二次函数实际应用-05利润 几何面积
二次函数的应用问题:面积、高度、利润等

二次函数的应用问题:面积、高度、利润
等
二次函数是数学中常见的一种函数类型,具有广泛的应用。
在实际生活中,我们可以利用二次函数来解决面积、高度、利润等问题。
面积
当需要求解一个图形的面积时,二次函数可以提供一个可行的解决方案。
例如,假设我们需要求解一个矩形的面积,已知其宽度是x,长度是y,可以建立如下的二次函数关系:
y = ax^2 + bx
其中a和b为常数,可以根据实际情况确定。
通过求解这个二次函数,我们可以得到矩形的面积,从而满足问题需求。
高度
在某些场景下,我们可能需要确定一个物体的最大高度。
例如,炮弹发射的最大高度问题就可以通过二次函数来解决。
假设物体的
高度是y,时间是x,可以建立如下的二次函数关系:
y = ax^2 + bx + c
其中a、b和c为常数,可以通过实验或者推导得到。
通过求
解这个二次函数,我们可以确定物体的最大高度及对应的时间,为
问题解决提供依据。
利润
二次函数还可以应用于经济领域,特别是求解利润相关的问题。
例如,假设某公司的利润随销售量的变化可以建立一个二次函数模型:
P = ax^2 + bx + c
其中P表示利润,x表示销售量,a、b和c为常数。
通过求解这个二次函数,我们可以确定最大利润对应的销售量及其他相关信息,为经济决策提供参考。
总结来说,二次函数在解决面积、高度、利润等问题时具有很大的潜力。
通过建立二次函数模型并进行求解,我们可以得到对应问题的答案,为实际应用提供指导。
二次函数与实际问题(面积问题及利润问题)

10米
D C
A
B
如图,在一面靠墙的空地上用长为24米的篱笆围 成中间隔有两道篱笆的长方形花圃,设AB为x米,面 积为S平方米。 (1)求S与x的函数关系式及自变量x的取值范围;
(2)当x取何值时所围成的花圃面积最大,最大值是 多少?
(3)若墙的最大可用长度为8米,则求围成花圃的最 大面积。
A D
B
设每件降价x元时的总利润为y元. y=(60-40-x)(300+20x) =(20-x)(300+20x) =-20x2+100x+6000 =-20(x2-5x-300) =-20(x-2.5)2+6125 当x=2.5时,y最大为6125 即当定价为60-2.5=57.5时利润最大,最大利润为6125元.
-4 -2
6 4 2
0 2
x
求函数的最值问题,应注意什么?
26.3 实际问题与二次函数 ----面积问题
问题一
例1、用周长为60米的篱笆围成矩形场地,矩 形面积S随矩形一边长L的变化而变化,当L是 A 多少时,场地面积S最大?
例2:如图在△ABC中,AB=8 ㎝,BC=6㎝,∠B=90°,点P从点A开 始沿AB边向点B以2㎝/S的速度移 动,点Q从点B开始沿BC边向点C以1 ㎝/S的速度移动,如果P、Q分别从 A、B同时出发,几秒后的△ PBQ面 C 积最大?最大面积是多少?
a<0时,抛物线开口向 下 ,有最 高 点,函数有最 大 值,
4ac b 2 是 4a 。
2、求下列二次函数的最大值或最小值:
⑴ y=x2+2x-3; ⑵ y=-x2+4x 3、图中所示的二次函数图象的解析 y 2 式为:y 2 x 8 x 13 ⑴若-3≤x≤3,该函数的最 大值、最小值分别为(55 )、 ( 5 )。 ⑵又若0≤x≤3,该函数的最 大值、最小值分别为( 5某商品的进价为每件40元。现在
专题突破05二次函数的实际应用题(针对第22、23题)(原卷版)

专题突破05二次函数的实际应用题(针对第22、23题)【安徽十年真题考点及分值细目表】类型一:利润问题(2018年22题,2017年22题,2013年22题)类型二:抛物线形问题(2022年23题,2012年23题)类型三:几何图形面积问题(2015年22题)类型一:利润问题求实际问题中二次函数的最值问题需注意:若顶点在已知给定的自变量取值范围内,则二次函数在顶点处取最大值或最小值;若顶点不在已知给定的自变量取值范围内,则根据二次函数的性质判断所给自变量取值范围的两端点处对应的函数值大小,从而确定最值。
一.解答题(共9小题)1.(2023•明光市一模)合肥市某公司投入40辆同型号汽车准备成立汽车租赁分公司.市运管所规定每辆汽车的日租金按10元的整数倍收取但不得超过250元.汽车租赁分公司试运营了一段时间后发现营运规律如下:当每辆汽车的日租金不超过150元时,40辆汽车可以全部租赁出去;当每辆汽车的日租金超过150元时,每增加10元,租赁出去的汽车数量将减少2辆.已知租赁出去的汽车每辆一天各项支出共需20元,没有租赁出去的汽车每辆一天各项支出共需10元,另外公司每天还需支出的管理费及其他各项经费共1800元.(1)汽车租赁分公司正式运营的第一周实行优惠活动,在40辆汽车能全部租出的前提下,要求保证每天总租金不低于总支出,则每辆汽车的日租金至少为多少元?(2)每辆汽车的日租金定为多少元时,可使汽车租赁分公司每天的总利润最大?这个最大利润是多少?(总利润=总租金﹣总支出)2.(2023•安庆一模)某公司生产的一种季节性产品,其单件成本与售价随季节的变化而变化.据调查:①该种产品一月份的单件成本为6.6元/件,且单件成本每月递增0.2元/件;②该种产品一月份的单件售价为5元/件,六月份的单件售价最高可达到10元/件,单件售价y(元/件)与时间x(月)的二次函数图象如图所示.(1)求该产品在六月份的单件生产成本;(2)该公司在哪个月生产并销售该产品获得的单件收益w最大?(3)结合图象,求在全年生产与销售中一共有几个月产品的单件收益不亏损?(注:单件收益=单件售价﹣单件成本)3.(2023•蜀山区校级一模)某快餐店给顾客提供A,B两种套餐.套餐A每份利润8元,每天能卖90份;套餐B每份利润10元,每天能卖70份.若每份套餐A价格提高1元,每天少卖出4份;每份套餐B价格提高1元,每天少卖出2份.(注:两种套餐的成本不变)(1)若每份套餐价格提高了x元,求销售套餐A,B每天的总利润w A元,w B元与x之间的函数关系式;(2)物件部门规定这两种套餐提高的价格之和为10元,问套餐A提高多少元时,这两种套餐每天利润之和最大?4.(2023•蚌山区校级二模)某水果店一种水果的日销售量y(千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表.售价x(元/千克)6810日销售量y(千克)201816(1)求这种水果日销售量y与销售价格x之间的函数关系式;(2)若将这种水果每千克的价格限定在6元~12元的范围,求这种水果日销售量的范围;(3)已知这种水果购进的价格为4元/千克,求这种水果在日销售量不超过10千克的条件下可获得的最大毛利润.