d 级以上大型中间试验,具备了建设大规模液化厂的技术能力。
煤炭直接液化作为曾经工业化的生产技术,在技术上是可行的。
目前国外没有工业化生产厂的主要原因是,在发达国家由于原料煤价格、设备造价和人工费用偏高等导致生产成本偏高,难以与石油竞争。
2、工艺原理煤的分子结构很复杂,一些学者提出了煤的复合结构模型,认为煤的有机质可以设想由以下四个部分复合而成。
第一部分,是以化学共价键结合为主的三维交联的大分子,形成不溶性的刚性网络结构,它的主要前身物来自维管植物中以芳族结构为基础的木质素。
煤液化工艺流程

煤液化工艺流程煤液化是一种将煤转化为液体燃料的工艺,它是一种重要的能源转换技术。
煤液化工艺流程包括前处理、液化和气体处理三个主要步骤。
首先是前处理步骤。
这个步骤的目的是去除煤中的杂质和硫、氮等有害元素,提高液化率和产物品质。
前处理主要包括煤的粉碎、干燥和固体处理等步骤。
煤的粉碎是将煤炭颗粒化,增加反应表面积,便于后续的液化反应进行。
煤的干燥是去除煤中的水分,减少反应过程中的蒸汽损失。
固体处理是通过筛分、磁选等工艺,去除煤中的杂质和硫、氮等有害元素。
接下来是液化步骤。
这个步骤是将经过前处理的煤转化为液体燃料。
液化反应主要是在高温和高压条件下进行。
液化反应采用一种或多种催化剂,通过热裂化、加氢和脱氢等反应,将煤中的大分子有机物转化为低碳分子的碳氢化合物。
液化反应可分为间接液化和直接液化两种方式。
间接液化是将煤先转化为合成气,再通过催化反应将合成气转化为合成液体燃料。
直接液化是直接将煤转化为液体燃料,不经过合成气的中间步骤。
最后是气体处理步骤。
这个步骤是将液化反应的产物从气体状态转化为液体状态。
气体处理主要包括减压、分离和精制等过程。
减压是将高压气体放出一部分压力,将气体冷却,促使其液化。
分离是将液化气体分离成液体和气体两个相分离的部分。
精制是将液体进行进一步的处理,去除其中的杂质和硫、氮等有害元素,提高液体的纯度和质量。
总的来说,煤液化工艺流程是通过前处理、液化和气体处理三个主要步骤,将煤转化为液体燃料的过程。
这种工艺通过去除煤中的杂质和有害元素,提高液化率和产物品质,实现了煤能源的高效利用,减少了环境污染。
随着技术的进步和应用的推广,煤液化工艺有望在未来发挥更大的能源转换作用。
第三章 煤炭液化原理与技术

煤的间接液化 是先将煤进行气化,彻底破坏煤中的有机 质大分子结构,转化成以CO和H2为主的合成 气,然后在一定的温度和压力下,通过催化剂 的催化作用,再将合成气转化为液体燃料或化 工原料的过程,也称为CO加氢法。 即煤气化产生合成气,再以合成气为原料 合成液体燃料或化学产品。
主要的煤转化方法: 煤的燃烧、高温干馏、低温干馏、气 化和液化
神华集团煤直接液化项目建成投产后,将成为世界上第一套煤 直接液化的商业化示范装置。项目总建设规模为年产油品500万吨, 分二期建设。一期总投资245亿元,年用煤970万吨,生产各种油品 320万吨,其中汽油50万吨、柴油215万吨、液化气31万吨,苯、混 合二甲苯等24万吨。 首条生产线将于2007年7月建成,2010年左右建成第二条生产 线。 目前美国在建的采用煤间接液化技术的煤制油工厂规模为每天 生产油品5000桶,神华项目建设规模为每天生产油品近1万桶。因 此,该项目也是目前世界上规模最大的煤制油示范工厂。
(二)煤制甲醇和MTG法的原理 首先将煤气化,然后用合成气生产甲醇, 最后将甲醇合成汽油。
煤炭深加工企业发展状况
煤焦化企业: 新疆国际煤焦化有限责任公司是新
疆国际实业股份有限公司投资的一家以优质原煤、 洗精煤、冶金、铸造用焦炭、煤焦化附产品和煤炭 深加工产品的生产及销售为主的大型企业。
