2020年中考数学培优练习题卷:直角三角形

合集下载

2020年中考数学一轮复习培优训练:《三角形》及答案

2020年中考数学一轮复习培优训练:《三角形》及答案

2020年中考数学一轮复习培优训练:《三角形》1.点D为△ABC外一点,∠ACB=90°,AC=BC.(1)如图1,∠DCE=90°,CD=CE,求证:∠ADC=∠BEC;(2)如图2,若∠CDB=45°,AE∥BD,CE⊥CD,求证:AE=BD;(3)如图3,若∠ADC=15°,CD=,BD=n,请直接用含n的式子表示AD的长.2.如图,△ABC是等边三角形,D是BC边的中点,以D为顶点作一个120°的角,角的两边分别交直线AB、直线AC于M、N两点.以点D为中心旋转∠MDN(∠MDN的度数不变),当DM与AB垂直时(如图①所示),易证BM+CN=BD.(1)如图②,当DM与AB不垂直,点M在边AB上,点N在边AC上时,BM+CN=BD 是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(2)如图③,当DM与AB不垂直,点M在边AB上,点N在边AC的延长线上时,BM+CN =BD是否仍然成立?若不成立,请写出BM,CN,BD之间的数量关系,不用证明.3.如下图,在△ABC中,AB=BC,AD⊥BC于点D,BE⊥AC于点E,AD与BE交于点F,BH⊥AB于点B,点M是BC的中点,连接FM并延长交BH于点H.(1)在图1中,∠ABC=60°,AF=3时,FC=,BH=;(2)在图2中,∠ABC=45°,AF=2时,FC=,BH=;(3)从第(1)、(2)中你发现了什么规律?在图3中,∠ABC=30°,AF=1时,试猜想BH等于多少?并证明你的猜想.4.在图1、2中,已知∠ABC=120°,BD=2,点E为直线BC上的动点,连接DE,以DE 为边向上作等边△DEF,使得点F在∠ABC内部,连接BF.(1)如图1,当BD=BE时,∠EBF=;(2)如图2,当BD≠BE时,(1)中的结论是否成立?若成立,请予以证明,若不成立请说明理由;(3)请直接写出线段BD,BE,BF之间的关系式.5.在△ABC中,AC=BC,点E是在AB边上一动点(不与A、B重合),连接CE,点P是直线CE上一个动点.(1)如图1,∠ACB=120°,AB=16,E是AB中点,EM=2,N是射线CB上一个动点.试确定点P和点N的位置,使得NP+MP的值最小.①请你在图2中画出点P和点N的位置,并简述画法:.②直接写出NP+MP的最小值.(2)如图3,∠ACB=90°,连接BP,∠BPC=75°且BC=BP求证:PC=P A.6.探究题:如图,AB⊥BC,射线CM⊥BC,且BC=5cm,AB=1cm,点P是线段BC(不与点B、C重合)上的动点,过点P作DP⊥AP交射线CM于点D,连结AD.(1)如图1,若BP=4cm,则CD=;(2)如图2,若DP平分∠ADC,试猜测PB和PC的数量关系,并说明理由;(3)若△PDC是等腰三角形,则CD=cm.(请直接写出答案)7.综合与探究如图,在平面直角坐标系中,∠ABC=90°,AB=BC,点A(2,0)、B(0,1).(1)在图①中,点C坐标为;(2)如图②,点D在线段OA上,连接BD,作等腰直角三角形BDE,∠DBE=90°,连接CE.证明:AD=CE;(3)在图②的条件下,若C、D、E三点共线,求OD的长;(4)在y轴上找一点F,使△ABF面积为2.请直接写出所有满足条件的点F的坐标.8.已知点P是线段MN上一动点,分别以PM,PN为一边,在MN的同侧作△APM,△BPN,并连接BM,AN.(Ⅰ)如图1,当PM=AP,PN=BP且∠APM=∠BPN=90°时,试猜想BM,AN之间的数量关系与位置关系,并证明你的猜想;(Ⅱ)如图2,当△APM,△BPN都是等边三角形时,(Ⅰ)中BM,AN之间的数量关系是否仍然成立?若成立,请证明你的结论;若不成立,试说明理由.(Ⅲ)在(Ⅱ)的条件下,连接AB得到图3,当PN=2PM时,求∠P AB度数.9.阅读下列材料,完成(1)~(3)题:数学课上,老师出示了这样一道题:如图1,△ABC中,AB=AC,∠BAC=90°,点D是BC的中点,E是AC的中点,经过点A、C作射线BE的垂线,垂足分别为点F、G,连接AG.探究线段DF和AG的关系.某学习小组的同学经过思考后,交流了自己的想法:小明:“经过观察和度量,发现∠ABF和∠ACG相等.”小刚:“经过观察和度量,发现有两条线段和AF相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段DF和AG的关系.”……老师:“若点E不是AC的中点,其他条件不变(如图2),可以求出的值.”(1)求证:AF=FG;(2)探究线段DF和AG的关系,并证明;(3)直接写出的值.10.在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=度;(2)如图2,如果∠BAC=60°,则∠BCE=度;(3)设∠BAC=α,∠BCE=β.①如图3,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,请直接写出α,β之样的数量关系,不用证明.11.在平面直角坐标系中,点A(0,m)和点B(n,0)分别在y轴和x轴的正半轴上,满足(m﹣n)2+|m+n﹣8|=0,连接线段AB,点C为AB上一动点.(1)填空:m=,n=;(2)如图,连接OC并延长至点D,使得DC=OC,连接AD.若△AOC的面积为2,求点D的坐标;(3)如图,BC=OB,∠ABO的平分线交线段AO于点E,交线段OC于点F,连接EC.求证:①△ACE为等腰直角三角形;②BF﹣EF=OC.12.如图,在平面直角坐标系中,点B的坐标是(﹣1,0),点C的坐标是(1,0),点D 为y轴上一点,点A为第二象限内一动点,且∠BAC=2∠BDO,BD与AC交于点F,过D作DM⊥AC于点M.(1)求证:∠ABD=∠ACD.(2)若点E在BA延长线上,求证:AD平分∠CAE.(3)在线段MC上取点G,使DG=AD,求证:AB=CG.13.如图(1),在四边形ABCD中,已知∠ABC+∠ADC=180°,AB=AD,AB⊥AD,点E 在CD的延长线上,且∠BAC=∠DAE.(1)求证:AC=AE;(2)求证:CA平分∠BCD;(3)如图(2),设AF是△ABC的边BC上的高,试求CE与AF之间的数量关系.14.如图1,在△ABC中,AB=AC,点D是BC边上一点(不与点B,C重合),以AD为边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.设∠BAC=α,∠BCE =β.(1)求证:△CAE≌△BAD;(2)探究:当点D在BC边上移动时,α、β之间有怎样的数量关系?请说明理由;(3)如图2,若∠BAC=90°,CE与BA的延长线交于点F.求证:EF=DC.15.(1)如图1,在△ABC中,AD平分∠BAC交BC于D,DE⊥AB于E,DF⊥AC于F.求证:DE=DF,AE=AF.(2)如图2,在(1)的情况下,如果∠MDN=∠EDF,∠MDN的两边分别与AB、AC 相交于M、N两点,其它条件不变,那么AM,AN,AF有怎样的数量关系?并加以证明.(3)如图3,在Rt△ABC中,∠C=90°,∠BAC=60°,AC=6,AD平分∠BAC交BC 于D,∠MDN=120°,ND∥AB,四边形AMDN的周长为.(直接写答案).参考答案1.(1)证明:∵∠DCE=∠ACB=90°,∴∠ACD=∠BCE,又∵AC=BC,CE=CD,∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC.(2)如图1,延长DC交AE于F,连BF,∵AE∥BD,∴∠EFC=∠CDB=45°.∵EC⊥CD,∠CEF=∠CFE=45°,∴EC=CF.∵∠ACE=∠BCF,AC=BC,∴△ACE≌△BCF(SAS),∴AE=BF,∠BFC=∠AEC=45°=∠FDB,∴BF=BD,∴AE=BD;(3)如图2,过点C在CD上方作CE⊥CD,CE=CD,连BE、DE.设AD、BE交于点O,由(1)知△ACD≌△BCE(SAS),∠BEC=∠ADC=15°,∴∠DOE=∠DCE=90°.又∵∠CED=∠CDE=45°,∴=2,∴∠BED=30°,∴OD=DE=×2=1,∴=,OB==,∴AD=BE=OB+OE=+.2.解:(1)结论BM+CN=BD成立,理由如下:如图②,过点D作DE∥AC交AB于E,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE∥AC,∴∠BED=∠A=60°,∠BDE=∠C=60°,∴∠B=∠BED=∠BDE=60°,∴△BDE是等边三角形,∠EDC=120°,∴BD=BE=DE,∠EDN+∠CDN=120°,∵∠EDM+∠EDN=∠MDN=120°,∴∠CDN=∠EDM,∵D是BC边的中点,∴DE=BD=CD,在△CDN和△EDM中,,∴△CDN≌△EDM(ASA),∴CN=EM,∴BD=BE=BM+EM=BM+CN;(2)上述结论不成立,BM,CN,BD之间的数量关系为:BM﹣CN=BD;理由如下:如图③,过点D作DE∥AC交AB于E,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∴∠NCD=120°,∵DE∥AC,∴∠BED=∠A=60°,∠BDE=∠C=60°,∴∠B=∠BED=∠BDE=60°,∴△BDE是等边三角形,∠MED=∠EDC=120°,∴BD=BE=DE,∠NCD=∠MED,∠EDM+∠CDM=120°,∵∠CDN+∠CDM=∠MDN=120°,∴∠CDN=∠EDM,∵D是BC边的中点,∴DE=BD=CD,在△CDN和△EDM中,,∴△CDN≌△EDM(ASA),∴CN=EM,∴BD=BE=BM﹣EM=BM﹣CN,∴BM﹣CN=BD.3.解:(1)如图①连接CF,∵AD⊥BC,BE⊥AC,∴CF⊥AB,∵BH⊥AB,∴CF∥BH,∴∠CBH=∠BCF,∵点M是BC的中点,∴BM=MC,在△BMH和△CMF中,,∴△BMH≌△CMF(ASA),∴BH=CF,∵AB=BC,BE⊥AC,∴BE垂直平分AC,∴AF=CF,∴BH=AF,∴AF=CF=BH=3,故答案为:3,3;(2)如图②,连接CF,∵AD⊥BC,BE⊥AC,∴CF⊥AB,∵BH⊥AB,∴CF∥BH,∴∠CBH=∠BCF,∵点M是BC的中点,∴BM=MC,在△BMH和△CMF中,,∴△BMH≌△CMF(ASA),∴BH=CF,∵AB=BC,BE⊥AC,∴BE垂直平分AC,∴AF=CF,∴BH=AF,∴AF=CF=BH=2,故答案为:2,2;(3)从第(1)、(2)中发现AF=CF=BH;猜想BH=1,理由如下:如图③,连接CF,∵AD⊥BC,BE⊥AC,∴CF⊥AB,∵BH⊥AB,∴CF∥BH,∴∠CBH=∠BCF,∵点M是BC的中点,∴BM=MC,在△BMH和△CMF中,,∴△BMH≌△CMF(ASA),∴BH=CF,∵AB=BC,BE⊥AC,∴BE垂直平分AC,∴AF=CF,∴BH=AF,∴AF=CF=BH=1.4.解:(1)∵△DEF是等边三角形,∴DF=EF=DE,∠DFE=60°,∵BD=BE,DF=EF,BF=BF,∴△DBF≌△EBF(SSS)∴∠DBF=∠EBF,且∠DBF+∠EBF=120°,∴∠EBF=60°,故答案为:60°;(2)结论仍然成立,理由如下:如图2,过点F作FG⊥BC,FH⊥AB,∵∠DFE=60°,∠ABC=120°,∴∠FDB+∠FEB=180°,且∠FEB+∠FEG=180°,∴∠FDB=∠FEG,且∠FHD=∠FGE=90°,FD=EF,∴△FDH≌△FEG(AAS)∴FH=FG,且FG⊥BC,FH⊥AB,∴∠ABF=∠FBE=60°;(3)由(2)可知:△FDH≌△FEG,∴DH=EG,∴BD+BE=BH+DH+BE=BH+BG,∵∠ABF=∠FBE=60°,FG⊥BC,FH⊥AB,∴∠BFH=∠BFG=30°,∴BF=2BH=2BG,∴BF=BH+BG=BD+BE.5.解:(1)①如图2所示:作点M关于CE的对称点M',过点M'作M'N⊥BC,垂足为N,交EC于点P,∵点M与点M'关于EC对称,∴MP=M'P,∴NP+MP=NP+M'P,∴点N,点P,点M'三点共线,且M'N⊥BC时,NP+MP的值最小;故答案为:作点M关于CE的对称点M',过点M'作M'N⊥BC,垂足为N,交EC于点P;②∵∠ACB=120°,BC=CA,AB=16,E是AB中点,∴∠B=30°,BE=AE=8,且EM=2,∴BM'=10,∵∠B=30°,M'N⊥BC,∴MN'=5,∴NP+MP的最小值为5,故答案为:5;(2)如图3,在BE上截取EF=PE,∵∠BPC=75°,BC=BP,∴∠BCP=∠BPC=75°,∴∠CBP=30°,∵∠ACB=90°,AC=CB,∴∠CBA=∠CAB=45°,∴∠ABP=15°,∵∠BPC=∠PBE+∠BEP=75°,∴∠BEP=60°,且EF=PE,∴△PEF是等边三角形,∴PE=PF=EF,∠FPE=60°=∠PFE,∵∠PFE=∠PBE+∠BPF,∠PEF=∠BAC+∠ACE,∴∠BPF=∠BAC=45°,∠ACE=∠PBF=15°,且BP=BC=AC,∴△BPF≌△CAP(ASA)∴PF=AE,∴PE=AE,∠PEA=180°﹣∠BEP=120°,∴∠EP A=∠P AE=30°,∵∠EP A=∠PCA+∠P AC=30°,∴∠PCA=∠P AC=15°,∴PC=P A.6.解:(1)∵BC=5cm,BP=4cm,∴PC=1cm,∴AB=PC,∵DP⊥AP,∴∠APD=90°,∴∠APB+∠CPD=90°,∵∠APB+∠CPD=90°,∠APB+∠BAP=90°,∴∠BAP=∠CPD,在△ABP和△PCD中,,∴△ABP≌△PCD,∴BP=CD=4cm;(2)PB=PC,理由:如图2,延长线段AP、DC交于点E,∵DP平分∠ADC,∴∠ADP=∠EDP.∵DP⊥AP,∴∠DP A=∠DPE=90°,在△DP A和△DPE中,,∴△DP A≌△DPE(ASA),∴P A=PE.∵AB⊥BP,CM⊥CP,∴∠ABP=∠ECP=Rt∠.在△APB和△EPC中,,∴△APB≌△EPC(AAS),∴PB=PC;(3)∵△PDC是等腰三角形,∴△PCD为等腰直角三角形,即∠DPC=45°,又∵DP⊥AP,∴∠APB=45°,∴BP=AB=1cm,∴PC=BC﹣BP=4cm,∴CD=CP=4cm,故答案为:4.7.(1)解:如图①中,作CH⊥y轴于H.∵A(2,0),B(0,1),∴OA=2,OB=1,∵∠CHB=∠AOB=∠ABC=90°,∴∠ABO+∠OAB=90°,∠ABO+∠CBH=90°,∴∠CBH=∠OAB,∵AB=BC,∴△AOB≌△BHC(AAS),∴CH=OB=1,OA=BH=2,∴OH=OB+BH=3,∴C(1,3).故答案为(1,3).(2)证明:如图②中,∵△DBE,△ABC都是等腰直角三角形,∴∠DBE=∠ABC=90°,BD=BE,BA=BC,∴∠DBA=∠EBC,∴△DBA≌△EBC(SAS),∴EC=AD.(3)解:如图②中,设CD交AB于J.∵△DBA≌△EBC,C,E,D共线,∴∠BCD=∠BAD,∵∠BCD+∠CJB=90°,∠CJB=∠AJD,∴∠BAD+∠AJD=90°,∴∠ADJ=90°,∴CD⊥OA,∵C(1,3),∴OD=1.(4)解:设F(0,m).由题意:•|m﹣1|•2=2,∴m=3或﹣1,∴F(0,3)或(0,﹣1)8.解:(Ⅰ)结论:BM=AN,BM⊥AN.理由:如图1中,∵MP=AP,∠APM=∠BPN=90°,PB=PN,∴△MBP≌△ANP(SAS),∴MB=AN.延长MB交AN于点C.∵△MBP≌△ANP,∴∠P AN=∠PMB,∵∠P AN+∠PNA=90°,∴∠PMB+∠PNA=90°,∴∠MCN=180°﹣∠PMB﹣∠PNA=90°,∴BM⊥AN.(Ⅱ)结论成立理由:如图2中,∵△APM,△BPN,都是等边三角形∴∠APM=∠BPN=60°∴∠MPB=∠APN=120°,又∵PM=P A,PB=PN,∴△MPB≌△APN(SAS)∴MB=AN.(Ⅲ)如图3中,取PB的中点C,连接AC,AB.∵△APM,△PBN都是等边三角形∴∠APM=∠BPN=60°,PB=PN∵点C是PB的中点,且PN=2PM,∴PC=P A=PM=PB=PN,∵∠APC=60°,∴△APC为等边三角形,∴∠P AC=∠PCA=60°,又∵CA=CB,∴∠CAB=∠ABC=30°,∴∠P AB=∠P AC+∠CAB=90°.9.(1)证明:如图1中,作AH⊥AG交BG于H.∵∠BAC=∠HAG=90°,∴∠BAH=∠CAG,∵BG⊥CG,∴∠EAB=∠EGC=90°,∵∠AEB=∠CEG,∴∠ABH=∠ACG,∵AB=AC,∴△ABH≌△ACG(ASA),∴AH=AG,∵AF⊥FG,∠HAG=90°,∴FH=FG,∴AF=FG=FH.(2)解:结论:AG=2DF,DF⊥AG.理由:如图2中,连接AD,DG,作DK⊥BG于K.∵∠BAC=∠BGC=90°,BD=CD,∴DA=DG=BC,∵DF=DF,AF=FG,∴△DF A≌△DFG(SSS),∴∠ADF=∠GDF,∴DF⊥AG,∵DK∥CG,BD=DC,∴BK=KG,∴DK=CG,∵AE=CE,∠AFE=∠CGE,∠AEF=∠CEG,∴△AEF≌△CGE(AAS),∴AF=CG=2DK,∵△ADF≌△GDF,∴∠AFD=∠GFD=135°,∵∠AFK=90°,∴∠DFK=45°,∴DF=DK∵AG=AF,∴AG=2DF.(3)由(2)可知:CG=2DK,DF=DK,∴==10.解:(1)∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵∠DAE=∠BAC,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△BAD≌△CAE(SAS)∴∠ABC=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,故答案为:90;(2)∵∠BAC=60°,AB=AC,∴△ABC为等边三角形,∴∠ABD=∠ACB=60°,∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,∵∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE=60°,∴∠BCE=∠ACE+∠ACB=60°+60°=120°,故答案为:120.(3)①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∵∠ACE+∠ACB=β,∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°.②如图1:当点D在射线BC上时,α+β=180°,连接CE,∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,在△ABC中,∠BAC+∠B+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=∠BAC+∠BCE=180°,即:∠BCE+∠BAC=180°,∴α+β=180°,如图2:当点D在射线BC的反向延长线上时,α=β.连接BE,∵∠BAC=∠DAE,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∴∠ABD=∠ACE=∠ACB+∠BCE,∴∠ABD+∠ABC=∠ACE+∠ABC=∠ACB+∠BCE+∠ABC=180°,∵∠BAC=180°﹣∠ABC﹣∠ACB,∴∠BAC=∠BCE.∴α=β;综上所述:点D在直线BC上移动,α+β=180°或α=β.11.解:(1)∵(m﹣n)2+|m+n﹣8|=0,∴m=n=4,故答案为:4,4;(2)如图1,过点C作CH⊥OA,CG⊥OB,∵点A(0,4)和点B(4,0),∴OA=OB=4,=×4×4=8,∴S△ABO∵△AOC的面积为2,=6=×OB×CG=×4×CG,∴AO×CH=×4×CH=2,S△BOC∴CH=1,CG=3,∴点C(1,3),∵DC=OC,∴点D(2,6)(3)①∵OA=OB=4,∠AOB=90°,∴∠OAB=∠OBA=45°,∵BE平分∠ABO,∴∠EBO=∠EBC,且BE=BE,OB=OC,∴△OBE≌△CBE(SAS)∴∠EOB=∠ECB=90°,∴∠ACE=90°,且∠OAB=45°,∴∠CAE=∠AEC=45°,∴AC=CE,且∠ACE=90°,∴△ACE是等腰直角三角形;②如图2,作OM平分∠AOB,交BE于点M,∵OM平分∠AOB,∴∠AOM=∠BOM=45°,∴∠AOM=∠BOM=∠OAB=∠OBA,∵OB=OC,BE平分∠ABO,∠ABO=45°,∴∠OBE=22.5°,BE⊥OC,∠COB=∠OCB=67.5°,∴∠AOC=22.5°=∠COM,∴∠AOC=∠BOM,且OB=OA,∠OAB=∠OBM,∴△ACO≌△OMB(ASA)∴BM=OC,∵∠EFO=∠MFO=90°,OF=OF,∠AOC=∠COM,∴△EFO≌△MFO(ASA)∴EF=FM,∴BF﹣EF=BF﹣FM=BM=OC.12.(1)证明:∵B(﹣1,0),C(1,0),∴OB=OC=1,∵OD⊥BC,∴BD=CD,∴∠BDC=2∠BDO,∵∠BAC=2∠BDO,∴∠BDC=∠BAC,∵∠BAC+∠ABD=∠AFD=∠BDC+∠ACD,∴∠ABD=∠ACD.(2)作DN⊥AE,垂足为N.∵DM⊥AC于点M,∴∠DNB=∠DMC=90°,在△DNB和△DMC中,,∴△DNB≌△DMC(AAS),∴DN=DM,又∵DN⊥AE于N,DM⊥AC于点M,∴AD平分∠CAE.(3)∵DG=AD,∴∠DAG=∠DGA,∵AD平分∠CAE,∴∠DAG=∠DAE.∴∠DGA=∠DAE.∵∠DAE+∠DAB=∠DGA+∠DGC=180°,∴∠DAB=∠DGC,在△DAB和△DGC中,,∴△DAB≌△DGC(AAS)∴AB=CG.13.(1)证明:如图(1),∵∠ABC+∠ADC=180°,∠ADE+∠ADC=180°,∴∠ABC=∠ADE,在△ABC与△ADE中,,∴△ABC≌△ADE(ASA)∴AC=AE.(2)证明:如图(1),∵△ABC≌△ADE,∴AC=AE,∠BCA=∠E,∴∠ACD=∠E,∴∠BCA=∠E=∠ACD,即CA平分∠BCD;(3)解:EC=2AF.证明如下:如图(2),过点A作AM⊥CE,垂足为M,∵AM⊥CD,AF⊥CF,∠BCA=∠ACD,∴AF=AM,又∵∠BAC=∠DAE,∴∠CAE=∠CAD+∠DAE=∠CAD+∠BAC=∠BAD=90°,∵AC=AE,∠CAE=90°,∴∠ACE=∠AEC=45°,∵AM⊥CE,∴∠ACE=∠CAM=∠MAE=∠E=45°,∴CM=AM=ME,又∵AF=AM,∴EC=2AF.14.(1)证明:∵∠DAE=∠BAC,∴∠DAE﹣∠DAC=∠BAC﹣∠DAC,∴∠CAE=∠BAD.∵AD=AE,AC=AB,∴△CAE≌△BAD(SAS).(2)解:α+β=180°,理由如下:由△CAE≌△BAD,∴∠ACE=∠B.∵AB=AC,∴∠B=∠ACB.∴∠ACE=∠B=∠ACB.∴∠BCE=β=2∠B,在△ABC中,∠BAC=α=180°﹣2∠B.∴α+β=180°.(3)证明:由(1)知,△CAE≌△BAD,∴CE=BD.∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,由(2)得,∠BCF+∠BAC=180°.∴∠BCF=90°.∴∠F=∠B=45°,∴CF=CB.∴CF﹣CE=CB﹣BD.∴EF=DC.15.(1)证明:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,在△ADE和△ADF中,,∴△ADE≌△ADF(AAS),∴DE=DF,AE=AF;(2)解:AM+AN=2AF;证明如下:由(1)得DE=DF,∵∠MDN=∠EDF,∴∠MDE=∠NDF,在△MDE和△NDF中,,∴△MDE≌△NDF(ASA),∴ME=NF,∴AM+AN=(AE+ME)+(AF﹣NF)=AE+AF=2AF;(3)解:过点D作DE⊥AB于E,由(2)可知AM+AN=2AC=2×6=12,∵∠BAC=60°,AD平分∠BAC交BC于D,∴∠BAD=∠CAD=30°,∵ND∥AB,∴∠ADN=∠BAD=30°,∴∠CAD=∠ADN,∴AN=DN,在Rt△CDN中,DN=2CN,∵AC=6,∴DN=AN=×6=4,∵∠BAC=60°,∠MDN=120°,∴∠CDE=∠MDN,∴DM=DN=4,∴四边形AMDN的周长=12+4×2=20.故答案为:20.。