(假设:毛利润=销售额﹣购进成本)5.(2023春•萧县月考)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)物价部门规定,该纪念品每件的利润不允许高于进货价的35%,当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.6.(2023•怀宁县一模)怀宁县为了“创建文明城市,建设美丽家园”,某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数解析式为y1=;栽花所需费用y2(元)与x(m2)的函数关系式为y2=﹣0.01x2﹣32x+33400(0≤x≤1000).(1)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,帮社区求出W的最大值;(2)若种草部分的面积不少于700m2,栽花部分的面积不少于200m2,请求出W的最小值.7.(2013•安徽)某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商品在第x天销售的相关信息如表所示.销售量p(件)p=50﹣x销售单价q(元/件)当1≤x≤20时,q=30+x 当21≤x≤40时,q=20+(1)请计算第几天该商品的销售单价为35元/件?(2)求该网店第x天获得的利润y关于x的函数关系式;(3)这40天中该网店第几天获得的利润最大?最大的利润是多少?8.(2023•怀远县二模)某网店销售一种儿童玩具,进价为每件30元,物价部规定每件儿童玩具的销售利润不高于进价的50%.在销售过程中发现:当销售单价为35元时,每天可售出350件,若销售单价每提高5元,则每天销售量减少50件.设销售单价为x元(销售单价不低于35元)(1)求这种儿童玩具每天获得的利润w(元)与销售单价x(元)之间的函数表达式;(2)当销售单价为多少元时,该网店销售这种儿童玩具每天获得的利润最大,最大利润是多少元?9.(2018•安徽)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为w1,w2(单位:元).(1)用含x的代数式分别表示w1,w2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润w最大,最大总利润是多少?类型二:抛物线形问题一.解答题(共10小题)1.(2023•安徽二模)某校为了丰富校园生活,提高学生身体素质特举行定点投篮比赛.某学生站在与篮框水平距离6米的A处进行定点站立投篮比赛,学校利用激光跟踪测高仪测量篮球运动中的高度.已知篮圈中心B到地面的距离为3.05米,篮球每一次投出时离地面的距离都为2.05米.图中所示抛物线的一部分是某次投篮训练中篮球飞行的部分轨迹,当篮球与篮框水平距离为3米时离地面最高,最大高度为3.55米.(1)建立如图所示的直角坐标系,求抛物线的表达式;(2)判断本次训练篮球能否直接投中篮圈中心B?若能,请说明理由;若不能,那么在保持投篮力度和方向(即篮球飞行的抛物线形状不变)的情况下,求该球员只要向前或向后移动多少米,就能使篮球直接投中篮圈中心B.2.(2012•安徽)如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围.3.(2023•凤阳县二模)如图是某隧道截面示意图,它是由抛物线和长方形构成,已知OA=12米,OB=4米,抛物线顶点D到地面OA的垂直距离为10米,以OA所在直线为x轴,以OB所在直线为y轴建立直角坐标系.(1)求抛物线的解析式;(2)一辆特殊货运汽车载着一个长方体集装箱,集装箱宽为4米,最高处与地面距离为6米,隧道内设双向行车道,双向行车道间隔距离为2米,交通部门规定,车载货物顶部距离隧道壁的竖直距离不少于0.5米,才能安全通行,问这辆特殊货车能否安全通过隧道?4.(2023•全椒县模拟)如图(1),一块钢板余料截面的两边为线段OA,OB,另一边曲线ACB为抛物线的一部分,其中C点为抛物线的顶点,CD⊥OA于D,以OA边所在直线为x轴,OB边所在直线为y轴,建立平面直角坐标系xOy,规定一个单位代表1米.已知OD=1米,DA=2米,CD=4米.(1)求曲线ACB所在抛物线的函数表达式;(2)若在该钢板余料中截取一个一边长为3米的矩形,设该矩形的另一边长为h米,求h的取值范围;(3)如图(2),若在该钢板余料中截取一个△PBD,其中点P在抛物线ACB上,记△PBD的面积为S,求S的最大值.5.(2022•安徽)如图1,隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.(1)求此抛物线对应的函数表达式;(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点P1,P4在x轴上,MN与矩形P1P2P3P4的一边平行且相等.栅栏总长l为图中粗线段P1P2,P2P3,P3P4,MN长度之和,请解决以下问题:(ⅰ)修建一个“”型栅栏,如图2,点P2,P3在抛物线AED上.设点P1的横坐标为m(0<m≤6),求栅栏总长l与m之间的函数表达式和l的最大值;(ⅱ)现修建一个总长为18的栅栏,有如图3所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及取最大值时点P1的横坐标的取值范围(P1在P4右侧).6.(2023•芜湖模拟)某大型乐园包含多项主题演出与游乐项目,其中过山车“冲上云霄”是其经典项目之一.如图所示,A→B→C为过山车“冲上云霄”的一部分轨道(B为轨道最低点),它可以看成一段抛物线.其中米,米(轨道厚度忽略不计).(1)求抛物线A→B→C的函数关系式;(2)在轨道距离地面5米处有两个位置P和C,当过山车运动到C处时,又进入下坡段C→E(接口处轨道忽略不计).已知轨道抛物线C→E→F的大小形状与抛物线A→B→C完全相同,求OE的长度;(3)现需要对轨道下坡段A→B进行安全加固,架设某种材料的水平支架和竖直支架GD、GM、HI、HN,且要求OM=MN.如何设计支架,可使得所需用料最少?最少需要材料多少米?7.(2023•亳州二模)如图1,灌溉车沿着平行于绿化带底部边线的方向行驶,为绿化带浇水.喷水口H离地竖直高度为hm,如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象.