新疆国际煤焦化厂项目介绍 工业厂区规划占地面积200万平方米。公司将陆 续在此布置2座50万吨焦化厂。该项目总投资6.8亿元, 分三期建设形成150万吨焦炭生产能力,80%的产品 将出口欧美、日本和独联体国家,建成投产后预计产 值可超过15亿元,年创利税可达2.6亿元。一期工程 计划投资1.5亿元,实现销售收入5亿元。二期工程 2006年实现销售收入10亿元,2007年实现销售收入 15个亿。
煤炭液化技术

煤炭液化技术-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII煤炭液化技术[编辑本段]煤炭液化技术煤炭液化是把固体煤炭通过化学加工过程,使其转化成为液体燃料、化工原料和产品的先进洁净煤技术。
根据不同的加工路线,煤炭液化可分为直接液化和间接液化两大类:一、直接液化直接液化是在高温(400℃以上)、高压(10MPa以上),在催化剂和溶剂作用下使煤的分子进行裂解加氢,直接转化成液体燃料,再进一步加工精制成汽油、柴油等燃料油,又称加氢液化。
1、发展历史煤直接液化技术是由德国人于1913年发现的,并于二战期间在德国实现了工业化生产。
德国先后有12套煤炭直接液化装置建成投产,到1944年,德国煤炭直接液化工厂的油品生产能力已达到423万吨/年。
二战后,中东地区大量廉价石油的开发,煤炭直接液化工厂失去竞争力并关闭。
70年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。
日本、德国、美国等工业发达国家,在原有基础上相继研究开发出一批煤炭直接液化新工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。
目前世界上有代表性的直接液化工艺是日本的NEDOL工艺、德国的IGOR工艺和美国的HTI工艺。
这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa降低至17~30MPa,产油率和油品质量都有较大幅度提高,降低了生产成本。
到目前为止,上述国家均已完成了新工艺技术的处理煤100t/d级以上大型中间试验,具备了建设大规模液化厂的技术能力。
煤炭直接液化作为曾经工业化的生产技术,在技术上是可行的。
目前国外没有工业化生产厂的主要原因是,在发达国家由于原料煤价格、设备造价和人工费用偏高等导致生产成本偏高,难以与石油竞争。
2、工艺原理煤的分子结构很复杂,一些学者提出了煤的复合结构模型,认为煤的有机质可以设想由以下四个部分复合而成。
煤的液化原理及应用

煤的液化原理及应用1. 煤的液化原理煤的液化是指将固态的煤转化为液态燃料的过程。
液化煤是一种高效的能源资源,具有较高的能量密度和较低的环境排放。
煤的液化原理主要包括以下几个方面:1.1 煤的化学组成煤是一种由碳、氢、氧、氮、硫等多种元素组成的有机物质。
不同种类的煤具有不同的化学组成,其中碳含量较高。
1.2 煤的热解过程煤在高温下会发生热解,即煤的大分子结构被破坏,并产生气体、液体和固体副产品。
煤的热解过程可以通过裂解温度、升温速率和保持时间来控制。
1.3 煤的液化反应煤的液化是在高温下将煤与氢气或氢气和氢化物催化剂接触,通过氢解和缩聚反应将煤转化为液态燃料。
煤的液化反应主要包括溶解、裂解、重组和饱和等过程。
2. 煤的液化应用煤的液化在能源领域具有广泛的应用前景。
以下是煤的液化在多个领域的应用介绍:2.1 燃料应用液化煤被广泛用作燃料,可以替代石油、天然气等传统化石燃料。
液化煤具有高能量密度和较低的环境污染排放,可以用于发电、加热和工业用途。
2.2 化学工业液化煤可以作为化学原料,生产石油、化肥、塑料、橡胶等化工产品。
煤的液化过程可以将煤中的碳、氢等元素转化为有机物,满足化学工业对原料资源的需求。
2.3 交通运输液化煤可以用作交通燃料,制造液化煤汽油、液化煤柴油等燃料,用于汽车、火车等交通工具。