2020-2021初三数学直角三角形的边角关系的专项培优练习题(含答案)含答案解析

2020-2021初三数学直角三角形的边角关系的专项培优练习题(含答案)含答案解析

2020-2021初三数学直角三角形的边角关系的专项培优练习题(含答案)含答案解析一、直角三角形的边角关系1.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域;(3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP = 【解析】【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去.【详解】(1)联结OD ,∵OC OD =,∴OCD ODC ∠=∠,∵//CD AB ,∴OCD COA ∠=∠,∴POA QDO ∠=∠.在AOP ∆和ODQ ∆中,{OP DQPOA QDO OA DO=∠=∠=,∴AOP ∆≌ODQ ∆,∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =, ∴132AOP S AO PH x ∆=⋅=. ∵//CD AB ,∴PFC ∆∽PAO ∆, ∴2210()()AOP yCP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时, ∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =, ∴2360300x x y x-+=50(10)13x <<; (3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4cos 1085OP OA AOC =⋅∠=⨯=; ②当90POE ∠=o 时,1010254cos cos 25OC CQ QCO AOC ====∠∠, ∴252OP DQ CD CQ CD ==-=-2571622=-=, ∵501013OP <<, ∴72OP =(舍去); ③当90PEO ∠=o 时,∵//CD AB ,∴AOQ DQO ∠=∠,∵AOP ∆≌ODQ ∆,∴DQO APO ∠=∠,∴AOQ APO ∠=∠,∴90AEO AOP ∠=∠=o ,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.2.我市在创建全国文明城市的过程中,某社区在甲楼的A 处与E 处之间悬挂了一副宣传条幅,在乙楼顶部C 点测得条幅顶端A 点的仰角为45°,条幅底端E 点的俯角为30°,若甲、乙两楼之间的水平距离BD 为12米,求条幅AE 的长度.(结果保留根号)【答案】AE 的长为(123)+【解析】【分析】在Rt ACF V 中求AF 的长, 在Rt CEF V 中求EF 的长,即可求解.【详解】过点C 作CF AB ⊥于点F由题知:四边形CDBF 为矩形12CF DB ∴==在Rt ACF V 中,45ACF ∠=︒tan 1AF ACF CF∴∠== 12AF ∴=在Rt CEF V 中,30ECF ∠=︒tan EF ECF CF∴∠= 3123EF ∴= 43EF ∴=1243AE AF EF ∴=+=+∴求得AE 的长为(1243+【点睛】本题考查了三角函数的实际应用,中等难度,作辅助线构造直角三角形是解题关键.3.如图,在△ABC中,∠A=90°,∠ABC=30°,AC=3,动点D从点A出发,在AB边上以每秒1个单位的速度向点B运动,连结CD,作点A关于直线CD的对称点E,设点D运动时间为t(s).(1)若△BDE是以BE为底的等腰三角形,求t的值;(2)若△BDE为直角三角形,求t的值;(3)当S△BCE≤92时,所有满足条件的t的取值范围(所有数据请保留准确值,参考数据:tan15°=23【答案】(133;(23秒或3秒;(3)6﹣3【解析】【分析】(1)如图1,先由勾股定理求得AB的长,根据点A、E关于直线CD的对称,得CD垂直平分AE,根据线段垂直平分线的性质得:AD=DE,所以AD=DE=BD,由3,可得t 的值;(2)分两种情况:①当∠DEB=90°时,如图2,连接AE,根据3t的值;②当∠EDB=90°时,如图3,根据△AGC≌△EGD,得AC=DE,由AC∥ED,得四边形CAED 是平行四边形,所以AD=CE=3,即t=3;(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,①当△BCE在BC的下方时,②当△BCE在BC的上方时,分别计算当高为3时对应的t的值即可得结论.【详解】解:(1)如图1,连接AE,由题意得:AD=t,∵∠CAB=90°,∠CBA=30°,∴BC=2AC=6,∴22633∵点A、E关于直线CD的对称,∴CD垂直平分AE,∴AD=DE,∵△BDE是以BE为底的等腰三角形,∴DE=BD,∴AD=BD,∴;(2)△BDE为直角三角形时,分两种情况:①当∠DEB=90°时,如图2,连接AE,∵CD垂直平分AE,∴AD=DE=t,∵∠B=30°,∴BD=2DE=2t,∴∴②当∠EDB=90°时,如图3,连接CE,∵CD垂直平分AE,∴CE=CA=3,∵∠CAD=∠EDB=90°,∴AC∥ED,∴∠CAG=∠GED,∵AG=EG,∠CGA=∠EGD,∴△AGC≌△EGD,∴AC=DE,∵AC∥ED,∴四边形CAED是平行四边形,∴AD=CE=3,即t=3;综上所述,△BDE为直角三角形时,t3秒;(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,①当△BCE在BC的下方时,过B作BH⊥CE,交CE的延长线于H,如图4,当AC=BH=3时,此时S△BCE=12AE•BH=12×3×3=92,易得△ACG≌△HBG,∴CG=BG,∴∠ABC=∠BCG=30°,∴∠ACE=60°﹣30°=30°,∵AC=CE,AD=DE,DC=DC,∴△ACD≌△ECD,∴∠ACD=∠DCE=15°,tan∠ACD=tan15°=t3=2﹣3,∴t=6﹣33,由图形可知:0<t<6﹣33时,△BCE的BH越来越小,则面积越来越小,②当△BCE在BC的上方时,如图3,CE=ED=3,且CE⊥ED,此时S△BCE=12CE•DE=12×3×3=92,此时t=3,综上所述,当S△BCE≤92时,t的取值范围是6﹣33≤t≤3.【点睛】本题考查三角形综合题、平行四边形的判定和性质、直角三角形的性质、三角形的面积问题、轴对称等知识,解题的关键是灵活运用所学知识,学会用分类讨论的思想思考问题,学会寻找特殊点解决问题,属于中考压轴题.4.如图,在矩形ABCD中,AB=6cm,AD=8cm,连接BD,将△ABD绕B点作顺时针方向旋转得到△A′B′D′(B′与B重合),且点D′刚好落在BC的延长上,A′D′与CD相交于点E.(1)求矩形ABCD与△A′B′D′重叠部分(如图1中阴影部分A′B′CE)的面积;(2)将△A′B′D′以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与△A′B′D′重叠部分的面积为y,移动的时间为x,请你直接写出y关于x 的函数关系式,并指出自变量x的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x,使得△AA′B′成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.【答案】(1)452;(2)详见解析;(3)使得△AA ′B ′成为等腰三角形的x 的值有:0秒、32 669-. 【解析】【分析】(1)根据旋转的性质可知B ′D ′=BD =10,CD ′=B ′D ′﹣BC =2,由tan ∠B ′D ′A ′='''''=A B CE A D CD 可求出CE ,即可计算△CED ′的面积,S ABCE =S ABD ′﹣S CED ′; (2)分类讨论,当0≤x ≤115时和当115<x ≤4时,分别列出函数表达式; (3)分类讨论,当AB ′=A ′B ′时;当AA ′=A ′B ′时;当AB ′=AA ′时,根据勾股定理列方程即可.【详解】解:(1)∵AB =6cm ,AD =8cm ,∴BD =10cm ,根据旋转的性质可知B ′D ′=BD =10cm ,CD ′=B ′D ′﹣BC =2cm ,∵tan ∠B ′D ′A ′='''''=A B CE A D CD ∴682=CE ∴CE =32cm , ∴S ABCE =S ABD ′﹣S CED ′=8634522222⨯-⨯÷=(cm 2); (2)①当0≤x <115时,CD ′=2x +2,CE =32(x +1), ∴S △CD ′E =32x 2+3x +32, ∴y =12×6×8﹣32x 2﹣3x ﹣32=﹣32x 2﹣3x +452; ②当115≤x ≤4时,B ′C =8﹣2x ,CE =43(8﹣2x )∴()214y 8223x =⨯-=83x 2﹣643x +1283. (3)①如图1,当AB ′=A ′B ′时,x =0秒; ②如图2,当AA ′=A ′B ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =245, ∵AN 2+A ′N 2=36,∴(6﹣245)2+(2x +185)2=36, 解得:x =669-,x =669--(舍去); ③如图2,当AB ′=AA ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =245, ∵AB 2+BB ′2=AN 2+A ′N 2∴36+4x 2=(6﹣245)2+(2x +185)2 解得:x =32. 综上所述,使得△AA ′B ′成为等腰三角形的x 的值有:0秒、32秒、6695-.【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.5.如图,已知二次函数212y x bx c =++的图象经过点A (-3,6),并与x 轴交于点B (-1,0)和点C ,顶点为点P .(1)求这个二次函数解析式;(2)设D为x轴上一点,满足∠DPC=∠BAC,求点D的坐标;(3)作直线AP,在抛物线的对称轴上是否存在一点M,在直线AP上是否存在点N,使AM+MN的值最小?若存在,求出M、N的坐标:若不存在,请说明理由.【答案】(1)点C坐标为(3,0),点P(1,-2);(2)点P(7,0);(3)点N(-7 5,145).【解析】【分析】(1)将点A、B坐标代入二次函数表达式,即可求解;(2)利用S△ABC= 12×AC×BH=12×BC×y A,求出sinα=222105BHAB==,则tanα=12,在△PMD中,tanα= MDPM1222x=+,即可求解;(3)作点A关于对称轴的对称点A′(5,6),过点A′作A′N⊥AP分别交对称轴与点M、交AP于点N,此时AM+MN最小,即可求解.【详解】(1)将点A、B坐标代入二次函数表达式得:9633212bb c⎧=-+⎪⎪⎨⎪=--+⎪⎩,解得:132bc=-⎧⎪⎨=-⎪⎩,故:抛物线的表达式为:y=12x2-x-32,令y=0,则x=-1或3,令x=0,则y=-32,故点C坐标为(3,0),点P(1,-2);(2)过点B作BH⊥AC交于点H,过点P作PG⊥x轴交于点G,设:∠DPC=∠BAC=α,由题意得:AB=210,AC=62,BC=4,PC=22,S△ABC=12×AC×BH=12×BC×y A,解得:BH=22,sinα=BHAB=22210=5,则tanα=12,由题意得:GC=2=PG,故∠PCB=45°,延长PC,过点D作DM⊥PC交于点M,则MD=MC=x,在△PMD中,tanα=MDPM=22x+=12,解得:x=22,则CD=2x=4,故点P(7,0);(3)作点A关于对称轴的对称点A′(5,6),过点A′作A′N⊥AP分别交对称轴与点M、交AP于点N,此时AM+MN最小,直线AP表达式中的k值为:84-=-2,则直线A′N表达式中的k值为12,设直线A′N的表达式为:y=12x+b,将点A′坐标代入上式并求解得:b=72,故直线A ′N 的表达式为:y =12x +72…①, 当x =1时,y =4, 故点M (1,4),同理直线AP 的表达式为:y =-2x …②, 联立①②两个方程并求解得:x =-75,故点N (-75,145). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等知识,其中(3),利用对称点求解最小值,是此类题目的一般方法.6.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到万丰路(直线AO )的距离为120米的点P 处.这时,一辆小轿车由西向东匀速行驶,测得此车从A 处行驶到B 处所用的时间为5秒且∠APO =60°,∠BPO =45°.(1)求A 、B 之间的路程;(2)请判断此车是否超过了万丰路每小时65千米的限制速度?请说明理由.(参考数据:2 1.414,3 1.73≈≈).【答案】 【小题1】73.2【小题2】超过限制速度. 【解析】解:(1)100(31)AB =-73.2 (米).…6分(2) 此车制速度v==18.3米/秒7.如图,AB 为O e 的直径,C 、D 为O e 上异于A 、B 的两点,连接CD ,过点C 作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒. (2)若2ABD BDC ∠=∠. ①求证:CF 是O e 的切线. ②当6BD =,3tan 4F =时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203CF =. 【解析】 【分析】(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=BD AD =34,求出AD=43BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=OC CF =34,即可求出CF . 【详解】解:(1)AB 是O e 的直径,且D 为O e 上一点,90ADB ∴∠=︒, CE DB ⊥Q , 90DEC ∴∠=︒, //CF AD ∴,180DAC ACF ∴∠+∠=︒. (2)①如图,连接OC . OA OC =Q ,12∴∠=∠. 312∠=∠+∠Q , 321∴∠=∠.42BDC Q ∠=∠,1BDC ∠=∠, 421∴∠=∠, 43∴∠=∠, //OC DB ∴.CE DB ⊥Q , OC CF ∴⊥.又OC Q 为O e 的半径, CF ∴为O e 的切线.②由(1)知//CF AD ,BAD F ∴∠=∠,3tan tan 4BAD F ∴∠==, 34BD AD ∴=. 6BD =Q483AD BD ∴==,226810AB ∴=+=,5OB OC ==.OC CF Q ⊥, 90OCF ∴∠=︒,3tan 4OC F CF ∴==,解得203CF =. 【点睛】本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.8.如图,△ABC 中,AC =BC =10,cosC =35,点P 是AC 边上一动点(不与点A 、C 重合),以PA 长为半径的⊙P 与边AB 的另一个交点为D ,过点D 作DE ⊥CB 于点E . (1)当⊙P 与边BC 相切时,求⊙P 的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409R=;(2)25880320xy x xx=-++;(3)50105-.【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,即可求解;(2)首先证明PD∥BE,则EB BFPD PF=,即:2024588x yxxxy-+--=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC =HP CP =10R R -=45,解得:R =409; (2)在△ABC 中,AC =BC =10,cosC =35, 设AP =PD =x ,∠A =∠ABC =β,过点B 作BH ⊥AC ,则BH =ACsinC =8,同理可得:CH =6,HA =4,AB =45,则:tan ∠CAB =2, BP =228+(4)x -=2880x x -+,DA =25x ,则BD =45﹣25x , 如下图所示,PA =PD ,∴∠PAD =∠CAB =∠CBA =β,tanβ=2,则c osβ5,sinβ5, EB =BDcosβ=(525x )5=4﹣25x ,∴PD ∥BE ,∴EB BFPD PF=,即:2024588x y x xx -+--=,整理得:y 25xx 8x 803x 20-++(3)以EP 为直径作圆Q 如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q是弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP∥BD,由(2)知,PD∥BC,∴四边形PDBE为平行四边形,∴AG=EP=BD,∴AB=DB+AD=AG+AD=45,设圆的半径为r,在△ADG中,AD=2rcosβ=5,DG=5,AG=2r,5+2r=45,解得:2r=51,则:DG=5=50﹣105,相交所得的公共弦的长为50﹣105.【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.9.关于三角函数有如下的公式:sin(α+β)=sinαcosβ+cosαsinβ①cos(α+β)=cosαcosβ﹣sinαsinβ②tan(α+β)=③利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:tan105°=tan(45°+60°)==﹣(2+).根据上面的知识,你可以选择适当的公式解决下面的实际问题:如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,求建筑物CD的高.【答案】建筑物CD的高为84米.【解析】分析:如图,过点D作DE⊥AB于点E,由题意易得∠ACB=75°,∠ABC=90°,DE=BC=42m,∠ADE=60°,这样在Rt△ABC和在Rt△ADE中,结合题中所给关系式分别求出AB和AE的长,即可由CD=BE=AB-AE求得结果了.详解:如图,过点D作DE⊥AB于点E,由题意可得∠ACB=75°,∠ABC=90°,DE=BC=42m,CD=BE,∠ADE=60°,∴在Rt△ABC和Rt△ADEAB=BC•tan75°=42tan75°=,AE=,∴CD=AB﹣AE=(米).答:建筑物CD的高为84米.睛:读懂题意,把已知量和未知量转化到Rt△ABC和Rt△ADE中,这样利用直角三角形中边角间的关系结合题目中所给的“两角和的三角形函数公式”即可使问题得到解决.10.小明坐于堤边垂钓,如图①,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离(如图②).【答案】1.5米.【解析】试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出在Rt△ACD中,米,CD=2AD=3米,再证明△BOD是等边三角形,得到米,然后根据BC=BD−CD即可求出浮漂B与河堤下端C之间的距离.试题解析:延长OA交BC于点D.∵AO的倾斜角是,∴∵在Rt△ACD中, (米),∴CD=2AD=3米,又∴△BOD是等边三角形,∴(米),∴BC=BD−CD=4.5−3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.11.如图,在航线l的两侧分别有观测点A和B,点B到航线l的距离BD为4km,点A位于点B北偏西60°方向且与B相距20km处.现有一艘轮船从位于点A南偏东74°方向的C处,沿该航线自东向西航行至观测点A 的正南方向E 处.求这艘轮船的航行路程CE 的长度.(结果精确到0.1km )(参考数据:3≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)【答案】20.9km 【解析】分析:根据题意,构造直角三角和相似三角形的数学模型,利用相似三角形的判定与性质和解直角三角形即可. 详解:如图,在Rt △BDF 中,∵∠DBF=60°,BD=4km ,∴BF=cos 60BDo=8km ,∵AB=20km , ∴AF=12km ,∵∠AEB=∠BDF ,∠AFE=∠BFD , ∴△AEF ∽△BDF ,∴AE BDAF BF , ∴AE=6km ,在Rt △AEF 中,CE=AE•tan74°≈20.9km . 故这艘轮船的航行路程CE 的长度是20.9km .点睛:本题考查相似三角形,掌握相似三角形的概念,会根据条件判断两个三角形相似.12.已知:在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,BE :AB=3:5,若CE= 2 ,cos ∠ACD=45,求tan ∠AEC 的值及CD 的长.【答案】tan ∠AEC=3, CD=12125【解析】解:在RT △ACD 与RT △ABC 中∵∠ABC+∠CAD=90°, ∠ACD+∠CAD=90°∴∠ABC=∠ACD, ∴cos ∠ABC=cos ∠ACD=45在RT △ABC 中,45BC AB = 令BC=4k,AB=5k 则AC=3k 由35BE AB = ,BE=3k 则CE=k,且2 则2,2 ∴RT △ACE 中,tan ∠AEC=ACEC=3 ∵RT △ACD 中cos ∠ACD=45CD AC = ,,12125。