把绿化带横截面抽象为矩形DEFG.下边缘抛物线是由上边缘抛物线向左平移得到的,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m.灌溉车到绿化带的距离OD为dm.当OH = 1.5m,DE=3m,EF=0.5时,解答下列问题.(1)①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;②求出点B的坐标;(2)要使灌溉车行驶时喷出的水能浇灌到整个绿化带,试求出d的取值范围.8.(2023•庐阳区校级二模)某公园要在小广场建造一个喷泉景观.在小广场中央O处垂直于地面安装一个高为1.25米的花形柱子OA,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上抛物线路径如图1所示,为使水流形状较为美观,设计成水流在距OA的水平距离为1米时达到最大高度,此时离地面2.25米.(1)以点O为原点建立如图2所示的平面直角坐标系,水流到OA水平距离为x米,水流喷出的高度为y米,求出在第一象限内的抛物线解析式(不要求写出自变量的取值范围);(2)张师傅正在喷泉景观内维修设备期间,喷水管意外喷水,但是身高1.76米的张师傅却没有被水淋到,此时他离花形柱子OA的距离为d米,求d的取值范围;(3)为了美观,在离花形柱子4米处的地面B、C处安装射灯,射灯射出的光线与地面成45°角,如图3所示,光线交汇点P在花形柱子OA的正上方,其中光线BP所在的直线解析式为y=﹣x+4,求光线与抛物线水流之间的最小垂直距离.9.(2023•滁州二模)如图是某家具厂的抛物线型木板余料,其最大高度为9dm,最大宽度为12dm,现计划将此余料进行切割.(1)如图1,根据已经建立的平面直角坐标系,求木板边缘所对应的抛物线的函数表达式;(2)如图2,若切割成矩形HGNM,求此矩形的最大周长;(3)若切割成宽为2dm的矩形木板若干块,然后拼接成一个宽为2dm的矩形,如何切割才能使拼接后的矩形的长边最长?请在备用图上画出切割方案,并求出拼接后的矩形的长边长.(结果保留根号)10.(2023•黄山一模)如图,国家会展中心大门的截面图是由抛物线ADB和矩形OABC构成.矩形OABC的边米,OC=9米,以OC所在的直线为x轴,以OA所在的直线为y轴建立平面直角坐标系,抛物线顶点D的坐标为.(1)求此抛物线对应的函数表达式;(2)近期需对大门进行粉刷,工人师傅搭建一木板OM,点M正好在抛物线上,支撑MN⊥x轴,ON=7.5米,点E是OM上方抛物线上一动点,且点E的横坐标为m,过点E作x轴的垂线,交OM于点F.①求EF的最大值.②某工人师傅站在木板OM上,他能刷到的最大垂直高度是米,求他不能刷到大门顶部的对应点的横坐标的范围.类型三:几何图形面积问题一.解答题(共6小题)1.(2023•蜀山区校级模拟)春回大地,万物复苏,又是一年花季到.某花圃基地计划将如图所示的一块长40m,宽20m的矩形空地划分成五块小矩形区域.其中一块正方形空地为育苗区,另一块空地为活动区,其余空地为种植区,分别种植A,B,C三种花卉.活动区一边与育苗区等宽,另一边长是10m.A,B,C三种花卉每平方米的产值分别是2百元、3百元、4百元.(1)设育苗区的边长为xm,用含x的代数式表示下列各量:花卉A的种植面积是m2,花卉B的种植面积是m2,花卉C的种植面积是m2.(2)育苗区的边长为多少时,A,B两种花卉的总产值相等?(3)若花卉A与B的种植面积之和不超过560m2,求A,B,C三种花卉的总产值之和的最大值.2.(2022•安徽三模)小明将小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣+bx刻画,斜坡可以用一次函数y=x刻画,如图建立直角坐标系,小球能达到的最高点的坐标(3,n).(1)请求出b和n的值;(2)小球在斜坡上的落点为M,求点M的坐标;(3)点P是小球从起点到落点抛物线上的动点,连接PO,PM,当点P的坐标为何值时?△POM的面积最大,最大面积是多少?3.(2021•霍邱县一模)一段长为30m的墙MN前有一块矩形ABCD空地,用100m长的篱笆围成如图所示的图形(靠墙的一边不用篱笆,篱笆的厚度忽略不计),其中四边形AEFH和四边形CDHG是矩形,四边形EBGF是边长为10m的正方形,设CD=xm.(1)若矩形CDHG面积为125m2,求CD长;(2)当CD长为多少m时,矩形ABCD的面积最大,最大面积是多少?4.(2022•瑶海区三模)如图1是一架菱形风筝,它的骨架由如图2的4条竹棒AC,BD,EF,GH组成,其中E,F,G,H分别是菱形ABCD四边的中点,现有一根长为80cm的竹棒,正好锯成风筝的四条骨架,设AC=xcm,菱形ABCD的面积为ycm2.(1)写出y关于x的函数关系式;(2)为了使风筝在空中有较好的稳定性,要求25cm≤AC≤BD,那么当骨架AC的长为多少时,这风筝即菱形ABCD的面积最大?此时最大面积为多少?5.(2015•安徽)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?6.(2021•安徽模拟)如图,某小区有一块靠墙(墙的长度不限)的矩形ABCD,为美化环境,用总长为90m 的篱笆围成四块矩形,其中S1=S2=S3=S4(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若AE=a,用含有a的式子表示BE的长,并直接写出a的取值范围;(2)求矩形ABCD的面积y关于a的解析式,并求出面积的最大值.。
二次函数的实际应用(利润问题)

建立模型
将问题抽象为二次函数模型,确定各项参数。
验证和调整
通过实际数据验证模型的准确性,并根据实际 情况进行调整和优化。
2 图像特点
二次函数的图像形状通常为抛物线,具有顶点、对称轴和开口方向等特点。
3 重要概念
二次函数的最值、最值点、零点等重要概念对利润问题的分析很有帮助。
二次函数的利润问题
利润问题是二次函数在实际应用中的一个典型问题。通过二次函数,我们可以计算出不同销量对应的利润,并 进一步分析销量与利润之间的关系。
利润的计算公式
1 收入
收入是销量乘以单价,可以表示为 R = px,其中 p 表示单价,x 表示销量。
2 成本
成本是与销量相关的固定成本和单位成本的乘积,可以表示为 C = a + bx。
3 利润
利润是收入减去成本,可以表示为 P = R - C。
二次函数在利润问题中的应用举例
例一:最大利润