液化煤汽油具有较高的能量密度,可以增加车辆续航里程。
2.4 煤化学开发煤的液化过程中产生的液态产物还可以用于进一步的煤化学开发。
煤液化副产品可以作为原料生产碳纤维、炭黑、活性炭等材料,用于材料工业。
3. 结论煤的液化是一种将煤转化为液态燃料的过程,具有广泛的应用前景。
液化煤可以用作燃料、化学原料和交通燃料,同时也可以用于煤化学开发。
煤的液化技术的应用可以提高能源利用效率,减少环境污染,是一种可持续发展的能源替代方案。
煤的液化的原理范文
煤的液化的原理范文煤的液化是指将煤转化成液体燃料的过程。
煤液化技术是一种能够提取煤炭中的有机组分并将其转化为可用燃料的重要方法。
这种技术可以将煤炭转化为不同类型的燃料,如液体燃料、煤气、石油化学原料等。
在煤液化过程中,煤炭的结构和组分会发生改变,产生一系列的液体化合物,从而形成液体燃料。
煤液化的原理主要涉及两个方面:热解和加氢。
热解是指将煤炭通过高温处理,降解成气体和液体产物的过程。
热解过程中,煤炭中的大分子有机物被分解为较小的分子,并生成大量的气体和液体产物。
加氢是指在热解过程中加入氢气,通过氢气和煤炭中的有机物发生反应,将其转化为低碳烃化合物的过程。
煤液化的过程主要分为两个阶段:煤的溶化和煤的裂解。
在煤的溶化阶段,煤炭中的有机物在高温下与溶剂发生反应,形成可溶于液体的化合物。
溶剂通常是氢气和其中一种有机溶剂的混合物,其中氢气的作用是加氢反应,而有机溶剂的作用是促进煤的溶解。
在煤的溶化过程中,煤炭中的大分子有机物会被分解为较小的分子,形成液体燃料的前体物质。
在煤的裂解阶段,溶解后的煤炭在高温和高压的条件下,通过热解反应进一步分解成低碳烃化合物。
这一过程主要包括裂解和重合反应。
裂解反应是指分子内的键被断裂,生成较小的碳链。
重合反应是指烃类分子之间的链偶合,形成较长的碳链。
热解过程中通过调节温度、压力和反应时间等条件,可以控制产物的碳数分布和品质。
煤液化技术具有以下几个优点。
首先,煤液化可以提高煤炭资源利用率,将煤炭转化为可用燃料,减少对石油等化石能源的依赖。
其次,煤液化可以降低燃料的污染性,减少大气污染和温室气体排放。
此外,煤液化还可以生产出更多的高附加值化学产品,提高煤炭综合利用的经济和环境效益。
总之,煤液化是一种可以将煤炭转化为液体燃料的重要技术。
通过热解和加氢两个过程,煤炭中的有机组分可以转化为液体化合物,形成液体燃料的前体物质。
煤液化技术有望成为未来能源领域的重要发展方向,为可持续能源的发展做出贡献。
一种煤炭直接液化的方法
一种煤炭直接液化的方法
煤炭直接液化是将固态煤炭直接转化为液态燃料的过程。
目前广泛应用的煤炭直接液化方法是煤浆化技术。
煤浆化技术是将煤炭加工成煤浆,然后在高温高压条件下,通过催化剂的作用,将煤浆中的煤质转化为液体燃料。
具体的煤浆化过程包括以下步骤:
1. 煤炭粉碎:将煤炭破碎成所需的粉末粒度,通常需要将煤炭粉碎成颗粒大小在几毫米到几十微米之间。
2. 煤浆制备:将粉碎后的煤炭与水混合,添加一定的搅拌剂和分散剂,通过搅拌混合将煤和水充分分散,形成煤浆。
3. 煤浆加热:将煤浆加热到高温,通常需要在350-450的温度下进行加热。
4. 催化反应:在高温下,加入催化剂,对煤浆进行催化反应。
催化剂可以是铁、镍等金属催化剂,通过催化剂的作用,煤浆中的煤质分子会断裂和重组,形成液体燃料。
5. 分离和净化:经过催化反应后的混合物中含有液体燃料、溶剂、催化剂残留物等,需要进行分离和净化,得到纯净的液体燃料。
煤浆化技术具有将固态煤炭直接转化为液态燃料的优势,可以提高煤炭利用效率,减少对石油等化石能源的依赖,且液体燃料可以直接应用于炼油、燃烧等领域。
煤的直接液化ppt课件
.
3
液化残渣气化 制取氢气
原料煤的破碎 与干燥
煤浆制备
液体产物分 馏和精制
工艺流程
加氢液化
气体净化
固液分离
.