2020年中考数学知识点过关培优训练:三角形(含答案)

2020年中考数学知识点过关培优训练:三角形(含答案)

2020年中考数学知识点过关培优训练:三角形1.在△ACB和△DCE中,AB=AC,DE=DC,点E在AB上(1)如图1,若∠ACB=∠DCE=60°,求证:∠DAC=∠EBC;(2)如图2,设AC与DE交于点P.①若∠ACB=∠DCE=45°,求证:AD∥CB;②在①的条件下,设AC与DE交于点P,当tan∠ADE=时,直接写出的值.(1)证明:∵AB=AC,DE=DC,∠ACB=∠DCE=60°,∴△ACB和△DCE都是等边三角形,∴BC=AC,EC=DC,∠DCA=∠ECB,在△DCA和△ECB中,,∴△DCA≌△ECB(SAS),∴∠DAC=∠EBC;(2)①证明:∵AB=AC,DE=DC,∠ACB=∠DCE=45°,∴△ACB和△DCE都是等腰直角三角形,∠CAB=∠CDE=90°,∠ECB=∠DCA,∴cos∠ACB=cos∠DCE,∴即,又∵∠E CB=∠DCA,∴△ECB∽△DCA,∴∠B=∠DAC=45°,∴∠DAC=∠ACB=45°,∴AD∥CB;②解:作EH∥AD交AC于点H,如图2所示:则:,由①中的△ECB∽△DCA得:,∵∠DAC=∠B═45°=∠DEC,∴∠ADE=∠ACE,∴tan∠ACE=tan∠ADE=,设AE=2m,∴tan∠ACE==,∴AC=4m,∴BE=AB﹣AE=AC﹣AE=4m﹣2m=2m,∴AE=BE,∴BC=AC=4m,∵EH∥AD,AD∥CB,∴EH∥CB,∴EH是△ABC的中位线,∴EH=BC=×4m=2m,AD===m,∴==.2.如图,在平面直角垫标系中,O是坐标原点,△ABC的各顶点坐标分别为A(﹣8,0),B(﹣2,8),C(4,0).动点M从点A出发,以每秒8个单位的速度沿A→C→B→A 路线向终点A匀速运动,动点N从点A点出发,以每秒5个单位的速度沿A→B→C路线向终点C匀速运动,两点同时出发,当其中一点到达终点后,另一点也随之停止运动,设运动的时间为t秒(t>0),△AMN的面积为S.(1)①当t=秒时,点M与点N相遇;②求sin∠BAC;(2)当0<t<时,求S与t的函数关系式;(3)若S=,请直接写出此时t的值.解:(1)作BD⊥AC于点D,如图1所示:①∵A(﹣8,0),B(﹣2,8),C(4,0).∴OA=8,BD=8,OC=4,OD=2,∴AC=OA+OC=12,CD=6,AD=6,∴AD=CD,∴AB=CB==10,∴AB+BC+AC=32,点M与点N相遇时,8t+5t=32,解得:t=;即t=秒时,点M与点N相遇;故答案为:;②在Rt△ABD中,sin∠BAC===;(2)当0<t <时,点M 在线段AC 上,点N 在线段AB 上, 作NE ⊥AM 于点E ,如图2所示: 则sin ∠NAE ==,∴NE =AN =×5t =4t ,则S △ANM =AM •NE =×8t ×4t =16 t 2; (3)分情况讨论:①当0<t <时, S △ANM =16 t 2=,解得:t =;②当≤t ≤2时,作MF ⊥AB 于F ,CG ⊥AB 于G ,如图3所示: 则CG ∥MF , ∴=,∵△ABC 的面积=×AB ×CG =×12×8,AB =10, ∴CG =,∴=,解得:MF =(22﹣8t ),∴S △ANM =AN •MF =×5t •=,解得:t =,∵≤t ≤2, ∴无解; ③当2<t <时,作AH ⊥BC 于H ,如图4所示:则S △AMN =AH •MN =××(32﹣13 t )=,或S △AMN =AH •MN =××(13t ﹣32)=,解得:t=或t=;④当≤t≤4时,N在BC上,M在AB上,则BN=5t﹣10,如图5所示:作NT⊥AB于T,CK⊥AB于K,则NT∥CK,∴=,∵△ABC的面积=×AB×CK=×12×8,AB=10,∴CK=,∴=,∴NT=(5t﹣10),S=AM•NT=(32﹣8t)×(5t﹣10)=,△AMN解得:t=3+或t=3﹣(舍去),综上所述,若S=,t的值为或或或3+.3.在平面直角坐标系中,点A(a,0),点B(0,b),已知a、b满足(a+4)2+b2+8b+16=0.(1)点A的坐标为(﹣4,0),点B的坐标为(0,﹣4);(2)如图1,点E为线段OB上一点,连接AE,过A作AF⊥AE,且AF=AE,连接BF 交x轴于点D,若点D(﹣1,0),求点E的坐标;(3)在(2)的条件下,如图2,过E作EH⊥OB交AB于H,点M是射线EH上一点(点M不在线段EH上),连接MO,作∠MON=45°,ON交线段BA的延长线于点N,连接MN,探究线段MN与OM的关系,并说明理由.解:(1)由已知可得(a+4)2+(b+4)2=0∴a=﹣4,b=﹣4∴点A坐标为(﹣4,0),点B坐标为(0,﹣4)(2)如图1,过点G作FH⊥AO,垂足为H∵∠F AH+∠AFH=90°∠F AH+∠OAE=90°∴∠AFH=∠OAE∴△AFH≌△AOE∴FH=AO=4∵FH=OB,∠BOD=∠FHD,∠FDH=∠ODB,∴△FHD≌△BOD,∴OD=HD=1,∴AD=OE=2,∴E(0,﹣2)(3)解法一:如图2,连接OH,作MG⊥NO可知OH⊥AB∠AOH=∠NOM=45°∴∠MOH=∠NOA∵∠NAO=∠MHO=135°∴△NAO~△MHO∴==设MG=a,则MO=a,NO=2a在Rt△MGO中MG=GO=a∴HG=a∴G为MO的中点∴△NMO为等腰直角三角形∴MN=OMMN⊥OM.解法二:作NK⊥NO交OM的延长线于K,作NT⊥y轴于T,NQ⊥NT,KQ⊥NQ,连接BQ.∵∠NOM=45°,∠KNO=90°,∴NK=ON,∵∠KNO=∠TNQ=90°,∴∠KNQ=∠TNO,∵∠NQK=∠NTO=90°,∴△NQK≌△NTO(ASA),∴NQ=NT,∵∠BNQ=∠BNT=45°,BN=BN,∴△BNQ≌△BNT(SAS),∴∠NQB=∠NTB=90°,∴K,Q,B共线,∵ME∥BK,OE=EB,∴OM=MK,∴MN=OM,MN⊥OM.4.已知:如图,在△ABC中,AB=6,AC=9,tan∠ABC=2.过点B作BM∥AC,动点P在射线BM上(点P不与B重合),连结P A并延长到点Q,使∠AQC=∠ABP.(1)求△ABC的面积;(2)设BP=x,AQ=y,求y关于x的函数解析式,并写出x的取值范围;(3)连接PC,如果△PQC是直角三角形,求BP的长.解:(1)过点A作AH⊥BC交于点H,在Rt△ABH中,tan∠ABC==2,设BH=m,∴AH=2m,根据勾股定理得,m2+(2m)2=36,∴m=﹣2(舍)或m=2,∴BH=2,AH=2m=4,在Rt△AHC中,AC=9,根据勾股定理得,CH==7,∴BC=BH+CH=9,S=AH•BC=×4×9=18;△ABC(2)过点A作AG⊥P A交于点G,由(1)知,BC=9,∵AC=9,∴AC=BC,∴∠ABC=∠BAC,∵BM∥AC,∴∠BAC=∠ABP,∴∠ABP=∠ABC,∵AH⊥BC,AG⊥BP,∴AG=AH=4,BG=BH=2,∴PG=BP﹣BG=x﹣2根据勾股定理得,AP==,∵BM∥AC,∴∠QAC=∠APB,又∠AQC=∠ABP,∴△ABP∽△CQA,∴,其中:AB=6,BP=x,QA=y,AP=,AC=9,∴,∴CQ=,y=①(x>0);(3)连接PC,△PQC是直角三角形,即∠PCQ=90°,在Rt△ABH中,cos∠ABH==,∴cos∠PQC=cosα==其中CQ=,PQ=AP+AQ=y+AP,AP=,∴=②联立①②解得:x=﹣14(舍)或x=9,即BP的长为9.5.用一条直线分割一个三角形,如果能分割出等腰三角形,那么就称这条直线为该三角形的一条等腰分割线.在直角三角形ABC中,∠C=90°,AC=8,BC=6.(1)如图(1),若O为AB的中点,则直线OC是△ABC的等腰分割线(填“是”或“不是”)(2)如图(2)已知△ABC的一条等腰分割线BP交边AC于点P,且PB=P A,请求出CP的长度.(3)如图(3),在△ABC中,点Q是边AB上的一点,如果直线CQ是△ABC的等腰分割线,求线段BQ的长度等于5或2或6或..(直接写出答案).解:(1)如图(1),是.∵∠ACB=90°,O为AB中点,在Rt△ACB中,OC=AB=AO=BO,∴得等腰△AOC和等腰△BOC.则直线OC是△ABC的等腰分割线故答案为:是;(2)由题可知P A=PB,BC=6,设CP=x,则P A=PB=8﹣x,在Rt△BPC中,BC2+PC2=PB2,∴62+x2=(8﹣x)2,x=.即:CP=.(3)BQ=5或2或6或.①若△ACQ为等腰三角形,如图(3),当AC=AQ时,AQ=8,BQ=AB﹣AQ=2,如图(4),当QC=QA时,Q为AB中点,BQ=AB=5.当CA=CQ时,Q不在线段AB上,舍去.②若△BCQ为等腰三角形.如图(5),当CQ=CB时,过C作CM⊥AB于M,此时M为BQ的中点,S=BC•AC=AB•CM△ABC×6×8=×10CMCM=.Rt△CMQ中,BM==,∴BQ=2QM=.如图(6),当BC=BQ时,BQ=BC=6.如图(7),当QC=QB时,Q为AB中点,BQ=AB=5.综上,BQ=2或5或或6.故答案为:5或2或6或.6.(1)问题解决:如图,在四边形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.①如图1,若α=90°,根据教材中一个重要性质直接可得AD=CD,这个性质是角平分线上的点到角的两边距离相等;②在图2中,求证AD=CD;(2)拓展探究:根据(1)的解题经验,请解决如下问题:如图3,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求证BD+AD=BC.解:(1)①根据角平分线的性质定理可知AD=CD.所以这个性质是角平分线上的点到角的两边距离相等.故答案为角平分线上的点到角的两边距离相等.②如图2中,作DE⊥BA于E,DF⊥BC于F.∵BD平分∠EBF,DE⊥BE,DF⊥BF,∴DE=DF,∵∠BAD+∠C=180°,∠BAD+∠EAD=180°,∴∠EAD=∠C,∵∠E=∠DFC=90°,∴△DEA≌△DFC,∴DA=DC.(2)如图3中,在BC上截取BK=BD,BT=BA,连接DK.∵AB=AC,∠A=100°,∴∠ABC=∠C=40°,∵BD平分∠ABC,∴∠DBK=∠ABC=20°,∵BD=BK,∴∠BKD=∠BDK=80°,∵∠BKD=∠C+∠KDC,∴∠KDC=∠C=40°,∴DK=CK,∵BD=BD,BA=BT,∠DBA=∠DBT,∴△DBA≌△DBT,∴AD=DT,∠A=∠BTD=100°,∴∠DTK=∠DKT=80°,∴DT=DK=CK,∴BD+AD=BK+CK=BC.7.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC 的数量关系还成立吗?说明理由.证明:(1)如图2,连接AM,由已知得△ABD≌△ACE,∴AD=AE,AB=AC,∠BAD=∠CAE,∵MD=ME,∴∠MAD=∠MAE,∴∠MAD﹣∠BAD=∠MAE﹣∠CAE,即∠BAM=∠CAM,在△ABM和△ACM中,,∴△ABM≌△ACM(SAS),∴MB=MC;(2)MB=MC.理由如下:如图3,延长DB、AE相交于E′,延长EC交AD于F,∴BD=BE′,CE=CF,∵M是ED的中点,B是DE′的中点,∴MB∥AE′,∴∠MBC=∠CAE,同理:MC∥AD,∴∠BCM=∠BAD,∵∠BAD=∠CAE,∴∠MBC=∠BCM,∴MB=MC;(3)MB=MC还成立.如图4,延长BM交CE于F,∵CE∥BD,∴∠MDB=∠MEF,∠MBD=∠MFE,又∵M是DE的中点,∴MD=ME,在△MDB和△MEF中,,∴△MDB≌△MEF(AAS),∴MB=MF,∵∠ACE=90°,∴∠BCF=90°,∴MB=MC.8.如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PWQ.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题:(1)说明△FMN∽△QWP;(2)设0≤x≤4(即M从D到A运动的时间段).试问x为何值时,△PWQ为直角三角形?当x在何范围时,△PQW不为直角三角形?(3)问当x为何值时,线段MN最短?求此时MN的值.解:(1)根据三角形中位线定理得PQ∥FN,PW∥MN,∴∠QPW=∠PWF,∠PWF=∠MNF,∴∠QPW=∠MNF.同理∠PQW=∠NFM,∴△FMN∽△QWP;(2)由于△FMN∽△QWP,故当△QWP是直角三角形时,△FMN也为直角三角形.作FG⊥AB,则四边形FCBG是正方形,有GB=CF=CD﹣DF=4,GN=GB﹣BN=4﹣x,DM=x,①当MF⊥FN时,∵∠DFM+∠MFG=∠MFG+∠GFN=90°,∴∠DFM=∠GFN.∵∠D=∠FGN=90°,∴△DFM∽△GFN,∴DF:FG=DM:GN=2:4=1:2,∴GN=2DM,∴4﹣x=2x,∴x=;②当MN⊥FN时,点M与点A重合,点N与点G重合,∴x=AD=GB=4.∴当x=4或时,△QWP为直角三角形,当0≤x<,<x<4时,△QWP不为直角三角形.(3)①当0≤x≤4,即M从D到A运动时,只有当x=4时,MN的值最小,等于2;②当4<x≤6时,MN2=AM2+AN2=(x﹣4)2+(6﹣x)2=2(x﹣5)2+2当x=5时,MN2=2,故MN取得最小值,故当x=5时,线段MN最短,MN=.9.如图,直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,OA∥BC,D是BC上一点,BD=OA=,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°.