根据给定的销量-利润函数,我们 可以通过分析函数的图像找到最 大利润所对应的销量。
例二:利润变化率
我们可以通过利润函数的一阶导 数(利润对销量的变化率)来分 析利润的增减情况。
例三:最佳生产量
通过分析利润函数的零点,我们 可以确定最佳生产量以最大化利 润。
最大化利润和最小化亏损
最大化利润
通过优化销量,控制成本和定价策略,我们可以最 大化企业的利润。
最小化亏损
在经营中,我们也需要考虑如何降低亏损,避免经 营困难。
求解利润最大化的方法
1
利润函数建模
将利润问题建立二次函数模型,确定各项参数。
2
图像分析
分析二次函数图像的顶点、开口方向等特点,确定最值点。
《二次函数与利润问题及几何问题》教案 (公开课)2022年湘教版数学

第2课时二次函数与利润问题及几何问题1.掌握如何将实际问题转化为数学问题,进一步理解二次函数在解决实际问题中的应用;(重点、难点)2.能应用二次函数的性质解决商品销售过程中的最大利润问题及图形中最大面积问题.一、情境导入如下列图,要用长20m的铁栏杆,围成一个一面靠墙的长方形花圃,怎么围才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为x m,花圃的面积为y m2,那么y=x(20-2x).试问:x为何值时,才能使y的值最大?二、合作探究探究点一:最大利润问题某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图①所示(一条线段)的变化趋势,每千克本钱y2(元)与销售时间第x月满足函数关系式y2=mx2-8mx+n,其变化趋势如图②所示.(1)求y2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?解:(1)由题意可得,函数y2的图象经过(3,6),(7,7)两点,∴⎩⎪⎨⎪⎧9m-24m+n=6,49m-56m+n=7,解得⎩⎨⎧m=18,n=638.∴y2的解析式为y2=18x2-x+638(1≤x≤12,x取整数);(2)设y1=kx+b,∵函数y1的图象过(4,11),(8,10)两点,∴⎩⎪⎨⎪⎧4k+b=11,8k+b=10,解得⎩⎪⎨⎪⎧k=-14,b=12.∴y1的解析式为y1=-14x+12(1≤x≤12,x取整数).设这种水果每千克所获得的利润为w元.那么w=y1-y2=(-14x+12)-(18x2-x+638)=-18x2+34x+338,∴w=-18(x-3)2+214(1≤x≤12,x取整数),∴当x=3时,w取最大值214,∴第3月销售这种水果,每千克所获的利润最大,最大利润是214元/千克.变式训练:见《学练优》本课时练习“课堂达标训练〞第7题探究点二:几何面积问题用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.解析:(1)先表示出矩形的另一边长,再根据矩形的面积公式列出函数关系式;(2)矩形的面积,可以转化为解一元二次方程;(3)求出y的最大值,与70比较大小,即可作出判断.解:(1)y=x(16-x)=-x2+16x(0<x<16);(2)当y=60时,-x2+16x=60,解得x1=10,x2x=10或6时,围成的养鸡场的面积为60平方米;(3)方法一:当y=70时,-x2+16x=70,整理得x2-16x+70=0,由于Δ=256-280=-24<0,因此此方程无实数根,所以不能围成面积为70平方米的养鸡场;方法二:y=-x2+16x=-(x-8)2+64,当x=8时,y有最大值64,即能围成的养鸡场的最大面积为64平方米,所以不能围成70平方米的养鸡场.方法总结:与面积有关的函数与方程问题,可通过面积公式列出函数关系式或方程,再利用函数和方程的思想进行解答.变式训练:见《学练优》本课时练习“课堂达标训练〞第3题三、板书设计本节课主要是用二次函数理论知识解决拱形(抛物线)类问题、最大面积和最大利润问题,通过对问题的探究解决,使学生认识到数学知识和生活实际的紧密联系,提高学习数学的积极性.第2课伟大的历史转折1教学分析【教学目标】知识与能力知道中共十一届三中全会召开时间;了解它的背景,理解其重大意义;拨乱反正加强了民主与法制建设,推动了社会主义现代化建设;学会在开展的进程中认识历史人物、历史事件的地位和作用过程与方法学会运用原因与结果、联系与综合等概念,理解中共十一届三中全会的背景与历史意义情感态度与价值观认同中国共产党完全有能力领导中国人民取得社会主义建设事业的成功识改革开放是我国的强国之路【重点难点】教学重点:中共十一届三中全会教学难点:中共十一届三中全会在政治上、思想上、组织上的转变以及历史意义2教学过程一、导入新课“文化大革命〞时期,我国教育遭到了很大破坏,高考中断了十年。
二次函数应用几何图形的最大面积问题教学课件

求解极值点
通过求导数并令其为0,找到函 数的极值点。
确定最大面积
根据极值点和单调性,确定几 何图形的最大面积对应的点。
05
练习题与答案解析
练习题
01
02
03
题目1
一个矩形ABCD的面积为 12,其中AB=2,求BC的 最大值。
题目2
一个直角三角形ABC的面 积为6,其中∠C=90°, AC=3,求BC的最大值。
详细描述
首先设定三角形的底和高为二次函数 的变量,然后根据二次函数的性质, 找到使面积最大的底和高的值。
利用二次函数求圆形面积的最大值
总结词
通过设定圆的半径为二次函数的变量 ,利用二次函数的性质求圆的最大面 积。
详细描述
首先设定圆的半径为二次函数的变量 ,然后根据二次函数的性质,找到使 面积最大的半径的值。
02
几何图形可以由二次函数图像与x 轴、y轴的交点确定,进而形成三 角形、矩形、平行四边形等。
二次函数的最值与几何图形面积的关系
二次函数的最值出现在顶点处,此时 对应的x值为函数的零点或对称轴。
几何图形面积的最大值或最小值出现 在二次函数最值处,可以通过求导数 或配方法找到最值点。Βιβλιοθήκη 02常见几何图形面积公式
题目3
一个等腰三角形ABC的面 积为10,其中AB=AC, ∠B=45°,求BC的最大值 。
答案解析
解析1
设BC=x,则矩形的面积可以表 示为2x=12,解得x=6。由于AB 已经给定为2,所以BC的最大值
为6。
解析2
设BC=x,则直角三角形的面积 可以表示为1/2×3x=6,解得 x=4。由于AC已经给定为3,所
二次函数的实际的应用之利润最大值面积最值问题