4
要把固体煤转化为液体油,就必须采用高温 (400ºC~470ºC)或其它化学方法打碎煤的分子 结构,使大分子物质变成小分子物质,同时要从 外界供给足够量的H,以提高H/C比。
该工艺是把煤先磨成粉,再和自身产生的部分液 化油(循环溶剂)配成煤浆,在高温(450ºC) 和高压(20~30MPa)下直接加氢,获得液化油, 然后再经过提质加工,得到汽油、柴油等产品。1 吨无水无灰煤可产500~600kg油,加上制氢用煤, 约3~4吨原料煤可产1吨成品油。其工艺过程如下 图所示。
.
12
4、操作条件
温度和压力是影响煤直接液化反应进行的两 个因素,也是直接液化工艺两个最重要的 操作条件。
煤的液化反应是在一定温度下进行的,不 同工艺的所采用的温度大体相同,一般为 440~460ºC。当温度超过450ºC时,煤转化 率和油产率增加较少,而气产率增多,因 此会增加氢气的消耗量,不利于液化。
.
8
a)将煤与溶剂制成浆液的形式便于工艺过程 的输送。同时溶剂可以有效地分散煤粒、 催化剂和液化反应生成的热产物,有利于 改善多相催化液化反应体系的动力学过程。
b)依靠溶剂能力使煤颗粒发生溶胀和软化, 使其有机质中的键发生断裂。
c) 溶解部分氢气,作为反应体系中活性氢的 传递介质;或者通过供氢溶剂的脱氢反应 过程,可以提供煤液化需要的活性氢原子。
.
11
按煤直接液化所使用的催化剂的成本和使用 方法分为:廉价可弃型和高价可再生型两种。
廉价可弃型催化剂由于价格便宜,在直接液 化过程中与煤一起进入反应系统,并随反应 产物排出。这类催化剂包括:黄铁矿 (FeS2)、高炉飞灰(Fe2O3)等
煤直接液化工艺流程
煤直接液化工艺流程
《煤直接液化工艺流程》
煤直接液化是一种将煤直接转化成液体燃料的技术,被广泛应用于煤炭资源的高效利用和清洁能源的生产。
其工艺流程是一个复杂的化工过程,需要多种设备和技术的配合,下面将对其工艺流程进行说明。
首先,煤炭的预处理是整个工艺流程的第一步。
煤炭首先经过破碎、磨矿和筛分等步骤,使得煤炭颗粒的大小和形状更适合后续的反应和转化过程。
然后,煤质的选煤是非常关键的一步,通过密度分离、气浮和湿选等技术,将煤中的灰分和硫分等杂质进行分离,提高煤质的纯度。
接下来是煤的干馏。
将经过预处理的煤炭送入干馏炉中,利用高温和缺氧环境进行反应,将煤转化成气体和液体产物。
在此过程中,煤中的碳、氢、氧、氮等元素都将发生化学变化,产生气化气体和焦油等产品。
然后,气化气体进一步处理。
气化气体中含有一定量的一氧化碳和氢气,在进一步利用前,需要经过净化和变换等步骤,去除其中的杂质并转化成合成气,以便后续的加氢和合成反应。
最后是合成。
通过控制合成气的压力和温度,利用催化剂将合成气经过合成反应,生成液体燃料和化工产品。
整个煤直接液化工艺流程中,合成反应是决定产物品质的关键步骤。
总的来说,煤直接液化是一个复杂而又高效的技术,通过一系列工艺流程将煤炭转化成清洁高效的液体燃料。
随着技术的不断进步和设备的不断完善,相信煤直接液化技术将会在未来发挥更加重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
煤炭液化的原理和工艺方法王浩1143084087(四川大学化学工程学院四川成都610225)摘要:我国煤炭资源丰富,煤种齐全,煤炭资源占能源储量的92%,这就决定了我国的能源生产和消费在相当长的时期仍以煤炭为主,目前占70%左右[1]。
随着能源消费总量的增加,煤炭需求总量将增加,大幅度减少煤炭消费是较难办到的。
另外,我国能源分布不均,重心偏西偏北,而经济发达区域偏南偏东,常规能源需要长途运输才能满足需求,而且烟煤型污染已经给生态环境带来严重问题。
因此煤炭液化技术在减少环境污染,提高煤炭利用效率,减少消费,降低CO2排放量,生产便于运输的燃料和工业原料等方面发挥着越来越重要的作用。
关键词:煤炭; 煤炭液化技术; 油料; 化工产品;工业原料; 燃料; 煤化学The Principle and Process of Coal LiquefactionWang Hao 1143084087(College of chemical engineering and technology,Sichuan University,Chengdu,Sichuan 610225)Abstrac t:China is rich in coal resources, which reserves 92% in total energy ,and the kinds of coal