(1)直接写出D点的坐标;(2)设OE=x,AF=y,试确定y与x之间的函数关系;(3)当△AEF是等腰三角形时,将△AEF沿EF折叠,得到△A'EF,求△A'EF与五边形OEFBC重叠部分的面积.解:(1)过B作BM⊥x轴于M;Rt△ABM中,AB=3,∠BAM=45°;则AM=BM=;∴BC =OA ﹣AM =4﹣=,CD =BC ﹣BD =;∴D 点的坐标是;(2)连接OD ;如图(1),由(1)知:D 在∠COA 的平分线上,则∠DOE =∠COD =45°;又在梯形DOAB 中,∠BAO =45°,∴OD =AB =3,由三角形外角定理得:∠1=∠DEA ﹣45°,又∠2=∠DEA ﹣45°, ∴∠1=∠2,∴△ODE ∽△AEF ∴,即:,∴y 与x 的解析式为:.(3)当△AEF 为等腰三角形时,存在EF =AF 或EF =AE 或AF =AE 共3种情况; ①当EF =AF 时,如图(2),∠F AE =∠FEA =∠DEF =45°; ∴△AEF 为等腰直角三角形,D 在A ′E 上(A ′E ⊥OA ), B 在A ′F 上(A ′F ⊥EF )∴△A ′EF 与五边形OEFBC 重叠的面积为四边形EFBD 的面积; ∵,∴,,∴,∴;(也可用S 阴影=S △A 'EF ﹣S △A 'BD )②当EF =AE 时,如图(3),此时△A ′EF 与五边形OEFBC 重叠部分面积为△A ′EF 面积.∠DEF =∠EF A =45°,DE ∥AB ,又DB ∥EA , ∴四边形DEAB 是平行四边形, ∴AE =DB =,∴.③当AF=AE时,如图(4),四边形AEA′F为菱形且△A′EF在五边形OEFBC内.∴此时△A′EF与五边形OEFBC重叠部分面积为△A′EF面积.由(2)知△ODE∽△AEF,则OD=OE=3,∴AE=AF=OA﹣OE=,过F作FH⊥AE于H,则,∴.综上所述,△A’EF与五边形OEFBC重叠部分的面积为或1或.10.已知:如图(1),在平面直角坐标xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A在x轴的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C =120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;(2)在等边△OAB的边上(点A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;(3)如图(2),现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.解:(1)过点C作CD⊥OA于点D.(如图)∵OC=AC,∠ACO=120°,∴∠AOC=∠OAC=30°.∵OC=AC,CD⊥OA,∴OD=DA=1.在Rt△ODC中,OC===(i)当0<t<时,OQ=t,AP=3t,OP=OA﹣AP=2﹣3t.过点Q作QE⊥OA于点E.(如图)在Rt△OEQ中,∵∠AOC=30°,∴QE=OQ=,=OP•EQ=(2﹣3t)•=﹣+t,∴S△OPQ即S=﹣+t;(ii)当<t≤时(如图)OQ=t,OP=3t﹣2.∵∠BOA=60°,∠AOC=30°,∴∠POQ=90°.=OQ•OP=t•(3t﹣2)=﹣t,∴S△OPQ即S=﹣t;故当0<t<时,S=﹣+t;当<t≤时,S=﹣t.(2)(i)当D点在OA上,①以D为顶点,如图OCD1,∠COA=30°,OC=OD1,则OD1=,②以O为顶点,如图OCD2,OD2=OC=,③以C为顶点,此时D点和A点重合.(ii)当D点在OB上,由于∠BOC=90°,因此不存在以C或D为顶点的等腰三角形,以O为顶点时,如图OCD3,OD3=OC,∠AOB=60°,则D3(,1).(iii)当D点在AB上时,此时OD的最短距离为OD⊥AB时,此时OD=>,因此OD≠OC,不存在以O 为顶点的等腰三角形;当以C为顶点时,D点和A点重合,当以D为顶点时,如图OCD4,易得此时D4(,).综上所述,D点坐标为(,1)或(,0)或(,0)或(,).(3)△BMN的周长不发生变化.理由如下:延长BA至点F,使AF=OM,连接CF.(如图)又∵∠MOC=∠F AC=90°,OC=AC,∴△MOC≌△F AC,∴MC=CF,∠MCO=∠FCA.∴∠FCN=∠FCA+∠NCA=∠MCO+∠NCA=∠OCA﹣∠MCN=60°,∴∠FCN=∠MCN.在△MCN和△FCN中,,∴△MCN≌△FCN,∴MN=NF.∴BM+MN+BN=BM+NF+BN=BO﹣OM+BA+AF=BA+BO=4.∴△BMN的周长不变,其周长为4.11.如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,AB∥OC,点A 的坐标为(0,8),点C的坐标为(10,0),OB=OC.(1)求点B的坐标;(2)点P从C点出发,沿线段CO以5个单位/秒的速度向终点O匀速运动,过点P作PH⊥OB,垂足为H,设△HBP的面积为S(S≠0),点P的运动时间为t秒,求S与t 之间的函数关系式(直接写出自变量t的取值范围);(3)在(2)的条件下,过点P作PM∥CB交线段AB于点M,过点M作MR⊥OC,垂足为R,线段MR分别交直线PH、OB于点E、G,点F为线段PM的中点,连接EF,当t为何值时,?解:(1)如图1,过点B作BN⊥OC,垂足为N,由题意知OB=OC=10,BN=OA=8,∴ON=,∴B(6,8);(2)如图1,∵∠BON=∠POH,∠ONB=∠OHP=90°∴△BON∽△POH,∴∵PC=5t,∴OP=10﹣5t∴OH=6﹣3t,PH=8﹣4t∴BH=OB﹣OH=10﹣(6﹣3t)=3t+4,∴S=(3t+4)(8﹣4t)=﹣6t2+4t+16(0≤t<2)(3)①当点G在点E上方时,如图2过点B作BN′⊥OC,垂足为N′BN′=8,CN′=4∴CB=∵BM∥PC,BC∥PM∴四边形BMPC是平行四边形∴PM=BC=4,BM=PC=5t∵OC=OB,∴∠OCB=∠OBC∵PM∥CB,∴∠OPD=∠OCB,∠ODP=∠OBC∴∠OPD=∠ODP∵∠OPD+∠RMP=90°,∠ODP+∠DPH=90°∴∠RMP=∠DPH∴EM=EP∵点F为PM的中点,∴EF⊥PM∵∠EFM=∠PRM,∠EMF=∠PMR,∴△MEF∽△MPR,∴,其中MF=MR=8,PR=∴ME=5,EF=∵,∴EG=2∴MG=EM﹣EG=5﹣2=3∵AB∥OC∴∠MBG=∠BON′又∵∠GMB=∠ON′B=90°∴△MGB∽△N′BO∴,∴BM=∴5t=∴t=②当点G在点E下方时,如图3,同理可得MG=ME+EG=5+2=7∴BM=5t=,∴t=∴当t=或t=时,.12.如图1,已知矩形ABED,点C是边DE的中点,且AB=2AD.(1)判断△ABC的形状,并说明理由;(2)保持图1中△ABC固定不变,绕点C旋转DE所在的直线MN到图2中(当垂线段AD、BE在直线MN的同侧),试探究线段AD、BE、DE长度之间有什么关系?并给予证明;(3)保持图2中△ABC固定不变,继续绕点C旋转DE所在的直线MN到图3中的位置(当垂线段AD、BE在直线MN的异侧).试探究线段AD、BE、DE长度之间有什么关系?并给予证明.解:(1)△ABC是等腰直角三角形.理由如下:在△ADC与△BEC中,AD=BE,∠D=∠E=90°,DC=EC,∴△ADC≌△BEC(SAS),∴AC=BC,∠DCA=∠ECB.∵AB=2AD=DE,DC=CE,∴AD=DC,∴∠DCA=45°,∴∠ECB=45°,∴∠ACB=180°﹣∠DCA﹣∠ECB=90°.∴△ABC是等腰直角三角形.(2)DE=AD+BE.理由如下:在△ACD与△CBE中,∠ACD=∠CBE=90°﹣∠BCE,∠ADC=∠BEC=90°,AC=BC,∴△ACD≌△CBE(AAS),∴AD=CE,DC=EB.∴DC+CE=BE+AD,即DE=AD+BE.(3)DE=BE﹣AD.理由如下:在△ACD与△CBE中,∠ACD=∠CBE=90°﹣∠BCE,∠ADC=∠BEC=90°,AC=BC,∴△ACD≌△CBE(AAS),∴AD=CE,DC=EB.∴DC﹣CE=BE﹣AD,即DE=BE﹣AD.13.在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.解:(1)FH与FC的数量关系是:FH=FC.证明如下:延长DF交AB于点G,由题意,知∠EDF=∠ACB=90°,DE=DF,∴DG∥CB,∵点D为AC的中点,∴点G为AB的中点,且,∴DG为△ABC的中位线,∴.∵AC=BC,∴DC=DG,∴DC﹣DE=DG﹣DF,即EC=FG.∵∠EDF=90°,FH⊥FC,∴∠1+∠CFD=90°,∠2+∠CFD=90°,∴∠1=∠2.∵△DEF与△ADG都是等腰直角三角形,∴∠DEF=∠DGA=45°,∴∠CEF=∠FGH=135°,∴△CEF≌△FGH,∴C F=FH.(2)FH与FC仍然相等.理由:由题意可得出:DF=DE,∴∠DFE=∠DEF=45°,∵AC=BC,∴∠A=∠CBA=45°,∵DF∥BC,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D为AC的中点,DF∥BC,∴DG=BC,DC=AC,∴DG=DC,∴EC=GF,∵∠DFC=∠FCB,∴∠GFH=∠FCE,在△FCE和△HFG中,∴△FCE≌△HFG(ASA),∴HF=FC.14.如图,在等边△ABC中,线段AM为BC边上的中线,动点D在直线AM上时,以CD 为一边且在CD的下方作等边△CDE,连接BE.(1)填空:∠ACB=60°度;(2)当点D在线段AM上(点D不运动到点A)时,试求出的值;(3)若AB=8,以点C为圆心,以5为半径作⊙C与直线BE相交于点P、Q两点,在点D运动的过程中(点D与点A重合除外),试求PQ的长.解:(1)60;(3分)(2)如图(2),∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE(5分)∴△ACD≌△BCE(SAS)∴AD=BE,∴=1(7分)(3)如图(3),①当点D在线段AM上(不与点A重合)时,由(2)可知△ACD≌△BCE,则∠CBE =∠CAD=30°,作CH⊥BE于点H,则PQ=2HQ,连接CQ,则CQ=5.在Rt△CBH 中,∠CBH=30°,BC=AB=8,则CH=BC•sin30°=8×=4.在Rt△CHQ中,由勾股定理得:HQ=,则PQ=2HQ=6.(9分)②如图5,当点D在线段AM的延长线上时,∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACB+∠DCB=∠DCB+∠DCE∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴∠CBE=∠CAD=30°,同理可得:PQ=6(11分)③如图4,当点D在线段MA的延长线上时,∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCE=∠BCE+∠ACB=180°∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴∠CBE=∠CAD∵∠CAM=30°∴∠CBE=∠CAD=150°∴∠CBQ=30°同理可得:PQ=6综上,PQ的长是6.(13分)15.如图1,在△ABC和△PQD中,AC=kBC,DP=kDQ,∠C=∠PDQ,D、E分别是AB、AC的中点,点P在直线BC上,连接EQ交PC于点H.猜想线段EH与AC的数量关系,并证明你的猜想.说明:如果你经历反复探索,没有解决问题,可以从下面①、②中选取一个作为已知条件,完成你的证明.注意:选取①完成证明得10分;选取②完成证明得6分.①AC=BC,DP=DQ,∠C=∠PDQ(如图2);②在①的条件下且点P与点B重合(如图3解:结论:EH=AC.(1分)证明:取BC边中点F,连接DE、DF.(2分)∵D、E、F分别是边AB、AC、BC的中点.∴DE∥BC且DE=BC,DF∥AC且DF=AC,(4分)EC=AC∴四边形DFCE是平行四边形.∴∠EDF=∠C.∵∠C=∠PDQ,∴∠PDQ=∠EDF,∴∠PDF=∠QDE.(6分)又∵AC=kBC,∴DF=kDE.∵DP=kDQ,∴.(7分)∴△PDF∽△QDE.(8分)∴∠DEQ=∠DFP.(9分)又∵DE∥BC,DF∥AC,∴∠DEQ=∠EHC,∠DFP=∠C.∴∠C=∠EHC.(10分)∴EH=EC.(11分)∴EH=AC.(12分)选图2.结论:EH=AC.(1分)证明:取BC边中点F,连接DE、DF.(2分)∵D、E、F分别是边AB、AC、BC的中点,∴DE∥BC且DE=BC,DF∥AC且DF=AC,(4分)EC=AC,∴四边形DFCE是平行四边形.∴∠EDF=∠C.∵∠C=∠PDQ,∴∠PDQ=∠EDF,∴∠PDF=∠QDE.(6分)又∵AC=BC,∴DE=DF,∵PD=QD,∴△PDF≌△QDE.(7分)∴∠DEQ=∠DFP.∵DE∥BC,DF∥AC,∴∠DEQ=∠EHC,∠DFP=∠C.∴∠C=∠EHC(8分)∴EH=EC.(9分)∴EH=AC.(10分)选图3.结论:EH=AC.(1分)证明:连接AH.(2分)∵D是AB中点,∴DA=DB.∵AC=kBC,DP=kDQ,∴=k,又∵∠C=∠PDQ,∴△ACB∽△PDQ,∴∠ABC=∠PQD,∴DB=DQ,∴DQ=DP=AD,∵∠DBQ+∠DQB+∠DQA+∠DAQ=180°,∴∠AQB=90°,∴AH⊥BC.(4分)又∵E是AC中点,∴HE=AC.(6分)。