实用标准文案二次函数的实际应用——最大利润问题、面积最大(小)值问题一:最大利润问题知识要点:2bac?b422?x?a(y)?cbx??ax?y0?a,如果自变量的化成顶点式二次函数的一般式()a42a取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).2b?4acby?0a??x?;时,函数有最小值,并且当,即当最小值4a2a2b?4acby?0a??x?.时,函数有最大值,并且当,当最大值4a2ax?x?xx?x?x 内,则当,如果顶点在自变量的取值范围如果自变量的取值范围是21212b?4acby??x?,,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减最值4a2a2y?ax?bx?c x?x?xxx y时,时,性;如果在此范围内的增大而增大,则当随,当1222最大2?bx?y?axc;11最小2y?ax?bx?c xx??xxx y时,随,当如果在此范围内的增大而减小,则当时,(万y 试销过程中发现,每月销售量:某电子厂商投产一种新型电子厂品,每件制造成本为18 元,[例1]= 售价﹣制造成本)﹣2x+100 .(利润件)与销售单价x(元)之间的关系可以近似地看作一次函数y=(元)之间的函数关系式;)写出每月的利润1 z (万元)与销售单价x (万元的利润?当销售单价为多少元时,厂商每月能)当销售单价为多少元时,厂商每月能获得3502 (2获得最大利润?最大利润是多少?万如果厂商要获得每月不低于350 这种电子产品的销售单价不能高于32 元,)(3 根据相关部门规定,元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?2,+136x-1800= -2x-2x+100 )(x -18 )()解:(1 )z= (x -18 y=2 +136x-1800 ;z= -2x之间的函数解析式为z 与x ∴2 =43 x=25 ,x,+136x -1800 解这个方程得350= -2x得由z=350 ,)(2 21元或43 元,所以,销售单价定为2522,(z=-2 x-34 )+512 +136x-1800 配方,得z =-2x将万元;元时,每月能获得最大利润,最大利润是512 因此,当销售单价为342+136x ﹣1800 的图象(如图所示)可知,z=-2x2 3 ()结合()及函数,时当25≤x ≤43z ≥350精彩文档.又由限价32 元,得25 ≤x ≤32 ,根据一次函数的性质,得y=-2x+100 中y 随x 的增大而减小,∴当x=32 时,每月制造成本最低最低成本是18 ×(-2 ×32+100 )=648 (万元),因此,所求每月最低制造成本为648 万元.[练习]:1.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?xy元,元,利润为解:设涨价(或降价)为每件yy为降价时的利润为涨价时的利润,21y?(60?40?x)(300?10x)则:12)?600?10x??10(x 26250??5)??10(x6250y?5?x,即:定价为65元时,(元)当max y?(60?40?x)(300?20x)2??20(x?20)(x?15) 2??20(x?2.5)?6125y?61255.x?2(元)当,即:定价为57.5元时,max综合两种情况,应定价为65元时,利润最大.[例2]:市“健益”超市购进一批20元/千克的绿色食品,如果以30?元/千克销售,那么每天可售出400千y x(元与销售单价) (千克)克.由销售经验知,每天销售量?x?30)存在如下图所示的一次函数关系式.(y x的函数关系式;与⑴试求出⑵设“健益”超市销售该绿色食品每天获得利润P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,?现该超市经理要求每天利润不得低于x的范围(?直接写出答案).4180元,请你帮助该超市确定绿色食品销售单价解:⑴设y=kx+b由图象可知,20???400k30k?b??:,解之得,??1000?40k?b?200b??)50?x?20x?1000(30y??.即一次函数表达式为y)?20?P(x)1000x??20)(?20?(x⑵2x0x?14?0?20000?200???20a有最大值.∵∴P1400?x?354500?P当(元)时,max)2?(?2024500??35)?P?20(x,也可求得最大值)(或通过配方,元.元35/千克时,每天可获得最大利润4500答:当销售单价为244804500???20(x?35)?4180⑶∵216?35?)(1?x.或∴31≤x?≤3436≤x≤39已乙两种产品的生产技术和设备后,进行这两种产品加工.万元购甲、某公司投资700.2练习元.经市场调研发2030知生产甲种产品每件还需成本费元,生产乙种产品每件还需成本费2实用标准文案之间的x时,y与,当35≤x<50现:甲种产品的销售单价为x(元),年销售量为y(万件)的函数关系式如图所示,乙种产品的销售x时,y与50≤x≤70函数关系式为y=20﹣0.2x;当万件.物价部门规定这两种10元(含)到45元(含)之间,且年销售量稳定在单价,在25 元.产品的销售单价之和为90 (元)之间的函数关系式.(万元)与xx≤70时,求出甲种产品的年销售量y)当(150≤,(万元)年销售收入﹣生产成本)为W(2)若公司第一年的年销售量利润(年销售利润= 那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?x)的条件下,并要求甲种产品的销售单价)第二年公司可重新对产品进行定价,在(2(3两年的年销售=70范围内,该公司希望到第二年年底,两年的总盈利(总盈利(元)在50≤x≤(元)的范m85万元.请直接写出第二年乙种产品的销售单价利润之和﹣投资成本)不低于围.y与x的函数关系式为y=kx+b(k≠0 解:(1),)设∵函数图象经过点(50,10),(70,8),∴,解得,所以,y=﹣0.1x+15;)∵乙种产品的销售单价2元(含)4元(含)之间∴,解之得45≤x≤65,①45≤x<50时,W=(x﹣30)(20﹣0.2x)+10(90﹣x﹣20),=﹣0.2x2+16x+100,=﹣0.2(x2﹣80x+1600)+320+100,=﹣0.2(x﹣40)2+420,∵﹣0.2<0,∴x>40时,W随x的增大而减小,∴当x=45时,W有最大值,W最大=﹣0.2(45﹣40)2+420=415万元;②50≤x≤65时,W=(x﹣30)(﹣0.1x+15)+10(90﹣x﹣20),=﹣0.1x2+8x+250,=﹣0.1(x2﹣80x+1600)+160+250,=﹣0.1(x﹣40)2+410,∵﹣0.1<0,∴x>40时,W随x的增大而减小,∴当x=50时,W有最大值,W最大=﹣0.1(50﹣40)2+410=400万元.