is in a complete range.The fact causes that the cost of coal is our main energy production and consumption ,at present about 70%,which will last for a fairly long period of time.With the increase in the total energy consumption, the demand of total coal still keep increasing, thus have made it difficult to reduce the coal consumption .In addition, China's energy distribution is uneven, the major of it distributing in the North and the West.While the East and the South are the economically developed regions .So the conventional energy need long-distance transport to meet the demand of the East and the South. Bituminous coal-based pollution has caused serious problems for ecological environment. Therefore the coal liquefaction technology plays a more and more important role in reducing environmental pollution, improving coal utilization efficiency, reducing consumption, reducing the emissions of CO2, and the production of the convenient-transported fuel and industrial raw materials。
1 引言当前,石油精炼作为生产动力原料、化学原料及化工产品最主要的途径,在整个社会生活的正常运转中发挥着不可替代的作用。
然而随着石油资源的垄断和过度开发,石油变得不再丰富和廉价。
充分利用丰富的煤炭资源,发掘其更大的价值,以代替石油在许多领域中的作用,是人们面对这样一种危机时的自然的反应。
煤炭液化技术就是在这样的背景下引起了广泛的关注。
2 煤炭液化技术的定义煤炭液化技术,简单的说是一种将煤炭转化为液体的技术。
如果从工艺角度来看,它是指在特定的条件下,利用不同的工艺路线,将固体原料煤炭转化为与原油性质类似的有机液体,并利用与原油精炼相似的工艺对煤液化油进行深加工以获得动力原料,化学原料和化工产品的技术系统。
煤炭液化技术的意义:我国煤炭资源丰富,煤种齐全,煤炭资源占能源储量的92%,这就决定了我国的能源生产和消费在相当长的时期仍以煤炭为主,目前占70%左右[1]。
随着能源消费总量的增加,煤炭需求总量将增加,大幅度减少煤炭消费是较难办到的。
另外,我国能源分布不均,重心偏西偏北,而经济发达区域偏南偏东,常规能源需要长途运输才能满足需求,而且烟煤型污染已经给生态环境带来严重问题。
因此煤炭液化技术在减少环境污染,提高煤炭利用效率,减少消费,降低CO2排放量,生产便于运输的燃料和工业原料等方面发挥着越来越重要的作用。
3 煤炭液化技术的分类在讨论煤炭液化技术分类时,部分学者将其广义延伸至煤炭的直接液化(加氢液化),间接液化和高温热解(煤炭干馏)。
这里需要指出的是,热解是煤炭`热加工的基础,煤炭气化和液化过程都存在热解阶段,而在冶金炼焦行业常常采用的高温炼焦,低温干馏技术则是全热解过程,其主要目的是获得工业生产所需的焦炭或半焦[2]。
由于煤中含有较多的无机矿物质及自身分子结构特点,采用普通的热解方法很难从煤中分离出轻质组分。
因此在研究煤热解的过程中,也出现了加氢热解的方式,即煤在高压氢气和催化剂作用下进行的快速热解以制取高热煤气,优质焦油及洁净半焦的工艺过程[3]。
为了明晰概念,在这里同大多数学者一样,将煤炭液化技术分为直接液化和间接液化两大类,排除煤炭的全热解技术(低温干馏、高温炼焦和加氢热解)。