2020-2021中考数学 直角三角形的边角关系 培优练习(含答案)含答案

2020-2021中考数学 直角三角形的边角关系 培优练习(含答案)含答案

2020-2021中考数学 直角三角形的边角关系 培优练习(含答案)含答案一、直角三角形的边角关系1.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60︒︒,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处.(1)求之间的距离(2)求从无人机'A 上看目标的俯角的正切值. 【答案】(1)120米;(2)35. 【解析】 【分析】(1)解直角三角形即可得到结论;(2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==,'30CE AA ==3Rt △ABC 中,求得DC=333,然后根据三角函数的定义即可得到结论. 【详解】解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m ,∴AB=sin 30AC︒=6012=120(m )(2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3在Rt △ABC 中, AC=60m ,∠ADC=60°,∴DC=333∴3∴tan ∠A 'A D= tan ∠'A DC='A E DE 503235答:从无人机'A 上看目标D 235【点睛】本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键.2.已知在平面直角坐标系中,点()()()3,0,3,0,3,8A B C --,以线段BC 为直径作圆,圆心为E ,直线AC 交E e 于点D ,连接OD . (1)求证:直线OD 是E e 的切线;(2)点F 为x 轴上任意一动点,连接CF 交E e 于点G ,连接BG : ①当1an 7t ACF ∠=时,求所有F 点的坐标 (直接写出); ②求BGCF的最大值. 【答案】(1)见解析;(2)①143,031F ⎛⎫⎪⎝⎭,2(5,0)F ;② BG CF 的最大值为12.【解析】 【分析】(1)连接DE ,证明∠EDO=90°即可;(2)①分“F 位于AB 上”和“F 位于BA 的延长线上”结合相似三角形进行求解即可; ②作GM BC ⊥于点M ,证明1~ANF ABC ∆∆,得12BG CF ≤,从而得解. 【详解】(1)证明:连接DE ,则:∵BC 为直径 ∴90BDC ∠=︒∴90BDA ∠=︒ ∵OA OB = ∴OD OB OA == ∴OBD ODB ∠=∠ ∵EB ED =∴EBD EDB ∠=∠∴EBD OBD EDB ODB ∠+∠=∠+∠ 即:EBO EDO ∠=∠ ∵CB x ⊥轴 ∴90EBO ∠=︒ ∴90EDO ∠=︒ ∴直线OD 为E e 的切线.(2)①如图1,当F 位于AB 上时: ∵1~ANF ABC ∆∆∴11NF AF AN AB BC AC== ∴设3AN x =,则114,5NF x AF x ==∴103CN CA AN x =-=-∴141tan 1037F N x ACF CN x ∠===-,解得:1031x = ∴150531AF x ==1504333131OF =-=即143,031F ⎛⎫⎪⎝⎭如图2,当F 位于BA 的延长线上时: ∵2~AMF ABC ∆∆∴设3AM x =,则224,5MF x AF x == ∴103CM CA AM x =+=+ ∴241tan 1037F M x ACF CM x ∠===+ 解得:25x =∴252AF x ==2325OF =+=即2(5,0)F②如图,作GM BC ⊥于点M , ∵BC 是直径∴90CGB CBF ∠=∠=︒ ∴~CBF CGB ∆∆∴8BG MG MGCF BC == ∵MG ≤半径4=∴41882BG MG CF =≤= ∴BG CF的最大值为12.【点睛】本题考查了圆的综合题:熟练掌握切线的判定定理、解直角三角形;相似三角形的判定和性质和相似比计算线段的长;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.3.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.4.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【答案】(1)证明见解析(2)4(3)20【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定5.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若314cos,53BAD BE∠==,求OE的长.【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =356.【解析】试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.试题解析:(1)DE为⊙O的切线,理由如下:连接OD,BD,∵AB为⊙O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,∴∠C+∠A=90°,∴∠ADO+∠CDE=90°,∴∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为⊙O的切线;(2)∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴,即BC2=AC•CD.∴BC2=2CD•OE;(3)解:∵cos∠BAD=,∴sin∠BAC=,又∵BE=,E是BC的中点,即BC=,∴AC=.又∵AC=2OE,∴OE=AC=.考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数6.如图,某公园内有一座古塔AB,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD.中午12时太阳光线与地面的夹角为45°,此时塔尖A在地面上的影子E与墙角C的距离为15米(B、E、C在一条直线上),求塔AB的高度.(结果精确到0.01米)参考数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249,2 1.4142.【答案】塔高AB约为32.99米.【解析】【分析】过点D作DH⊥AB,垂足为点H,设AB=x,则AH=x﹣3,解直角三角形即可得到结论.【详解】解:过点D作DH⊥AB,垂足为点H.由题意,得 HB = CD = 3,EC = 15,HD = BC ,∠ABC =∠AHD = 90°, ∠ADH = 32°.设AB = x ,则 AH = x – 3.在Rt △ABE 中,由 ∠AEB = 45°,得 tan tan451ABAEB EB∠=︒==. ∴ EB = AB = x .∴ HD = BC = BE + EC = x + 15. 在Rt △AHD 中,由 ∠AHD = 90°,得 tan AHADH HD∠=. 即得 3tan3215x x -︒=+. 解得 15tan32332.991tan32x ⋅︒+=≈-︒.∴ 塔高AB 约为32.99米. 【点睛】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.如图①,抛物线y =ax 2+bx+c 经过点A (﹣2,0)、B (4,0)、C (0,3)三点.(1)试求抛物线的解析式;(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式. 【答案】(1)233384y x x =-++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为334y x =+或334y x =--.【解析】【分析】(1)设出交点式,代入C点计算即可(2)连接AC、BC,过点A作AE⊥BC于点E,过点P作PD⊥BC于点D,易证△CDP∽△COB,得到比例式PC PDBC OB=,得到PD=45PC,所以5PA+4PC=5(PA+45PC)=5(PA+PD),当点A、P、D在同一直线上时,5PA+4PC=5(PA+PD)=5AE最小,利用等面积法求出AE=185,即最小值为18 (3)取AB中点F,以F为圆心、FA的长为半径画圆, 当∠BAQ=90°或∠ABQ=90°时,即AQ或BQ垂直x轴,所以只要直线l不垂直x轴则一定找到两个满足的点Q使∠BAQ=90°或∠ABQ=90°,即∠AQB=90°时,只有一个满足条件的点Q,∴直线l与⊙F相切于点Q时,满足∠AQB=90°的点Q只有一个;此时,连接FQ,过点Q作QG⊥x轴于点G,利用cos∠QFT求出QG,分出情况Q在x轴上方和x轴下方时,分别代入直接l得到解析式即可【详解】解:(1)∵抛物线与x轴交点为A(﹣2,0)、B(4,0)∴y=a(x+2)(x﹣4)把点C(0,3)代入得:﹣8a=3∴a=﹣38∴抛物线解析式为y=﹣38(x+2)(x﹣4)=﹣38x2+34x+3(2)连接AC、BC,过点A作AE⊥BC于点E,过点P作PD⊥BC于点D ∴∠CDP=∠COB=90°∵∠DCP=∠OCB∴△CDP∽△COB∴PC PDBC OB=∵B(4,0),C(0,3)∴OB=4,OC=3,BC∴PD=45PC∴5PA+4PC=5(PA+45PC)=5(PA+PD)∴当点A、P、D在同一直线上时,5PA+4PC=5(PA+PD)=5AE最小∵A(﹣2,0),OC⊥AB,AE⊥BC∴S△ABC=12AB•OC=12BC•AE∴AE =631855AB OC BC ⨯==n ∴5AE =18∴5PA+4PC 的最小值为18.(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90° ∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个 此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ∴∠FQT =90°∵F 为A (﹣2,0)、B (4,0)的中点 ∴F (1,0),FQ =FA =3 ∵T (﹣4,0) ∴TF =5,cos ∠QFT =35FQ TF = ∵Rt △FGQ 中,cos ∠QFT =35FG FQ = ∴FG =35FQ =95∴x Q =1﹣9455=-,QG =2222912FQ 355FG ⎛⎫-=-= ⎪⎝⎭①若点Q 在x 轴上方,则Q (41255-,) 设直线l 解析式为:y =kx+b∴4041255k b k b -+=⎧⎪⎨-+=⎪⎩ 解得:343k b ⎧=⎪⎨⎪=⎩ ∴直线l :334y x =+ ②若点Q 在x 轴下方,则Q (41255--,) ∴直线l :334y x =-- 综上所述,直线l 的解析式为334y x =+或334y x =--【点睛】本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q 点是关键,同时不要忘记需要分情况讨论8.3米/秒 =65.88千米/小时>60千米/小时.∴此车超过限制速度.…4分9.如图,在平面直角坐标系xOy 中,抛物线y =﹣14x 2+bx +c 与直线y =12x ﹣3分别交x 轴、y 轴上的B 、C 两点,设该抛物线与x 轴的另一个交点为点A ,顶点为点D ,连接CD 交x 轴于点E .(1)求该抛物线的表达式及点D 的坐标; (2)求∠DCB 的正切值;(3)如果点F 在y 轴上,且∠FBC =∠DBA +∠DCB ,求点F 的坐标.【答案】(1)21y 234x x =-+-,D (4,1);(2)13;(3)点F 坐标为(0,1)或(0,﹣18). 【解析】 【分析】(1)y=12x﹣3,令y=0,则x=6,令x=0,则y=﹣3,求出点B、C的坐标,将点B、C坐标代入抛物线y=﹣14x2+bx+c,即可求解;(2)求出则点E(3,0),EH=EB•sin∠OBC=5,CE=32,则CH=5,即可求解;(3)分点F在y轴负半轴和在y轴正半轴两种情况,分别求解即可.【详解】(1)y=12x﹣3,令y=0,则x=6,令x=0,则y=﹣3,则点B、C的坐标分别为(6,0)、(0,﹣3),则c=﹣3,将点B坐标代入抛物线y=﹣14x2+bx﹣3得:0=﹣14×36+6b﹣3,解得:b=2,故抛物线的表达式为:y=﹣14x2+2x﹣3,令y=0,则x=6或2,即点A(2,0),则点D(4,1);(2)过点E作EH⊥BC交于点H,C、D的坐标分别为:(0,﹣3)、(4,1),直线CD的表达式为:y=x﹣3,则点E(3,0),tan∠OBC=3162OCOB==,则sin∠OBC5,则EH=EB•sin∠OBC5CE=2CH5则tan∠DCB=13 EHCH=;(3)点A、B、C、D、E的坐标分别为(2,0)、(6,0)、(0,﹣3)、(4,1)、(3,0),则BC=5∵OE=OC,∴∠AEC=45°,tan∠DBE=164-=12,故:∠DBE =∠OBC ,则∠FBC =∠DBA+∠DCB =∠AEC =45°, ①当点F 在y 轴负半轴时,过点F 作FG ⊥BG 交BC 的延长线与点G ,则∠GFC =∠OBC =α,设:GF =2m ,则CG =GFtanα=m , ∵∠CBF =45°,∴BG =GF ,即:35+m =2m ,解得:m =35, CF =22GF CG +=5m =15, 故点F (0,﹣18); ②当点F 在y 轴正半轴时, 同理可得:点F (0,1);故:点F 坐标为(0,1)或(0,﹣18). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3),确定∠FBC =∠DBA+∠DCB =∠AEC =45°,是本题的突破口.10.如图,在ABC △中,10AC BC ==,3cos 5C =,点P 是BC 边上一动点(不与点,A C 重合),以PA 长为半径的P e 与边AB 的另一个交点为D ,过点D 作DE CB ⊥于点E .()1当P e与边BC相切时,求P e的半径;()2联结BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围;()3在()2的条件下,当以PE长为直径的Qe与Pe相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409;(2)()25880010x x xy x-+=<<;(3)1025-【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=R10R-=45,即可求解;(2)PD∥BE,则EBPD=BFPF,即:2248805x x x yx--+-=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=GP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=35,sinC=HPCP=R10R-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8, 同理可得:CH=6,HA=4,AB=45,则:tan ∠CAB=2BP=()2284x +-=2880x x -+, DA=25x ,则BD=45-25x ,如下图所示,PA=PD ,∴∠PAD=∠CAB=∠CBA=β, tanβ=2,则55 EB=BDcosβ=(525)525x ,∴PD ∥BE ,∴EB PD =BFPF,即:2248805x x x y xy--+=,整理得:y=)2x 8x 800x 103x 20-+<<+;(3)以EP 为直径作圆Q 如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q时弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP∥BD,由(2)知,PD∥BC,∴四边形PDBE为平行四边形,∴AG=EP=BD,∴5设圆的半径为r,在△ADG中,55AG=2r,5551,则:55相交所得的公共弦的长为5【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.11.已知:如图,直线y=-x+12分别交x轴、y轴于A、B点,将△AOB折叠,使A点恰好落在OB的中点C处,折痕为DE.(1)求AE的长及sin∠BEC的值;(2)求△CDE的面积.【答案】(1)52,sin∠BEC=35;(2)754【解析】【分析】(1)如图,作CF⊥BE于F点,由函数解析式可得点B,点A坐标,继而可得∠A=∠B=45°,再根据中点的定义以及等腰直角三角形的性质可得OC=BC=6,CF=BF=32,设AE=CE=x,则EF=AB-BF-AE=122-32-x=92-x,在Rt△CEF中,利用勾股定理求出x 的值即可求得答案;(2)如图,过点E作EM⊥OA于点M,根据三角形面积公式则可得S△CDE=S△AED=24AD×AE,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,利用勾股定理求出y,继而可求得答案.【详解】(1)如图,作CF⊥BE于F点,由函数解析式可得点B(0,12),点A(12,0),∠A=∠B=45°,又∵点C是OB中点,∴OC=BC=6,2设AE=CE=x,则222-x,在Rt△CEF中,CE2=CF2+EF2,即x2=(2)2+(2)2,解得:2故可得sin∠BEC=35CFCE,2(2)如图,过点E作EM⊥OA于点M,则S△CDE=S△AED=12AD•EM=12AD×AEsin∠EAM=12AD•AE×sin45°=24AD×AE,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,OC2+OD2=CD2,即62+(12-y)2=y2,解得:y=152,即AD=152,故S△CDE=S△AED=24AD×AE=754.【点睛】本题考查了解直角三角形的应用,涉及了勾股定理、折叠的性质、三角形面积、一次函数的性质等知识,综合性较强,正确添加辅助线、熟练应用相关知识是解题的关键.12.已知Rt△ABC,∠A=90°,BC=10,以BC为边向下作矩形BCDE,连AE交BC于F.(1)如图1,当AB=AC,且sin∠BEF=35时,求BFCF的值;(2)如图2,当tan∠ABC=12时,过D作DH⊥AE于H,求EH EA⋅的值;(3)如图3,连AD交BC于G,当2FG BF CG=⋅时,求矩形BCDE的面积【答案】(1)17;(2)80;(3)100.【解析】【分析】(1)过A作AK⊥BC于K,根据sin∠BEF=35得出35FKAK=,设FK=3a,AK=5a,可求得BF=a,故17BF CF =;(2)过A 作AK ⊥BC 于K ,延长AK 交ED 于G ,则AG ⊥ED ,得△EGA ∽△EHD ,利用相似三角形的性质即可求出;(3)延长AB 、ED 交于K ,延长AC 、ED 交于T ,根据相似三角形的性质可求出BE =ED ,故可求出矩形的面积.【详解】解:(1)过A 作AK ⊥BC 于K ,∵sin ∠BEF =35,sin ∠FAK =35, ∴35FK AK =, 设FK =3a ,AK =5a ,∴AK =4a ,∵AB =AC ,∠BAC =90°,∴BK =CK =4a ,∴BF =a ,又∵CF =7a , ∴17BF CF = (2)过A 作AK ⊥BC 于K ,延长AK 交ED 于G ,则AG ⊥ED ,∵∠AGE =∠DHE =90°,∴△EGA ∽△EHD , ∴EH ED EG EA=, ∴·EH EA EG ED ⋅=,其中EG =BK , ∵BC =10,tan ∠ABC =12, cos ∠ABC∴BA =BC · cos ∠ABCBK= BA·cos ∠ABC 8= ∴EG =8,另一方面:ED =BC =10,∴EH ·EA =80 (3)延长AB 、ED 交于K ,延长AC 、ED 交于T ,∵BC ∥KT ,BF AF FG KE AE ED ==, ∴BF KE FG DE =,同理:FG ED CG DT=∵FG 2= BF ·CG ∴BF FG FG CG =, ∴ED 2= KE ·DT ∴KE ED DE DT= , 又∵△KEB ∽△CDT ,∴KE CD BE DT=, ∴KE ·DT =BE 2, ∴BE 2=ED 2∴ BE =ED∴1010100BCDE S =⨯=矩形【点睛】此题主要考查相似三角形的判定与性质,解题的关键根据题意作出辅助线再进行求解.。