综上所述,当x=45,即甲、乙两种产品定价均为45元时,第一年的年销售利润最大,最大年销售利润是415万元;(3)根据题意得,W=﹣0.1x2+8x+250+415﹣700=﹣0.1x2+8x﹣35,令W=85,则﹣0.1x2+8x﹣35=85,解得x1=20,x2=60.又由题意知,50≤x≤65,根据函数性质分析,50≤x≤60,即50≤90﹣m≤60,∴30≤m≤40.二、面积最大(最小)值问题实际问题中图形面积的最值问题分析思路为:精彩文档.(1)分析图形的成因(2)识别图形的形状(3)找出图形面积的计算方法(4)把计算中要用到的所有线段用未知数表示(5)把线段长度代入计算方法形成图形面积的函数解析式,注意自变量的取值范围(6)根据函数的性质以及自变量的取值范围求出面积的最值。
二次函数实际问题易考题型总结(全)
二次函数实际问题易考题型总结技巧1.二次函数的应用:(1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.注意:二次函数实际问题主要分为两个方面的问题,几何图形面积问题和经济问题。
解几何图形面积问题时要把面积公式中的各个部分分别用同一个未知数表示1,我们要用x分别把h,l表示出来。
经济问题:总利润=出来,如三角形S=hl2总销售额-总成本;总利润=单件利润×销售数量。
解最值问题时,一定要注意自变量的取值范围。
分为三类:①对称轴在取值范围内;②取值范围在对称轴左边;③取值范围在对称轴右边。
2.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.题型:一、利润最值问题1、某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.2.某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y(元)与销售月份x (月)满足关系式1336 8y x=-+,而其每千克成本2y(元)与销售月份x(月)满足的函数关系如图所示.(1)试确定b,c的值;(2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;(3)“五一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?3、某食品零售店为食品厂供销一种面包,未售出的面包可退回厂家.经统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x(角),零售店每天销售这种面包所获得的利润为y(角).⑴用含x的代数式分别表示出每个面包的利润与卖出的面包个数;⑵求y与x之间的函数关系式;⑶当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?二、面积最值问题1.蒋老师的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,蒋老师准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?2、小王家在农村,他家想利用房屋侧面的一面墙,围成一个矩形猪圈(以墙为长人现在已备足可以砌10米长的墙的材料.他想使猪圈的面积最大,你能帮他计算一下矩形的长和宽应当分别是多少米吗?此时猪圈的面积有多大?3.如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.三、图形问题1、学校要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA .O 恰好在水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.且在过OA 的任意平面上的抛物线如图l -2-36所示,建立平面直角坐标系(如图l -2-37),水流喷出的高度y (m)与水面距离x (m)之间的函数关系式是25322y x x =-++,请回答下列问题: (1)花形柱子OA 的高度;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?O 2.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中完成规定的翻腾动作并调整好入水姿势时,距池边的水平距离为米,问此次跳水会不会失误?并通过计算说明理由.2103335四、图像问题(一)长度最值、平行四边形问题8.如图,抛物线1417452++-=x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C(3,0).(1)求直线AB 的函数关系式;(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N. 设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 是否菱形?请说明理由.O xAMNBPC 题22图(二)周长与面积最值问题9.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E 点的坐标.(三)等腰三角形问题10.如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.(四)直角三角形 如图,在平面直角坐标系中放置一直角三角板,其顶点为A (0,1),B (2,0),O (0,0),将此三角板绕原点O 逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B ,求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB′A′B 的面积是△A′B′O 面积4倍?若存在,请求出P 的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B 是哪种形状的四边形?并写出四边形PB′A′B 的两条性质.A CB y x0 1 1(五)圆如图,半径为2的⊙C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,点C 的坐标为(1,0).