4 煤炭直接液化技术的工艺原理、工艺过程及工艺特点4.1 煤炭直接液化法工艺原理煤的分子结构很复杂,一些学者提出了煤的复合结构模型,认为煤的有机质可以设想由以下四个部分复合而成。
第一部分,是以化学共价键结合为主的三维交联的大分子,形成不溶性的刚性网络结构,它的主要前身物来自维管植物中以芳族结构为基础的木质素。
第二部分,包括相对分子质量一千至数千,相当于沥青质和前沥青质的大型和中型分子,这些分子中包含较多的极性官能团,它们以各种物理力为主,或相互缔合,或与第一部分大分子中的极性基团相缔合,成为三维网络结构的一部分。
第三部分,包括相对分子质量数百至一千左右,相对于非烃部分,具有较强极性的中小型分子,它们可以分子的形式处于大分子网络结构的空隙之中,也可以物理力与第一和第二部分相互缔合而存在。
第四部分,主要为相对分子质量小于数百的非极性分子,包括各种饱和烃和芳烃,它们多呈游离态而被包络、吸附或固溶于由以上三部分构成的网络之中。
煤复合结构中上述四个部分的相对含量视煤的类型、煤化程度、显微组成的不同而异。
上述复杂的煤化学结构,是具有不规则构造的空间聚合体,可以认为它的基本结构单元是以缩合芳环为主体的带有侧链和多种官能团的大分子,结构单元之间通过桥键相连,作为煤的结构单元的缩合芳环的环数有多有少,有的芳环上还有氧、氮、硫等杂原子,结构单元之间的桥键也有不同形态,有碳碳键、碳氧键、碳硫键、氧氧键等。
从煤的元素组成看,煤和石油的差异主要是氢碳原子比不同。
煤的氢碳原子比为0.2 -1,而石油的氢碳原子比为1.6-2,煤中氢元素比石油少得多。
煤在一定温度、压力下的加氢液化过程基本分为三大步骤。
(1)、当温度升至300℃以上时,煤受热分解,即煤的大分子结构中较弱的桥键开始断裂,打碎了煤的分子结构,从而产生大量的以结构单元为基体的自由基碎片,自由基的相对分子质量在数百范围。
(2)、在具有供氢能力的溶剂环境和较高氢气压力的条件下、自由基被嘉庆得到稳定,成为沥青烯及液化油分子。
能与自由基结合的氢并非是分子氢(H2),而应是氢自由基,即氢原子,或者是活化氢分子,氢原子或活化氢分子的来源有:①煤分子中碳氢键断裂产生的氢自由基;②供氢溶剂碳氢键断裂产生的氢自由基;③氢气中的氢分子被催化剂活化;④化学反应放出的氢。
当外界提供的活性氢不足时,自由基碎片可发生缩聚反应和高温下的脱氢反应,最后生成固体半焦或焦炭。
(3)、沥青烯及液化油分子被继续加氢裂化生成更小的分子。
4.2 煤炭直接液化法工艺过程直接液化典型的工艺过程主要包括煤的破碎与干燥、煤浆制备、加氢液化、固液分离、气体净化、液体产品分馏和精制,以及液化残渣气化制取氢气等部分。
氢气制备是加氢液化的重要环节,大规模制氢通常采用煤气化及天然气转化。
液化过程中,将煤、催化剂和循环油制成的煤浆,与制得的氢气混合送入反应器。
在液化反应器内,煤首先发生热解反应,生成自由基“碎片”,不稳定的自由基“碎片”再与氢在催化剂存在条件下结合,形成分子量比煤低得多的初级加氢产物。
出反应器的产物构成十分复杂,包括气、液、固三相。
气相的主要成分是氢气,分离后循环返回反应器重新参加反应;固相为未反应的煤、矿物质及催化剂;液相则为轻油(粗汽油)、中油等馏份油及重油。
液相馏份油经提质加工(如加氢精制、加氢裂化和重整)得到合格的汽油、柴油和航空煤油等产品。
重质的液固淤浆经进一步分离得到重油和残渣,重油作为循环溶剂配煤浆用。
煤直接液化粗油中石脑油馏分约占15%-30%,且芳烃含量较高,加氢后的石脑油馏分经过较缓和的重整即可得到高辛烷值汽油和丰富的芳烃原料,汽油产品的辛烷值、芳烃含量等主要指标均符合相关标准(GB17930-1999),且硫含量大大低于标准值(≤0.08%),是合格的优质洁净燃料。
中油约占全部直接液化油的50%-60%,芳烃含量高达70%以上,经深度加氢后可获得合格柴油。
重油馏分一般占液化粗油的10%-20%,有的工艺该馏分很少,由于杂原子、沥青烯含量较高,加工较困难,可以作为燃料油使用。
煤液化中油和重油混合经加氢裂化可以制取汽油,并在加氢裂化前进行深度加氢以除去其中的杂原子及金属盐。
煤炭直接液化法工艺特点直接液化典型的工艺过程主要包括煤的破碎与干燥、煤浆制备、加氢液化、固液分离、气体净化、液体产品分馏和精制,以及液化残渣气化制取氢气等部分。
氢气制备是加氢液化的重要环节,大规模制氢通常采用煤气化及天然气转化。
液化过程中,将煤、催化剂和循环油制成的煤浆,与制得的氢气混合送入反应器。
在液化反应器内,煤首先发生热解反应,生成自由基“碎片”,不稳定的自由基“碎片”再与氢在催化剂存在条件下结合,形成分子量比煤低得多的初级加氢产物。