2020-2021初三培优易错试卷直角三角形的边角关系辅导专题训练及详细答案

2020-2021初三培优易错试卷直角三角形的边角关系辅导专题训练及详细答案

2020-2021初三培优易错试卷直角三角形的边角关系辅导专题训练及详细答案一、直角三角形的边角关系1.如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【答案】6.4米【解析】解:∵底部B点到山脚C点的距离BC为6 3 米,山坡的坡角为30°.∴DC=BC•cos30°=3639==米,∵CF=1米,∴DC=9+1=10米,∴GE=10米,∵∠AEG=45°,∴AG=EG=10米,在直角三角形BGF中,BG=GF•tan20°=10×0.36=3.6米,∴AB=AG-BG=10-3.6=6.4米,答:树高约为6.4米首先在直角三角形BDC中求得DC的长,然后求得DF的长,进而求得GF的长,然后在直角三角形BGF中即可求得BG的长,从而求得树高2.已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且MD=CM,DE⊥AB于点E,连结AD、CD.(1)求证:△MED∽△BCA;(2)求证:△AMD≌△CMD;(3)设△MDE的面积为S1,四边形BCMD的面积为S2,当S2=175S1时,求cos∠ABC的值.【答案】(1)证明见解析;(2)证明见解析;(3)cos ∠ABC=57. 【解析】 【分析】(1)易证∠DME=∠CBA ,∠ACB=∠MED=90°,从而可证明△MED ∽△BCA ; (2)由∠ACB=90°,点M 是斜边AB 的中点,可知MB=MC=AM ,从而可证明∠AMD=∠CMD ,从而可利用全等三角形的判定证明△AMD ≌△CMD ; (3)易证MD=2AB ,由(1)可知:△MED ∽△BCA ,所以2114ACB S MD S AB ⎛⎫== ⎪⎝⎭V ,所以S △MCB =12S △ACB =2S 1,从而可求出S △EBD =S 2﹣S △MCB ﹣S 1=25S 1,由于1EBD S ME S EB =V ,从而可知52ME EB =,设ME=5x ,EB=2x ,从而可求出AB=14x ,BC=72,最后根据锐角三角函数的定义即可求出答案. 【详解】(1)∵MD ∥BC , ∴∠DME=∠CBA , ∵∠ACB=∠MED=90°, ∴△MED ∽△BCA ;(2)∵∠ACB=90°,点M 是斜边AB 的中点, ∴MB=MC=AM , ∴∠MCB=∠MBC , ∵∠DMB=∠MBC ,∴∠MCB=∠DMB=∠MBC , ∵∠AMD=180°﹣∠DMB ,∠CMD=180°﹣∠MCB ﹣∠MBC+∠DMB=180°﹣∠MBC , ∴∠AMD=∠CMD , 在△AMD 与△CMD 中,MD MD AMD CMD AM CM =⎧⎪∠=∠⎨⎪=⎩, ∴△AMD ≌△CMD (SAS ); (3)∵MD=CM ,∴AM=MC=MD=MB , ∴MD=2AB ,由(1)可知:△MED ∽△BCA , ∴2114ACB S MD S AB ⎛⎫== ⎪⎝⎭V , ∴S △ACB =4S 1, ∵CM 是△ACB 的中线, ∴S △MCB =12S △ACB =2S 1, ∴S △EBD =S 2﹣S △MCB ﹣S 1=25S 1, ∵1EBDS MES EB=V , ∴1125S MEEB S =,∴52ME EB =, 设ME=5x ,EB=2x , ∴MB=7x , ∴AB=2MB=14x ,∵12MD ME AB BC ==, ∴BC=10x ,∴cos ∠ABC=105147BC x AB x ==. 【点睛】本题考查相似三角形的综合问题,涉及直角三角形斜边中线的性质,全等三角形的性质与判定,相似三角形的判定与性质,三角形面积的面积比,锐角三角函数的定义等知识,综合程度较高,熟练掌握和灵活运用相关的性质及定理进行解题是关键.3.如图,AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于切点为G ,连接AG 交CD 于K . (1)求证:KE=GE ;(2)若KG 2=KD•GE ,试判断AC 与EF 的位置关系,并说明理由; (3)在(2)的条件下,若sinE=,AK=,求FG 的长.【答案】(1)证明见解析;(2)AC∥EF,证明见解析;(3)FG= .【解析】试题分析:(1)如图1,连接OG.根据切线性质及CD⊥AB,可以推出∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;(2)AC与EF平行,理由为:如图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD•GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF;(3)如图3所示,连接OG,OC,先求出KE=GE,再求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.试题解析:(1)如图1,连接OG.∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.(2)AC∥EF,理由为连接GD,如图2所示.∵KG2=K D•GE,即,∴,又∵∠KGE=∠GKE,∴△GKD∽△EGK,∴∠E=∠AGD,又∵∠C=∠AGD,∴∠E=∠C,∴AC∥EF;(3)连接OG,OC,如图3所示,∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.∵sinE=sin∠ACH=,设AH=3t,则AC=5t,CH=4t,∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK-CH=t.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即(3t)2+t2=(2)2,解得t=.设⊙O半径为r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t,由勾股定理得:OH2+CH2=OC2,即(r-3t)2+(4t)2=r2,解得r= t=.∵EF为切线,∴△OGF为直角三角形,在Rt△OGF中,OG=r=,tan∠OFG=tan∠CAH=,∴FG=【点睛】此题考查了切线的性质,相似三角形的判定与性质,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,以及等腰三角形的判定,熟练掌握定理及性质是解本题的关键.4.如图,湿地景区岸边有三个观景台、、.已知米,米,点位于点的南偏西方向,点位于点的南偏东方向.(1)求的面积;(2)景区规划在线段的中点处修建一个湖心亭,并修建观景栈道.试求、间的距离.(结果精确到米)(参考数据:,,,,,,)【答案】(1)560000(2)565.6【解析】试题分析:(1)过点作交的延长线于点,,然后根据直角三角形的内角和求出∠CAE,再根据正弦的性质求出CE的长,从而得到△ABC的面积;(2)连接,过点作,垂足为点,则.然后根据中点的性质和余弦值求出BE、AE的长,再根据勾股定理求解即可.试题解析:(1)过点作交的延长线于点,在中,,所以米.所以(平方米).(2)连接,过点作,垂足为点,则.因为是中点,所以米,且为中点,米,所以米.所以米,由勾股定理得,米.答:、间的距离为米.考点:解直角三角形5.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD 交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.【答案】(1)证明见解析;(2)1;(3)证明见解析.【解析】【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.【详解】(1)直线PD为⊙O的切线,理由如下:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,3∴0 tan30ODPD=,解得OD=1,∴22PO PD OD+,∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.【点睛】本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.6.如图,AB是⊙O的直径,PA、PC与⊙O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.(1)求证:∠EPD=∠EDO;(2)若PC=3,tan∠PDA=34,求OE的长.【答案】(1)见解析;(2.【解析】【分析】(1)由切线的性质即可得证.(2)连接OC,利用tan∠PDA=34,可求出CD=2,进而求得OC=32,再证明△OED∽△DEP,根据相似三角形的性质和勾股定理即可求出OE的长.【详解】(1)证明:∵PA,PC与⊙O分别相切于点A,C,∴∠APO=∠CPO, PA⊥AO,∵DE⊥PO,∴∠PAO=∠E=90°,∵∠AOP=∠EOD,∴∠APO=∠EDO,∴∠EPD=∠EDO.(2)连接OC,∴PA=PC=3,∵tan∠PDA=34,∴在Rt△PAD中,AD=4,,∴CD=PD-PC=5-3=2,∵tan∠PDA=34,∴在Rt△OCD中,OC=32,52,∵∠EPD=∠ODE,∠OCP=∠E=90°,∴△OED∽△DEP,∴PDDO =PEDE=DEOE=2,∴DE=2OE,在Rt△OED中,OE2+DE2=OD2,即5OE2=252⎛⎫⎪⎝⎭=254,∴.【点睛】本题考查了切线的性质;锐角三角函数;勾股定理和相似三角形的判定与性质,充分利用tan∠PDA=34,得线段的长是解题关键.7.如图,公路AB为东西走向,在点A北偏东36.5︒方向上,距离5千米处是村庄M,在点A北偏东53.5︒方向上,距离10千米处是村庄N;要在公路AB旁修建一个土特产收购站P(取点P在AB上),使得M,N两村庄到P站的距离之和最短,请在图中作出P的位置(不写作法)并计算:(1)M,N两村庄之间的距离;(2)P到M、N距离之和的最小值.(参考数据:sin36.5°=0.6,cos36.5°=0.8,tan36.5°=0.75计算结果保留根号.)【答案】(1) M,N29千米;(2) 村庄M、N到P站的最短距离和是5【解析】【分析】(1)作N关于AB的对称点N'与AB交于E,连结MN’与AB交于P,则P为土特产收购站的位置.求出DN,DM,利用勾股定理即可解决问题.(2)由题意可知,M、N到AB上点P的距离之和最短长度就是MN′的长.【详解】解:作N关于AB的对称点N'与AB交于E,连结MN’与AB交于P,则P为土特产收购站的位置.(1)在Rt △ANE 中,AN =10,∠NAB =36.5°∴NE =AN •sin ∠NAB =10•sin36.5°=6,AE =AN •cos ∠NAB =10•cos36.5°=8,过M 作MC ⊥AB 于点C ,在Rt △MAC 中,AM =5,∠MAB =53.5°∴AC =MA •sin ∠AMB =MA •sin36.5°=3,MC =MA •cos ∠AMC =MA •cos36.5°=4,过点M 作MD ⊥NE 于点D ,在Rt △MND 中,MD =AE -AC =5,ND =NE -MC =2,∴MN =2252+=29,即M ,N 两村庄之间的距离为29千米.(2)由题意可知,M 、N 到AB 上点P 的距离之和最短长度就是MN ′的长.DN ′=10,MD =5,在Rt △MDN ′中,由勾股定理,得MN ′=22510+=55(千米)∴村庄M 、N 到P 站的最短距离和是55千米.【点睛】本题考查解直角三角形,轴对称变换等知识,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造直角三角形解决问题.8.如图,在ABC △中,10AC BC ==,3cos 5C =,点P 是BC 边上一动点(不与点,A C 重合),以PA 长为半径的P e 与边AB 的另一个交点为D ,过点D 作DE CB ⊥于点E .()1当P e与边BC相切时,求P e的半径;()2联结BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围;()3在()2的条件下,当以PE长为直径的Qe与Pe相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409;(2)()25880010x x xy x-+=<<;(3)1025-【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=R10R-=45,即可求解;(2)PD∥BE,则EBPD=BFPF,即:2248805x x x yx--+-=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=GP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=35,sinC=HPCP=R10R-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,AB=45,则:tan ∠CAB=2BP=()2284x +-=2880x x -+, DA=25x ,则BD=45-25x , 如下图所示,PA=PD ,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则55EB=BDcosβ=(525)525x , ∴PD ∥BE ,∴EB PD =BF PF ,即:2248805x x x y x y--+=, 整理得:y=)2x 8x 800x 103x 20-+<<+; (3)以EP 为直径作圆Q 如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q时弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP∥BD,由(2)知,PD∥BC,∴四边形PDBE为平行四边形,∴AG=EP=BD,∴AB=DB+AD=AG+AD=45,设圆的半径为r,在△ADG中,AD=2rcosβ=5,DG=5,AG=2r,5+2r=45,解得:2r=51,则:DG=5=10-25,相交所得的公共弦的长为10-25.【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.9.关于三角函数有如下的公式:sin(α+β)=sinαcosβ+cosαsinβ①cos(α+β)=cosαcosβ﹣sinαsinβ②tan(α+β)=③利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:tan105°=tan(45°+60°)==﹣(2+).根据上面的知识,你可以选择适当的公式解决下面的实际问题:如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,求建筑物CD的高.【答案】建筑物CD的高为84米.【解析】分析:如图,过点D作DE⊥AB于点E,由题意易得∠ACB=75°,∠ABC=90°,DE=BC=42m,∠ADE=60°,这样在Rt△ABC和在Rt△ADE中,结合题中所给关系式分别求出AB和AE的长,即可由CD=BE=AB-AE求得结果了.详解:如图,过点D作DE⊥AB于点E,由题意可得∠ACB=75°,∠ABC=90°,DE=BC=42m,CD=BE,∠ADE=60°,∴在Rt△ABC和Rt△ADEAB=BC•tan75°=42tan75°=,AE=,∴CD=AB﹣AE=(米).答:建筑物CD的高为84米.睛:读懂题意,把已知量和未知量转化到Rt△ABC和Rt△ADE中,这样利用直角三角形中边角间的关系结合题目中所给的“两角和的三角形函数公式”即可使问题得到解决.10.已知Rt△ABC,∠A=90°,BC=10,以BC为边向下作矩形BCDE,连AE交BC于F.(1)如图1,当AB=AC,且sin ∠BEF=35时,求BF CF 的值; (2)如图2,当tan ∠ABC=12时,过D 作DH ⊥AE 于H,求EH EA ⋅的值; (3)如图3,连AD 交BC 于G,当2FG BF CG =⋅时,求矩形BCDE 的面积【答案】(1)17;(2)80;(3)100. 【解析】【分析】 (1)过A 作AK ⊥BC 于K ,根据sin ∠BEF=35得出35FK AK =,设FK =3a ,AK =5a ,可求得BF =a ,故17BF CF =;(2)过A 作AK ⊥BC 于K ,延长AK 交ED 于G ,则AG ⊥ED ,得△EGA ∽△EHD ,利用相似三角形的性质即可求出;(3)延长AB 、ED 交于K ,延长AC 、ED 交于T ,根据相似三角形的性质可求出BE =ED ,故可求出矩形的面积.【详解】解:(1)过A 作AK ⊥BC 于K ,∵sin ∠BEF =35,sin ∠FAK =35, ∴35FK AK =, 设FK =3a ,AK =5a ,∴AK =4a ,∵AB =AC ,∠BAC =90°,∴BK =CK =4a ,∴BF =a ,又∵CF =7a ,∴17BF CF = (2)过A 作AK ⊥BC 于K ,延长AK 交ED 于G ,则AG ⊥ED ,∵∠AGE =∠DHE =90°,∴△EGA ∽△EHD ,∴EH ED EG EA =, ∴·EH EA EG ED ⋅=,其中EG =BK ,∵BC =10,tan ∠ABC =12, cos ∠ABC =5, ∴BA =BC · cos ∠ABC =5, BK= BA·cos ∠ABC =855⨯= ∴EG =8,另一方面:ED =BC =10,∴EH ·EA =80 (3)延长AB 、ED 交于K ,延长AC 、ED 交于T ,∵BC ∥KT ,BF AF FG KE AE ED ==, ∴BF KE FG DE =,同理:FG ED CG DT= ∵FG 2= BF ·CG ∴BF FG FG CG=, ∴ED 2= KE ·DT ∴KE ED DE DT = , 又∵△KEB ∽△CDT ,∴KE CD BE DT=, ∴KE ·DT =BE 2, ∴BE 2=ED 2∴ BE =ED∴1010100BCDE S =⨯=矩形【点睛】此题主要考查相似三角形的判定与性质,解题的关键根据题意作出辅助线再进行求解.11.如图,在航线l 的两侧分别有观测点A 和B ,点B 到航线l 的距离BD 为4km ,点A 位于点B 北偏西60°方向且与B 相距20km 处.现有一艘轮船从位于点A 南偏东74°方向的C处,沿该航线自东向西航行至观测点A 的正南方向E 处.求这艘轮船的航行路程CE 的长度.(结果精确到0.1km )(参考数据:3≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)【答案】20.9km【解析】分析:根据题意,构造直角三角和相似三角形的数学模型,利用相似三角形的判定与性质和解直角三角形即可.详解:如图,在Rt △BDF 中,∵∠DBF=60°,BD=4km ,∴BF=cos 60BD o=8km , ∵AB=20km ,∴AF=12km , ∵∠AEB=∠BDF ,∠AFE=∠BFD ,∴△AEF ∽△BDF ,∴AE BD AF BF, ∴AE=6km , 在Rt △AEF 中,CE=AE•tan74°≈20.9km .故这艘轮船的航行路程CE 的长度是20.9km .点睛:本题考查相似三角形,掌握相似三角形的概念,会根据条件判断两个三角形相似.12.如图,⊙O 为△ABC 的外接圆,BC 为⊙O 的直径,AE 为⊙O 的切线,过点B 作BD ⊥AE 于D .(1)求证:∠DBA=∠ABC ;(2)如果BD=1,tan∠BAD=,求⊙O的半径.【答案】(1)证明见解析;(2).【解析】试题分析:(1)如图,连接OA,由AE为⊙O的切线,BD⊥AE得到∠DAO=∠EDB=90°,于是得到DB∥AO,推出∠DBA=∠BAO,由于OA=OB,得到∠ABC=∠BAO,即可得到结论;(2)根据三角函数的知识可求出AD,从而根据勾股定理求出AB的长,根据三角函数的知识即可得出⊙O的半径.试题解析:(1)如图,连接OA,∵AE为⊙O的切线,BD⊥AE,∴∠DAO=∠EDB=90°,∴DB∥AO,∴∠DBA=∠BAO,又∵OA=OB,∴∠ABC=∠BAO,∴∠DBA=∠ABC;(2)∵BD=1,tan∠BAD=,∴AD=2,∴AB=,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC=.∴⊙O的半径为2.5.考点:1.切线的性质;2.勾股定理;3.解直角三角形.。