若抛物线23y x bx c =-++过A 、B 两点. (1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使得∠PBO=∠POB?若存在,求出点P 的坐标;若不存在说明理由;(3)若点M 是抛物线(在第一象限内的部分)上一点,△MAB 的面积为S ,求S 的最大(小)值.(六)分段函数、累计二次函数问题11.启优学堂积极应对2018年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线,由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次),公司累积获得的利润y(万元)与销售时间第x月之间的函数关系(即前x个月的利润总和y 与x之间的关系)对应的点都在如图所示的图象上,该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线y=-5x2+205x-1230的一部分,且点A、B、C的横坐标分别为4、10、12。
二次函数实际应用05利润几何面积
二次函数中的实际应用利润知识要点:二次函数的一般式c bx ax y ++=2(0≠a )化成顶点式ab ac a b x a y 44)2(22-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).即当0>a 时,函数有最小值,并且当a bx 2-=,a b ac y 442-=最小值;当0<a 时,函数有最大值,并且当abx 2-=,a b ac y 442-=最大值.如果自变量的取值范围是21x x x ≤≤,如果顶点在自变量的取值范围21x x x ≤≤内,则当abx 2-=,ab ac y 442-=最值,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小.二、典型例题:[例1]:求下列二次函数的最值:(1)求函数322-+=x x y 的最值. 解:4)1(2-+=x y当1-=x 时,y 有最小值4-,无最大值.(2)求函数322-+=x x y 的最值.)30(≤≤x 解:4)1(2-+=x y∵30≤≤x ,对称轴为1-=x∴当12330有最大值时;当有最小值时y x y x =-=.[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大? 解:设涨价(或降价)为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润则:)10300)(4060(1x x y -+-= )60010(102---=x x 6250)5(102+--=x当5=x ,即:定价为65元时,6250max =y (元))20300)(4060(2x x y +--=)15)(20(20+--=x x 6125)5.2(202+--=x当5.2=x ,即:定价为57.5元时,6125max =y (元) 综合两种情况,应定价为65元时,利润最大. 变式训练:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?解:设每件价格提高x 元,利润为y 元, 则:)20400)(2030(x x y --+= )20)(10(20-+-=x x 4500)5(202+--=x 当5=x ,4500max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?解:设旅行团有x 人)30(≥x ,营业额为y 元, 则:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x当55=x ,30250max =y (元)答:当旅行团的人数是55人时,旅行社可以获得最大营业额.例题3、(提高 2013年宁波真题)某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后获毛利润共2.1万元(毛利润=(售价-进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润。
二次函数的实际应用利润问题 ppt课件
y x 8 0 10 x 0 30
10x2110x0
10x55 2302. 50
二次函数的实际应用利润问题
20
某宾馆有50个房间供游客居住,当每个 房间的定价为每天180元时,房间会全部住 满。当每个房间每天的定价每增加10元时, 就会有一个房间空闲。如果游客居住房间, 宾馆需对每个房间每天支出20元的各种费用. 房价定为多少时,宾馆利润最大?
二次函数的实际应用利润问题
9
小结
1.正确理解利润问题中几个量之间的关系
2.当利润的值时已知的常数时,问题通过 方程来解;当利润为变量时,问题通过函 数关系来求解.
二次函数的实际应用利润问题
10
某商品现在的售价为每件60元, 每星期可卖出300件,市场调查反 映:每涨价1元,每星期少卖出10 件;每降价1元,每星期可多卖出 18件,已知商品的进价为每件40 元,如何定价才能使利润最大?
6250 6000
05
可以看出,这个函数的
图像是一条抛物线的一
部分,这条抛物线的顶
点是函数图像的最高点,
也就是说当x取顶点坐
标的横坐标时,这个函
数有最大值。由公式可
30
以求出顶点的横坐标. x \ 元 二次函数的实际应用利润问题
13
做一做
在降价的情况下,最大利润是多少? 请你参考(1)的过程得出答案。
解:设每个房间每天增加x元,宾馆的利润为y元
Y=(50-x/10)(180+x)-20(50-x/10)
Y=-1/10x2+34x+8000
二次函数的实际应用利润问题
21
(三)销售问题
1.某商场销售一批名牌衬衫,平均每天可售出 20件,每件盈利40元,为了扩大销售,增加 盈利,尽快减少库存,商场决定采取适当的 降价措施。经调查发现,如果每件衬衫每降 价1元,商场平均每天可多售出2件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数中的实际应用利润
知识要点:
二次函数的一般式c bx ax y ++=2
(0≠a )化成顶点式a
b a
c a b x a y 44)2(2
2-+
+=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).