2020-2021中考数学 直角三角形的边角关系 培优练习(含答案)含详细答案

2020-2021中考数学 直角三角形的边角关系 培优练习(含答案)含详细答案

2020-2021中考数学 直角三角形的边角关系 培优练习(含答案)含详细答案一、直角三角形的边角关系1.已知:如图,在四边形 ABCD 中, AB ∥CD , ∠ACB =90°, AB=10cm , BC=8cm , OD 垂直平分 A C .点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s ;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s ;当一个点停止运动,另一个点也停止运动.过点 P 作 PE ⊥AB ,交 BC 于点 E ,过点 Q 作 QF ∥AC ,分别交 AD , OD 于点 F , G .连接 OP ,EG .设运动时间为 t ( s )(0<t <5) ,解答下列问题:(1)当 t 为何值时,点 E 在 BAC 的平分线上?(2)设四边形 PEGO 的面积为 S(cm 2) ,求 S 与 t 的函数关系式;(3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接 OE , OQ ,在运动过程中,是否存在某一时刻 t ,使 OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)4s t =;(2)PEGO S 四边形2315688t t =-++ ,(05)t <<;(3)52t =时,PEGO S 四边形取得最大值;(4)165t =时,OE OQ ⊥. 【解析】【分析】 (1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题.(2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可.(4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出EC GQ OC OG=,由此构建方程即可解决问题.【详解】(1)在Rt △ABC 中,∵∠ACB=90°,AB=10cm ,BC=8cm ,∴22108-=6(cm ),∵OD 垂直平分线段AC ,∴OC=OA=3(cm ),∠DOC=90°,∵CD ∥AB ,∴∠BAC=∠DCO ,∵∠DOC=∠ACB ,∴△DOC ∽△BCA , ∴AC AB BC OC CD OD ==, ∴61083CD OD==, ∴CD=5(cm ),OD=4(cm ),∵PB=t ,PE ⊥AB , 易知:PE=34t ,BE=54t , 当点E 在∠BAC 的平分线上时,∵EP ⊥AB ,EC ⊥AC ,∴PE=EC ,∴34t=8-54t , ∴t=4. ∴当t 为4秒时,点E 在∠BAC 的平分线上.(2)如图,连接OE ,PC .S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )=1414153154338838252524524t t t t t ⎡⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯⨯-+⨯-⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎢⎝⎭⎝⎭⎝⎭⎝⎭⎣ =281516(05)33t t t -++<<. (3)存在. ∵28568(05)323S t t ⎛⎫=--+<< ⎪⎝⎭, ∴t=52时,四边形OPEG 的面积最大,最大值为683. (4)存在.如图,连接OQ .∵OE ⊥OQ ,∴∠EOC+∠QOC=90°,∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG,∴tan∠EOC=tan∠QOG,∴EC GQOC OG=,∴358544345ttt-=-,整理得:5t2-66t+160=0,解得165t=或10(舍弃)∴当165t=秒时,OE⊥OQ.【点睛】本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题.2.如图,在△ABC中,AB=7.5,AC=9,S△ABC=814.动点P从A点出发,沿AB方向以每秒5个单位长度的速度向B点匀速运动,动点Q从C点同时出发,以相同的速度沿CA方向向A点匀速运动,当点P运动到B点时,P、Q两点同时停止运动,以PQ为边作正△PQM (P、Q、M按逆时针排序),以QC为边在AC上方作正△QCN,设点P运动时间为t秒.(1)求cosA的值;(2)当△PQM与△QCN的面积满足S△PQM=95S△QCN时,求t的值;(3)当t为何值时,△PQM的某个顶点(Q点除外)落在△QCN的边上.【答案】(1)coaA=45;(2)当t=35时,满足S△PQM=95S△QCN;(3)当2733-或2733+时,△PQM的某个顶点(Q点除外)落在△QCN的边上.【解析】分析:(1)如图1中,作BE⊥AC于E.利用三角形的面积公式求出BE,利用勾股定理求出AE即可解决问题;(2)如图2中,作PH ⊥AC 于H .利用S △PQM =95S △QCN 构建方程即可解决问题; (3)分两种情形①如图3中,当点M 落在QN 上时,作PH ⊥AC 于H .②如图4中,当点M 在CQ 上时,作PH ⊥AC 于H .分别构建方程求解即可; 详解:(1)如图1中,作BE ⊥AC 于E .∵S △ABC =12•AC•BE=814, ∴BE=92, 在Rt △ABE 中,AE=22=6AB BE -, ∴coaA=647.55AE AB ==. (2)如图2中,作PH ⊥AC 于H .∵PA=5t ,PH=3t ,AH=4t ,HQ=AC-AH-CQ=9-9t ,∴PQ 2=PH 2+HQ 2=9t 2+(9-9t )2,∵S △PQM =95S △QCN , ∴32=9352, ∴9t 2+(9-9t )2=95×(5t )2, 整理得:5t 2-18t+9=0,解得t=3(舍弃)或35.∴当t=35时,满足S△PQM=95S△QCN.(3)①如图3中,当点M落在QN上时,作PH⊥AC于H.易知:PM∥AC,∴∠MPQ=∠PQH=60°,∴PH=3HQ,∴3t=3(9-9t),∴t=2733-.②如图4中,当点M在CQ上时,作PH⊥AC于H.同法可得3,∴39t-9),∴27+33综上所述,当2733-s27+33时,△PQM的某个顶点(Q点除外)落在△QCN 的边上.点睛:本题考查三角形综合题、等边三角形的性质、勾股定理锐角三角函数、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.3.在等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,∠EMF=135°.将∠EMF绕点M旋转,使∠EMF的两边交直线AB于点E,交直线AC于点F,请解答下列问题:(1)当∠EMF绕点M旋转到如图①的位置时,求证:BE+CF=BM;(2)当∠EMF绕点M旋转到如图②,图③的位置时,请分别写出线段BE,CF,BM之间的数量关系,不需要证明;(3)在(1)和(2)的条件下,tan∠BEM=,AN=+1,则BM=,CF=.【答案】(1)证明见解析(2)见解析(3)1,1+或1﹣【解析】【分析】(1)由等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,可得BM=MN,∠BMN=135°,又∠EMF=135°,可证明的△BME≌△NMF,可得BE=NF,NC=NM=BM进而得出结论;(2)①如图②时,同(1)可证△BME≌△NMF,可得BE﹣CF=BM,②如图③时,同(1)可证△BME≌△NMF,可得CF﹣BE=BM;(3) 在Rt△ABM和Rt△ANM中,,可得Rt△ABM≌Rt△ANM,后分别求出AB、 AC、 CN 、BM、 BE的长,结合(1)(2)的结论对图①②③进行讨论可得CF的长.【详解】(1)证明:∵△ABC是等腰直角三角形,∴∠BAC=∠C=45°,∵AM是∠BAC的平分线,MN⊥AC,∴BM=MN,在四边形ABMN中,∠,BMN=360°﹣90°﹣90°﹣45°=135°,∵∠ENF=135°,,∴∠BME=∠NMF,∴△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵CN=CF+NF,∴BE+CF=BM;(2)针对图2,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=NF﹣CF,∴BE﹣CF=BM;针对图3,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=CF﹣NF,∴CF﹣BE=BM;(3)在Rt△ABM和Rt△ANM中,,∴Rt△ABM≌Rt△ANM(HL),∴AB=AN=+1,在Rt△ABC中,AC=AB=+1,∴AC=AB=2+,∴CN=AC﹣AN=2+﹣(+1)=1,在Rt△CMN中,CM=CN=,∴BM=BC﹣CM=+1﹣=1,在Rt△BME中,tan∠BEM===,∴BE=,∴①由(1)知,如图1,BE+CF=BM,∴CF=BM﹣BE=1﹣②由(2)知,如图2,由tan∠BEM=,∴此种情况不成立;③由(2)知,如图3,CF﹣BE=BM,∴CF=BM+BE=1+,故答案为1,1+或1﹣.【点睛】本题考查三角函数与旋转与三角形全等的综合,难度较大,需综合运用所学知识求解.4.如图,等腰△ABC 中,AB=AC ,∠BAC=36°,BC=1,点D 在边AC 上且BD 平分∠ABC ,设CD=x .(1)求证:△ABC ∽△BCD ;(2)求x 的值;(3)求cos36°-cos72°的值.【答案】(1)证明见解析;(215-+;(3758+ 【解析】 试题分析:(1)由等腰三角形ABC 中,顶角的度数求出两底角度数,再由BD 为角平分线求出∠DBC 的度数,得到∠DBC=∠A ,再由∠C 为公共角,利用两对角相等的三角形相似得到三角形ABC 与三角形BCD 相似;(2)根据(1)结论得到AD=BD=BC ,根据AD+DC 表示出AC ,由(1)两三角形相似得比例求出x 的值即可;(3)过B 作BE 垂直于AC ,交AC 于点E ,在直角三角形ABE 和直角三角形BCE 中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.试题解析:(1)∵等腰△ABC 中,AB=AC ,∠BAC=36°,∴∠ABC=∠C=72°,∵BD 平分∠ABC ,∴∠ABD=∠CBD=36°,∵∠CBD=∠A=36°,∠C=∠C ,∴△ABC ∽△BCD ;(2)∵∠A=∠ABD=36°,∴AD=BD ,∵BD=BC ,∴AD=BD=CD=1,设CD=x ,则有AB=AC=x+1,∵△ABC ∽△BCD , ∴AB BC BD CD =,即111x x+=,整理得:x 2+x-1=0,解得:x 1=152-+,x 2=152--(负值,舍去), 则x=152-+; (3)过B 作BE ⊥AC ,交AC 于点E ,∵BD=CD ,∴E 为CD 中点,即DE=CE=154-+, 在Rt △ABE 中,cosA=cos36°=151514151AE AB -+++==-++, 在Rt △BCE 中,cosC=cos72°=151541EC BC -+-+==, 则cos36°-cos72°=51+=-15-+=12. 【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.5.如图,AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于切点为G ,连接AG 交CD 于K .(1)求证:KE=GE ;(2)若KG 2=KD•GE ,试判断AC 与EF 的位置关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=,求FG 的长.【答案】(1)证明见解析;(2)AC∥EF,证明见解析;(3)FG= .【解析】试题分析:(1)如图1,连接OG.根据切线性质及CD⊥AB,可以推出∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;(2)AC与EF平行,理由为:如图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD•GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF;(3)如图3所示,连接OG,OC,先求出KE=GE,再求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.试题解析:(1)如图1,连接OG.∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.(2)AC∥EF,理由为连接GD,如图2所示.∵KG2=KD•GE,即,∴,又∵∠KGE=∠GKE,∴△GKD∽△EGK,∴∠E=∠AGD,又∵∠C=∠AGD,∴∠E=∠C,∴AC∥EF;(3)连接OG,OC,如图3所示,∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.∵sinE=sin∠ACH=,设AH=3t,则AC=5t,CH=4t,∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK-CH=t.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即(3t)2+t2=(2)2,解得t=.设⊙O半径为r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t,由勾股定理得:OH2+CH2=OC2,即(r-3t)2+(4t)2=r2,解得r= t=.∵EF为切线,∴△OGF为直角三角形,在Rt△OGF中,OG=r=,tan∠OFG=tan∠CAH=,∴FG=【点睛】此题考查了切线的性质,相似三角形的判定与性质,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,以及等腰三角形的判定,熟练掌握定理及性质是解本题的关键.6.在正方形ABCD中,BD是一条对角线.点P在射线CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH、PH.(1)若点P在线CD上,如图1,①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)【答案】(1)①如图;②AH=PH,AH⊥PH.证明见解析(2)或【解析】试题分析:(1)①如图(1);②(1)法一:轴对称作法,判断:AH=PH,AH⊥PH.连接CH,根据正方形的每条对角线平分一组对角得:△DHQ等腰Rt△,根据平移的性质得DP=CQ,证得△HDP≌△△HQC,全等三角形的对应边相等得PH=CH,等边对等角得∠HPC=∠HCP,再结合BD是正方形的对称轴得出∠AHP=180°-∠ADP=90°,∴AH=PH且AH⊥PH.四点共圆作法,同上得:∠HPC=∠DAH,∴A、D、P、H共向,∴∠AHP=90°,∠APH=∠ADH=45°,∴△APH等腰Rt△.(2)轴对称作法同(1)作HR⊥PC于R,∵∠AHQ=152°,∴∠AHB=62°,∴∠DAH=17°∴∠DCH=17°.设DP=x,则.由代入HR,CR解方程即可得出x的值. 四点共圆作法,A、H、D、P共向,∴∠APD=∠AHB=62°,∴.试题解析:(1)①法一:轴对称作法,判断:AH=PH,AH⊥PH证:连接CH,得:△DHQ等腰Rt△,又∵DP=CQ,∴△HDP≌△△HQC,∴PH=CH,∠HPC=∠HCPBD为正方形ABCD对称轴,∴AH=CH,∠DAH=∠HCP,∴AH=PH,∠DAH=∠HPC,∴∠AHP=180°-∠ADP=90°,∴AH=PH且AH⊥PH.法二:四点共圆作法,同上得:∠HPC=∠DAH,∴A、D、P、H共向,∴∠AHP=90°,∠APH=∠ADH=45°,∴△APH等腰Rt△.(2)法一:轴对称作法考虑△DHQ等腰Rt△,PD=CQ,作HR⊥PC于R,∵∠AHQ=152°,∴∠AHB=62°,∴∠DAH=17°∴∠DCH=17°.设DP=x,则.由得:,∴.即PD=法二:四点共向作法,A、H、D、P共向,∴∠APD=∠AHB=62°,∴.考点:全等三角形的判定;解直角三角形;正方形的性质;死电脑共圆7.许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A ,B 两点之间的距离他沿着与直线AB 平行的道路EF 行走,走到点C 处,测得∠ACF=45°,再向前走300米到点D 处,测得∠BDF=60°.若直线AB 与EF 之间的距离为200米,求A ,B 两点之间的距离(结果保留一位小数)【答案】215.6米.【解析】【分析】过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点,根据Rt △ACM 和三角函数tan BDF ∠求出CM 、DN ,然后根据MN MD DN AB =+=即可求出A 、B 两点间的距离.【详解】解:过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点在Rt △ACM 中,∵45ACF ∠=︒,∴AM=CM=200米,又∵CD=300米,所以100MD CD CM =-=米,在Rt △BDN 中,∠BDF=60°,BN=200米 ∴115.6tan 60BN DN =≈o米, ∴215.6MN MD DN AB =+=≈米即A ,B 两点之间的距离约为215.6米.【点睛】本题主要考查三角函数,正确做辅助线是解题的关键.8.如图,在矩形ABCD 中,AB =6cm ,AD =8cm ,连接BD ,将△ABD 绕B 点作顺时针方向旋转得到△A ′B ′D ′(B ′与B 重合),且点D ′刚好落在BC 的延长上,A ′D ′与CD 相交于点E . (1)求矩形ABCD 与△A ′B ′D ′重叠部分(如图1中阴影部分A ′B ′CE )的面积;(2)将△A ′B ′D ′以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与△A ′B ′D ′重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x的函数关系式,并指出自变量x 的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x ,使得△AA ′B ′成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.【答案】(1)452;(2)详见解析;(3)使得△AA ′B ′成为等腰三角形的x 的值有:0秒、32 669-. 【解析】【分析】(1)根据旋转的性质可知B ′D ′=BD =10,CD ′=B ′D ′﹣BC =2,由tan ∠B ′D ′A ′='''''=A B CE A D CD 可求出CE ,即可计算△CED ′的面积,S ABCE =S ABD ′﹣S CED ′; (2)分类讨论,当0≤x ≤115时和当115<x ≤4时,分别列出函数表达式; (3)分类讨论,当AB ′=A ′B ′时;当AA ′=A ′B ′时;当AB ′=AA ′时,根据勾股定理列方程即可.【详解】解:(1)∵AB =6cm ,AD =8cm ,∴BD =10cm ,根据旋转的性质可知B ′D ′=BD =10cm ,CD ′=B ′D ′﹣BC =2cm ,∵tan ∠B ′D ′A ′='''''=A B CE A D CD ∴682=CE ∴CE =32cm , ∴S ABCE =S ABD ′﹣S CED ′=8634522222⨯-⨯÷=(cm 2); (2)①当0≤x <115时,CD ′=2x +2,CE =32(x +1), ∴S △CD ′E =32x 2+3x +32,∴y =12×6×8﹣32x 2﹣3x ﹣32=﹣32x 2﹣3x +452; ②当115≤x ≤4时,B ′C =8﹣2x ,CE =43(8﹣2x ) ∴()214y 8223x =⨯-=83x 2﹣643x +1283. (3)①如图1,当AB ′=A ′B ′时,x =0秒; ②如图2,当AA ′=A ′B ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =245, ∵AN 2+A ′N 2=36,∴(6﹣245)2+(2x +185)2=36, 解得:x =669-,x =669--(舍去); ③如图2,当AB ′=AA ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =245, ∵AB 2+BB ′2=AN 2+A ′N 2∴36+4x 2=(6﹣245)2+(2x +185)2 解得:x =32. 综上所述,使得△AA ′B ′成为等腰三角形的x 的值有:0秒、32秒、669-.【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.9.在△ABC中,∠B=45°,∠C=30°,点D是边BC上一点,连接AD,将线段AD绕点A 逆时针旋转90°,得到线段AE,连接DE.(1)如图①,当点E落在边BA的延长线上时,∠EDC=度(直接填空);(2)如图②,当点E落在边AC上时,求证:BD=12 EC;(3)当AB=22,且点E到AC的距离等于3﹣1时,直接写出tan∠CAE的值.【答案】(1)90;(2)详见解析;(3)633 tan EAC-∠=【解析】【分析】(1)利用三角形的外角的性质即可解决问题;(2)如图2中,作PA⊥AB交BC于P,连接PE.只要证明△BAD≌△PAE(SAS),提出BD=PE,再证明EC=2PE即可;(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,可得EP3,EH=2PH=2x,由此FH=31,CF=33,由△BAD≌△PAE,得BD=EP3x,AE=AD,在Rt△ABG中, AG=GB=2,在Rt△AGC中,AC=2AG=4,故AE2=AD2=AF2+EF2,由勾股定理得AF=3tan∠EAF=23tan∠EAC=6-3311.【详解】(1)如图1中,∵∠EDC=∠B+∠BED,∠B=∠BED=45°,∴∠EDC=90°,故答案为90;(2)如图2中,作PA⊥AB交BC于P,连接PE.∵∠DAE=∠BAP=90°,∴∠BAD=∠PAE,∵∠B=45°,∴∠B=∠APB=45°,∴AB=AP,∵AD=AE,∴△BAD≌△PAE(SAS),∴BD=PE,∠APE=∠B=45°,∴∠EPD=∠EPC=90°,∵∠C=30°,∴EC=2PE=2BD;(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,∵∠EPH=90°,∠EHP=60°,∴EP=3x,EH=2PH=2x,∴FH=2x+3﹣1,CF=3FH=23x+3﹣3,∵△BAD≌△PAE,∴BD=EP=3x,AE=AD,在Rt△ABG中,∵AB=22,∴AG=GB=2,在Rt△AGC中,AC=2AG=4,∵AE2=AD2=AF2+EF2,∴22+(2﹣3x)2=(3﹣1)2+(4﹣23x﹣3+3)2,整理得:9x2﹣12x=0,解得x=43(舍弃)或0∴PH=0,此时E,P,H共点,∴AF=1+3,∴tan∠EAF=EFAF =3131-+=2﹣3.根据对称性可知当点E在AC的上方时,同法可得tan∠EAC=6-33 11.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.10.如图(1),已知正方形ABCD在直线MN的上方BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并直接写出∠FCN的度数(不要写出解答过程)(3)如图(2),将图中正方形ABCD改为矩形ABCD,AB=6,BC=8,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请求出tan∠FCN的值.若∠FCN的大小发生改变,请举例说明.【答案】(1)见解析;(2)∠FCN =45°,理由见解析;(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN=43.理由见解析. 【解析】【分析】(1)根据三角形判定方法进行证明即可.(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论.【详解】(1)证明:∵四边形ABCD 和四边形AEFG 是正方形,∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°,∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE ,∴∠BAE =∠DAG ,在△ADG 和△ABE 中, ADG ABE DAG BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△ABE (AAS ).(2)解:∠FCN =45°,理由如下:作FH ⊥MN 于H ,如图1所示:则∠EHF =90°=∠ABE ,∵∠AEF =∠ABE =90°,∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°,∴∠FEH =∠BAE ,在△EFH 和△ABE 中,EHF ABE FEH BAE AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EFH ≌△ABE (AAS ),∴FH =BE ,EH =AB =BC ,∴CH =BE =FH ,∵∠FHC=90°,∴∠FCN=45°.(3)当点E由B向C运动时,∠FCN的大小总保持不变,理由如下:作FH⊥MN于H,如图2所示:由已知可得∠EAG=∠BAD=∠AEF=90°,结合(1)(2)得:△EFH≌△GAD,△EFH∽△ABE,∴EH=AD=BC=8,∴CH=BE,∴EH FH FHAB BE CH==;在Rt△FEH中,tan∠FCN=8463 FH EHCH AB===,∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=43.【点睛】本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.11.在平面直角坐标系中,O为坐标原点,点A(0,1),点C(1,0),正方形AOCD的两条对角线的交点为B,延长BD至点G,使DG=BD,延长BC至点E,使CE=BC,以BG,BE为邻边作正方形BEFG.(Ⅰ)如图①,求OD的长及ABBG的值;(Ⅱ)如图②,正方形AOCD固定,将正方形BEFG绕点B逆时针旋转,得正方形BE′F′G′,记旋转角为α(0°<α<360°),连接AG′.①在旋转过程中,当∠BAG′=90°时,求α的大小;②在旋转过程中,求AF′的长取最大值时,点F′的坐标及此时α的大小(直接写出结果即可).【答案】(Ⅰ)12(Ⅱ)①α=30°或150°时,∠BAG′=90°②当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为22+2,此时α=315°,F′(12+2,12﹣2)【解析】【分析】(1)根据正方形的性质以及勾股定理即可解决问题,(2)①因为∠BAG′=90°,BG′=2AB,可知sin∠AG′B=12ABBG,推出∠AG′B=30°,推出旋转角α=30°,据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,②当α=315°时,A、B、F′在一条直线上时,AF′的长最大.【详解】(Ⅰ)如图1中,∵A(0,1),∴OA=1,∵四边形OADC是正方形,∴∠OAD=90°,AD=OA=1,∴OD=AC==,∴AB=BC=BD=BO=,∵BD=DG,∴BG=,∴==.(Ⅱ)①如图2中,∵∠BAG′=90°,BG′=2AB,∴sin∠AG′B==,∴∠AG′B=30°,∴∠ABG′=60°,∴∠DBG′=30°,∴旋转角α=30°,根据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,综上所述,旋转角α=30°或150°时,∠BAG′=90°.②如图3中,连接OF,∵四边形BE′F′G′是正方形的边长为∴BF′=2,∴当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,此时α=315°,F′(+,﹣)【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,解决本题的关键是要熟练掌握正方形的四条边相等、四个角相等,旋转变换的性质以及特殊角的三角函数值的应用.∠=o,为了达到无障碍通道的坡12.如图,由一段斜坡AB的高AD长为0.6米,ABD30∠=o.道标准,现准备把斜坡改长,使ACD 5.71()1求斜坡AB的长;()2求斜坡新起点C与原起点B的距离.(精确到0.01米)(3 1.732≈,o≈tan5.710.100)【答案】()1?AB 1.2=米;()2斜坡新起点C 与原起点B 的距离为4.96米. 【解析】【分析】()1在Rt ABD V 中,根据AB AD sin30=÷o 计算即可;()2分别求出CD 、BD 即可解决问题;【详解】()1在Rt ABD V 中,1AB AD sin300.6 1.2(2=÷=÷=o 米), ()2在Rt ABD V 中,3BD AD tan300.6 1.039(=÷=≈o 米), 在Rt ACD V 中,CD AD tan5.716(=÷≈o 米),BC CD BD 6 1.039 4.96(∴=-=-=米).答:求斜坡AB 的长为1.2米,斜坡新起点C 与原起点B 的距离为4.96米.【点睛】本题考查解直角三角形的应用,锐角三角函数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。

2020届中考数学培优复习题:全等三角形性质判定【含答案】

2020届中考数学培优复习题:全等三角形性质判定【含答案】

2020届中考数学培优复习题:全等三角形性质判定一、单选题(共有9道小题)1.如图,在△PAB 中,PA=PB ,M 、N 、K 分别是边PA 、PB 、AB 上的点, 且AM=BK ,BN=AK ,若∠MKN=44°,则∠P 的度数为( ) A.44° B.66° C.88° D.92°2.如图,AB ⊥CD ,且AB =CD .E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =a ,BF =b ,EF =c ,则AD 的长为( )A .+a c B .+b c C .-+a b c D .+-a b c3.下列结论错误的是( )A .全等三角形对应边上的高相等B .全等三角形对应边上的中线相等C .两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等D .两个直角三角形中,两个锐角相等,则这两个三角形全等 4.如果两个三角形全等,则不正确的是( )A.它们的最小角相等B.它们的对应外角相等C.它们是直角三角形D.它们的最长边相等5.如图,△ABC ≌△DEF ,BE=4,AE=1,则DE 的长是( ) A.5 B.4 C.3 D.26.下列说法中不正确的是( )A.全等三角形的对应高相等B.全等三角形的面积相等C.全等三角形的周长相等D.周长相等的两个三角形全等7.已知在△ABC 和△DEF 中,∠A=∠D=90°,则下列条件中不能判定△ABC 和△DEF 全等的是( )A.AB=DE,AC=DFB.AC=EF,BC=DFC.AB=DE,BC=EFD.∠C=∠F,BC=EF 8.下列条件中,不能判定三角形全等的是( )A.三条边对应相等B.两边和一角对应相等N K A B M AE CDFBA BDEFC.两角的其中一角的对边对应相等D.两角和它们的夹边对应相等9.如图,△ABC 的周长为26,点D,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P.若BC=10,则PQ 的长为( )A.23 B.25C.3D.4 二、填空题(共有5道小题)10.如图,已知△ABC 中AB=AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 中点,两边PE ,PF 分别交AB 、AC 于点E 、F ,给出以下五个结论:①AE=CF ②∠APE=∠CPF③△EPF 是等腰直角三角形 ④EF=AP ⑤当∠EPF 在△ABC 内绕顶点P 旋转时12ABC AEPFS S ∆=四边形 上述结论中始终正确的序号有 11.如图,已知BC =EC ,∠BCE =∠ACD ,要使△ABC ≌△DEC ,则应添加的一个条件为______.(答案不唯一,只需填一个)12.如图,已知点B 、C 、F 、E 在同一直线上,∠1=∠2,BC =EF ,要使△ABC ≌△DEF ,还需添加一个条件,这个条件可以是 .(只需写出一个)13.如图,△ABC ≌△DEF ,则EF=Q P D B CAA FBC EA E 12F EB ACD14.如图,四边形ACDF 是正方形,∠CEA 和∠ABF 都是直角且点E ,A ,B 三点共线,4=AB ,则阴影部分的面积是 .F AC BDE三、作图题(共有1道小题) 15.如图,已知△ABC 中AB=AC(1)作图:在AC 上有一点D ,延长BD ,并在BD 的延长线上取点E ,使AE=AB ,连AE ,作∠EAC 的平分线AF ,AF 交DE 于点F (用尺规作图,保留作图痕迹,不写作法); (2)在(1)条件下,连接CF ,求证:∠E=∠ACF四、解答题(共有6道小题)16.如图,点C ,F 在线段BE 上,BF =EC ,∠1=∠2.请你添加一个条件,使△ABC ≌△DEF ,并加以证明.(不再添加辅助线和字母)17.如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AED ≌△AFD ,B A D 12CA EDBF需添加一个条件是:_______________,并给予证明.18.如图,已知∠CAB=∠DBA ,∠CBD=∠DAC 。

2020年中考数学 三轮冲刺培优练 解直角三角形实际应用 集训题 三(10题含答案)

2020年中考数学 三轮冲刺培优练 解直角三角形实际应用 集训题 三(10题含答案)

2020年中考数学三轮冲刺培优练解直角三角形实际应用集训题三1.如图,已知斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B 的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)2.如图,一居民楼底部B与山脚P位于同一水平线上,小李在P处测得居民楼顶A的仰角为60°,然后他从P处沿坡脚为45°的上坡向上走到C处,这时,PC=20m,点C与点A在同一水平线上,A、B、P、C在同一平面内.(1)求居民楼AB的高度;(2)求C、A之间的距离.(结果保留根号)3.如图,初三一班数学兴趣小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°.朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度为1:(即AB:BC=1:),且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测量器的高度忽略不计)4.学习“利用三角函数测高”后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB,其测量步骤如下:(1)在中心广场测点C处安置测倾器,测得此时山顶A的仰角∠AFH=30°;(2)在测点C与山脚B之间的D处安置测倾器(C、D与B在同一直线上,且C、D之间的距离可以直接测得),测得此时山顶上红军亭顶部E的仰角∠EGH=45°;(3)测得测倾器的高度CF=DG=1.5米,并测得CD之间的距离为288米;已知红军亭高度为12米,请根据测量数据求出凤凰山与中心广场的相对高度AB.(取1.732,结果保留整数)5.某校九年级数学兴趣小组为了测得该校地下停车场的限高CD(CD⊥AE),在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)1.2米,试求该校地下停车场的高度AC及限高CD(≈1.73,结果精确到0.1米)6.如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶部点E的仰角为30°,AB=14米.求居民楼的高度(精确到0.1米,3参考数据:≈1.73).7.如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)8.A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图,风景区区域是以C为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB高速公路是否穿过风景区,请说明理由.9.在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度.(精确到0.1)(参考数据:≈1.414,≈1.732)10.由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛B位于它的北偏东30°方向,且与航母相距80海里再航行一段时间后到达C处,测得小岛B位于它的西北方向,求此时航母与小岛的距离BC的长.参考答案1.解:(1)过点A作AH⊥PQ,垂足为点H.∵斜坡AP的坡度为1:2.4,∴AH:PH=5:12,设AH=5km,则PH=12km,由勾股定理,得AP=13km.∴13k=26m.解得k=2.∴AH=10m.答:坡顶A到地面PQ的距离为10m.(2)延长BC交PQ于点D.∵BC⊥AC,AC∥PQ,∴BD⊥PQ.∴四边形AHDC是矩形,CD=AH=10,AC=DH.∵∠BPD=45°,∴PD=BD.设BC=x,则x+10=24+DH.∴AC=DH=x﹣14.在Rt△ABC中,tan76°=BC:AC,即x:(x-14)≈4.0,解得x≈19,答:古塔BC的高度约为19米.2.解:(1)过点C作CE⊥BP于点E,在Rt△CPE中,∵PC=20m,∠CPE=45°,∴sin45°=,∴CE=PC•sin45°=20×=20m,∵点C与点A在同一水平线上,∴AB=CE=20m,答:居民楼AB的高度约为20m;(2)在Rt△ABP中,∵∠APB=60°,∴tan60°=,∴BP==m,∵PE=CE=20m,∴AC=BE=(+20)m,答:C、A之间的距离为(+20)m.3.4.5.【解答】解:连接AC,∵∠ABE=90°,∠E=30°,∴AB=0.5AE=8,∴AC=8﹣1.2=6.8,∴CD=AC•sin∠EAB=6.8×≈5.9,答:地下停车场的高度AC为6.8米,限高CD约为5.9米.6.解:7.解:8.解:AB不穿过风景区.理由如下:如图,过C作CD⊥AB于点D,根据题意得:∠ACD=α,∠BCD=β,则在Rt△ACD中,AD=CD•tanα,在Rt△BCD中,BD=CD•tanβ,∵AD+DB=AB,∴CD•tanα+CD•tanβ=AB,∴CD==(千米).∵CD=50>45,∴高速公路AB不穿过风景区.9.10.解:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年中考数学培优练习卷:直角三角形一.选择题1.已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积为()A.5 B.6 C.7 D.82.如图,∠ABC=∠ADC=Rt∠,E是AC的中点,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1与∠2大小关系不能确定3.如图,△ABC中,AB=AC,AD⊥BC,垂足为D,DE∥AB,交AC于点E,则下列结论不正确的是()A.∠CAD=∠BAD B.BD=CD C.AE=ED D.DE=DB4.如图,边长为a的等边△ABC的顶点A,B分别在x轴正半轴和y轴正半轴上运动,则动点C到原点O的距离的最大值是()A.B.C.D.5.如图,△ABC中,∠ACB=90°,D是AB的中点,则下列结论错误的是()A.BC=ABB.CD=ABC.AC2+BC2=AB2D.点D在线段BC的垂直平分线上6.如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=6,BC=10,则△EFM的面积是()A.6 B.8 C.12 D.307.如图,△ABC中,∠A=67.5°,BC=4,BE⊥CA于E,CF⊥AB于F,D是BC的中点.以F为原点,FD所在直线为x轴构造平面直角坐标系,则点E的横坐标是()A.2﹣B.﹣1 C.2﹣D.8.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E 作EF∥DC交BC的延长线于F,若四边形DCFE的周长为18cm,AC的长6cm,则AD的长为()A.13cm B.12cm C.5cm D.8cm9.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于()A.5 B.6 C.7 D.810.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=2,CE=4,H是AF 的中点,那么CH的长是()A.B.C.D.2二.填空题11.如图,在Rt△ABC中,∠ACB=90°,点E是AB中点,CD⊥AB于点D.若AD=DE,则∠B的度数为.12.如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,BD.若∠EBD=32°,则∠BCD的度数为度.13.如图,在Rt△ABC中,CD是斜边AB上的中线,DE⊥AC,垂足为E.如果CD=2.4cm,那么AB=cm.14.如图,在△ABC中,AB=AC,BC=8,△DEF的周长是10,AF⊥BC于F,BE⊥AC 于E,且点D是AB的中点,则AF的长是.15.如图,在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,连接AO、DO.若AO=3,则DO的长为.16.如图,在△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD =2,CE=5,则CD=三.解答题17.如图,在△ABC中,∠C=2∠B,点D为BC上一点且AD⊥AB,点E是BD的中点,连结AE(1)求证:∠AEC=∠C;(2)求证:BD=2AC;(3)若AE=8.5,AD=8,求△ABE的周长.18.∠BAC为钝角,CD⊥AB,BE⊥AC,垂足分别为D、E,M是BC中点,求证:ME =MD.19.已知:如图,在△ABC中,AD是BC边上的高线,CE是AB边上的中线,DG⊥CE 于G,且CD=AE.(1)求证:CG=EG.(2)求证:∠B=2∠ECB.20.如图1,已知∠ABC=90°,△ABC是等腰三角形,点D为斜边AC的中点,连接DB,过点A作∠BAC的平分线,分别与DB,BC相交于点E,F.(1)求证:BE=BF;(2)如图2,连接CE,在不添加任何辅助线的条件下,直接写出图中所有的等腰三角形.参考答案一.选择题1.解:∵∠ACB=90°,CD是斜边上的中线,∴AB=2CD=6,∵A B+AC+BC=14,∴AC+BC=8,由勾股定理得:AC2+BC2=AB2=36,∴(AC+BC)2﹣2AC•BC=36,AC•BC=14,∴S=AC•BC=7.故选:C.2.解:∵∠ABC=∠ADC=90°,E是AC的中点,∴DE=AC,BE=AC,∴DE=BE,∴∠1=∠2.故选:B.3.解:∵AB=AC,AD⊥BC,∴∠CAD=∠BAD,A正确,不符合题意;BD=CD,B正确,不符合题意;∵DE∥AB,∴∠EDA=∠BAD,∵∠EAD=∠BAD,∴∠EAD=∠EDA,∴AE=ED,C正确,不符合题意;DE与DB的关系不确定,D错误,符合题意;故选:D.4.解:取AB的中点D,连接OD,CD,在△OCD中,OC<OD+CD,只有当O,D,C三点在一条线上时,OC=OD+CD,此时OC最大,如图所示,OC ⊥AB,∵△AOB为等腰直角三角形,AB=a,∴OD=AB=a,在Rt△BCD中,BC=a,BD=a,根据勾股定理得:CD=a,则OC=OD+DC=a+a.故选:B.5.解:A、∠A=30°时,BC=AB,无法确定∠A的度数,故本选项错误;B、根据直角三角形斜边上的中线等于斜边的一半,CD=AB,故本选项正确;C、根据勾股定理,AC2+BC2=AB2,故本选项正确;D、∵D是AB的中点,∴CD=BD=AB,∴点D在线段BC的垂直平分线上,故本选项正确.故选:A.6.解:∵CF⊥AB,M为BC的中点,∴MF是Rt△BFC斜边上的中线,∴FM=BC=×10=5,同理可得,ME=BC=×10=5,∴△EFM是等腰三角形,过M作MN⊥EF,又∵EF=6,∴EN=EF=3,∴MN==4,∴△EFM的面积=EF•MN=×6×4=12,故选:C.7.解:如图所示,连接DE,过E作EH⊥OD于H,∵BE⊥CA于E,CF⊥AB于F,D是BC的中点,∴DE=DC=BC=DO=DB=2,∴∠DCE=∠DEC,∠DBO=∠DOB,∵∠A=67.5°,∴∠ACB+∠ABC=112.5°,∴∠CDE+∠BDO=(180°﹣2∠DCE)+(180°﹣2∠DBO)=360°﹣2(∠DCE+∠DBO)=360°﹣2×112.5°=135°,∴∠EDO=45°,∴Rt△DEH中,DH=cos45°×DE=,∴OH=OD﹣DH=2﹣,点E的横坐标是2﹣,故选:A.8.解:∵D、E分别是AB、AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥FC.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为18cm,AC的长6cm,∴BC=18﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(18﹣AB)2+62,解得:AB=10cm,∴AD=5cm,故选:C.9.解:∵△ABC中,CD⊥AB于D,∴∠ADC=90°.∵E是AC的中点,DE=5,∴AC=2DE=10.∵AD=6,∴CD===8.故选:D.10.解:连接AC、CF,在正方形ABCD和正方形CEFG中,∠ACG=45°,∠FCG=45°,∴∠ACF=90°,∵BC=2,CE=4,∴AC=2,CF=4,由勾股定理得,AF=2,又H是AF的中点,∴CH=AF=,故选:A.二.填空题(共6小题)11.解:∵在Rt△ABC中,∠ACB=90°,点E是AB中点,∴AE=CE,∵CD⊥AB于点D.AD=DE,∴AC=CE,∴AC=CE=AE,∴∠A=60°,∴∠B=90°﹣60°=30°,故答案为:30°.12.解:连接DE,∵∠ABC=∠ADC=90°,E为AC的中点,∴DE=AC,BE=AC,∴DE=EB=EC=EA,∴点A,B,C,D在以E为圆心,AC为直径的同一个圆上,∴∠BAD=∠DEB,∵D E=BE,∠EBD=32°,∴∠EDB=∠EBD=32°,∴∠DEB=180°﹣32°﹣32°=116°,∴∠DAB=58°,∵A、B、C、D四点共圆,∴∠BCD+∠DAB=180°,∴∠DCB=180°﹣58°=122°,故答案为:122.13.解:∵在Rt△ABC中,CD是斜边AB上的中线,∴2CD=AB,∴AB=4.8cm,故答案为:4.814.解:∵AB=AC,AF⊥BC,∴AF是△ABC的中线,∵D是AB的中点,∴DF是△ABC的中位线,设AB=BC=2x,∴DF=x,∵BE⊥AC,点D是AB的中点,点F是BC的中点,∴DE=AB=x,EF=BC=4,∵△DEF的周长为10,∴x+x+4=10,∴x=3,∴AC=6,∴由勾股定理可知:AF=2,故答案为:215.解:在Rt△BAC和Rt△BDC中,∵∠BAC=∠BDC=90°,O是BC的中点,∴DO=AO,∵AO=3,∴DO=3,故答案为3.16.解:∵∠ACB=90°,CE为AB边上的中线,∴AB=2CE=10,∴BD=AB﹣AD=8,由射影定理得,CD==4,故答案为:4.三.解答题(共4小题)17.(1)证明:∵AD⊥AB,∴△ABD为直角三角形,又∵点E是BD的中点,∴AE=BD=BE,∴∠B=∠BAE,∠AEC=∠B+∠BAE=2∠B,又∵∠C=2∠B,∴∠AEC=∠C;(2)解:∵AD⊥AB,点E是BD的中点,∴AE=BE=ED=DB,∴∠B=∠BAE,∴∠AED=2∠B,∵∠C=2∠B,∴∠AEC=∠C,∴AC=AE,∴BD=2AC;(3)解:在Rt△ABD中,AD=8,BD=2AE=2×8.5=17,∴△ABE的周长=AB+BE+AE=15+8.5+8.5=32.18.解:∵CD⊥AB,BE⊥AC,∴∠BEC=∠BDC=90°,∵M是BC中点,∴ME=MD=BC.19.(1)证明:连接DE,∵AD⊥BC,点E是AB的中点,∴DE=AB=AE,∵CD=AE,∴DE=DC,又DG⊥CE,∴CG=EG.(2)证明:∵DE=DC,∴∠DEC=∠DCE,∴∠EDB=∠DEC+∠DCE=2∠DCE,∵DE=BE,∴∠B=∠EDB=2∠DCE.20.(1)证明:∠ABC=90°,BA=BC,点D为斜边AC的中点,∴BD⊥AC,∠DBC=45°,∵AF是∠BAC的平分线,∴∠BAF=22.5°,∴∠BFE=67.5°,∴∠BEF=180°﹣∠EBF﹣∠EFB=67.5°,∴∠BFE=∠BEF,∴BE=BF;(2)∵∠ABC=90°,BA=BC,点D为斜边AC的中点,∴BD=AD=CD,∴△ABD、△CBD是等腰三角形,由已知得,△ABC是等腰三角形,由(1)得,△BEF是等腰三角形,∵AF是∠BAC的平分线,BD是∠ABC的平分线,∴点E是△ABC的内心,∴∠EAC=∠ECA=22.5°,∴△AEC是等腰三角形.。

相关文档
最新文档