即当0>a 时,函数有最小值,并且当a b
x 2-=,a b ac y 442-=最小值;
当0<a 时,函数有最大值,并且当a
b
x 2-=,a b ac y 442-=最大值.
如果自变量的取值范围是21x x x ≤≤,如果顶点在自变量的取值范围21x x x ≤≤内,则当a
b
x 2-
=,a
b a
c y 442
-=
最值
,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内y 随x 的增大而增大,则当2x x =时,
c bx ax y ++=22
2最大,当1x x =时,c bx ax y ++=121最小;
如果在此范围内y 随x 的增大而减小,则当1x x =时,c bx ax y ++=12
1最大,当2x x =时,
c bx ax y ++=222最小.
二、典型例题:
[例1]:求下列二次函数的最值:
(1)求函数322
-+=x x y 的最值. 解:4)1(2
-+=x y
当1-=x 时,y 有最小值4-,无最大值.
(2)求函数322
-+=x x y 的最值.)30(≤≤x 解:4)1(2
-+=x y
∵30≤≤x ,对称轴为1-=x
∴当12330有最大值
时;当有最小值时y x y x =-=. [例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大? 解:设涨价(或降价)为每件x 元,利润为y 元,
1y 为涨价时的利润,2y 为降价时的利润
则:)10300)(4060(1x x y -+-= )60010(102
---=x x 6250)5(102
+--=x
当5=x ,即:定价为65元时,6250m ax =y (元)
)20300)(4060(2x x y +--=
)15)(20(20+--=x x 6125)5.2(202
+--=x
当5.2=x ,即:定价为57.5元时,6125m ax =y (元) 综合两种情况,应定价为65元时,利润最大. 变式训练:
1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?
解:设每件价格提高x 元,利润为y 元, 则:)20400)(2030(x x y --+= )20)(10(20-+-=x x 4500)5(202
+--=x 当5=x ,4500m ax =y (元)
答:价格提高5元,才能在半个月内获得最大利润.
2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?
解:设旅行团有x 人)30(≥x ,营业额为y 元, 则:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x
当55=x ,30250m ax =y (元)
答:当旅行团的人数是55人时,旅行社可以获得最大营业额.
例题3、(提高 2013年宁波真题)某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:
该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后获毛利润共2.1万元(毛利润=(售价-进价)×销售量)
(1)该商场计划购进甲、乙两种手机各多少部?
(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润。
2、某种产品的年产量不超过1000吨,该产品的年产量(单位:吨)与费用(单位:万元)之间函数的图象是顶点在原点的抛物线的一部分(如图所示);该产品的年销售量(单位:吨)与销售单价(单位:万元/吨)之间的函数图象是线段(如图所示),若生产出的产品都能在当年销售完,则年产量是1000吨时,所获毛利润最大(毛利润=销售额-费用)
例题3、某小区有一长100m,宽80m的空地,现将其建成花园广场,设计图案如下:阴影区域为绿化区(四块绿化区是全等矩形),空白区域为活动区,且四周出口一样宽,宽度不小于50m,不大于60m.预计活动区每平方米造价60元,绿化区每平方米造价50元.
(1)设一块绿化区的长边为xm,写出工程总造价y与x的函数关系式(写出x的取值范围).
(2)如果小区投资46.9万元,问能否完成工程任务?若能,请写出x为整数的所有工程方案;若不能,请说明理由.
举一反三
1、某农场要建一个长方形ABCD的养鸡场,鸡场的一边靠墙,(墙长25m)另外三边用木栏围成,木栏长
40m.
(1)若养鸡场面积为168m2,求鸡场垂直于墙的一边AB的长.
(2)请问应怎样围才能使养鸡场面积最大?最大的面积是多少?
(3)养鸡场面积能达到205m2吗?如果能,请给出设计方案,如果不能,请说明理由.
2、把一张长为20cm,宽为16cm的矩形硬纸板的四周各剪去一个同样大小的正方形(如图1),再折叠成一
个无盖的长方体盒子(纸板的厚度忽略不计,如图2).设剪去的正方形边长为x(cm),x为正整数.折成的长方体盒子底面积为y(cm2).
(1)求y与x之间的函数关系式;
(2)折叠成的长方体盒子底面积是否有最大值?若有,请求出最大值,若没有,说明理由;
(3)你认为折叠成的无盖长方体盒子的侧面积有可能是192cm2吗?若能,请求出此时x的值,若不能,
请说明理由.
3、如图,在边长为24cm 的正方形纸片ABCD 上,剪去图中阴影部分的四个全等的等腰直角三角形,再沿图中的虚线折起,折成一个长方体形状的包装盒(A .B .C .D 四个顶点正好重合于上底面上一点).已知E 、F 在AB 边上,是被剪去的一个等腰直角三角形斜边的两个端点,设AE=BF=x (cm ). (1)若折成的包装盒恰好是个正方体,试求这个包装盒的体积V ;
(2)某广告商要求包装盒的表面(不含下底面)面积S 最大,试问x 应取何值?
【答案】解:(1)根据题意,知这个正方体的底面边长x ,a=2x ,
∴x+2x+x=24,解得:x=6。
则
∴V=a 3
=(3cm 3
);
(2)设包装盒的底面边长为acm ,高为hcm ,则 x ,)h 12x
=
=-,
∴S=4ah+a 2=))
()2
2
212x 6x 96x=6x 8238-+
=-+--+。
∵0<x <12,∴当x=8时,S 取得最大值384cm 2。
【考点】二次函数的应用。
【分析】(1)根据已知得出这个正方体的底面边长x,a=2x,再利用AB=24cm,求出x即可得出这个包装盒的体积V。
(2)利用已知表示出包装盒的表面,从而利用函数最值求出即可。