矩阵的秩及其求法-求秩的技巧
矩阵求秩方法

矩阵求秩方法
求矩阵的秩是线性代数中常见的问题,以下是关于矩阵求秩的10条方法及其详细描述:
1. 奇异值分解法:通过对矩阵进行奇异值分解,将矩阵变换为一个对角矩阵,其中非零元素的个数即为矩阵的秩。
2. 初等变换法:利用矩阵的初等行(列)变换,将矩阵化简为行简化阶梯型矩阵,其中非零行的个数即为矩阵的秩。
3. 极大线性无关组法:通过逐步选择矩阵中的列,构建一个极大线性无关组,其中向量的个数即为矩阵的秩。
4. 秩-零空间法:矩阵的秩与其零空间的维数之和为矩阵的列数。
可以通过计算矩阵的零空间 (null space) 的维数来求解矩阵的秩。
5. 行列式法:矩阵的行列式非零的最大子阵的阶数就是矩阵的秩。
6. 直接检验法:将矩阵转换为梯形矩阵或行阶梯矩阵,其中非零行的个数即为矩阵的秩。
7. 特征值法:矩阵的秩等于其特征值不为零的个数。
8. 与单位矩阵求秩法:通过将矩阵与单位矩阵进行连接,得到一个增广矩阵,进而将其化简为行简化阶梯型矩阵,其中非零行的个数即为矩阵的秩。
9. Gauss-Jordan消元法:通过高斯消元法和高斯约当消元法将矩阵化简为行简化阶梯型矩阵,其中非零行的个数即为矩阵的秩。
10. 极大线性无关组与生成组比较法:利用极大线性无关组与生成组的关系来求解矩阵的秩,其中生成组的个数等于矩阵的秩。
2.5 矩阵的秩及其求法

求 R( A).
1 0 2 −4 1 0 2 −4 −4 → 0 1 −1 2 r 2r , 解 A 2 − 0 1 −1 2 r1 → r3 + 1 0 −1 1 − 2 0 0 0 0
R(A) = 2
13
1 −1 1 2 例5 设A = 3 λ −1 2, 且R(A) 2 = ,求λ, µ 5 3 µ 6
∴ R( A) = 3
A为满秩方阵。
19
若求A 若求 的标准型矩阵
1 − 2 1 − 4 0 −1 −1 3 → 0 0 1 9 0 0 0 0
2 1 1 0 →0 2 0 0
0 −1 2 1 0 0
4 0 12 3 1 9 2 0 0 0
矩阵A 的第一、三行,第二、四列相交处的元素 所构成的二阶子式为
2 −1 D2 = 0 −1
3 5 为 A 的一个三阶子式。
而
1 2 D3 = 4 6
1 0 −1
k k m× n 矩阵 A 共有 cmcn 个 k 阶子式。 显然,
4
设
A = (aij )m×n 当 A=0 时,它的任何子式都为零。
⑤ R(AB)≤ min{R(A),R(B)} ⑥ 若 Am×nBn×s=0,则 R(A)+R(B)≤n
24
例8
设A为n阶矩阵,证明R(A+E)+R(A-E)≥n 证: ∴ 而 ∴ ∵ (A+E)+(E-A)=2E r(A+E)+ r( E-A )≥ r(2E)=n r( E-A )= r( A-E ) r(A+E)+r(A-E)≥n
7
矩阵秩的求法 二、矩阵秩的求法 1、子式判别法 定义 。 、子式判别法(定义 定义)。
矩阵的秩及其求法矩阵秩求法演示文稿

5 3 6
0
8
5
4
1 1 1 2
0 3 4 4 0 5 1 0
R(A) 2, 5 0, 1 0
5, 1
三、满秩矩阵 定义3 A 为 n 阶方阵时,
RA n, 称 A 是满秩阵,(非奇异矩阵)
RA n, 称 A 是降秩阵,(奇异矩阵) 可见:RA n A 0
RA n A ~ E
RA n A ~ En
例如 1 A 2 3
2 1 1
3 2 2
1 0 0
2 3 2
3 1 4 0 3 0
0 1 2
0 1 3
1 0 0
0 0
1 0 E 0 1
RA 3
A为满秩方阵。
关于矩阵的秩的一些重要结论:
定理5
R(AB) R(A), R(AB) R(B),即
对于满秩方阵A施行初等行变换可以化为单位阵E, 又根据初等阵的作用:每对A施行一次初等行变换, 相当于用一个对应的初等阵左乘A, 由此得到下面的 定理
定理3 设A是满秩方阵,则存在初等方阵
P1, P2,, Ps. 使得 Ps Ps1 , P2P1A E
对于满秩矩阵A,它的行最简形是 n 阶单位阵 E .
2 1 所构成的二阶子式为 D2 0 1
12 3 而 D3 4 6 5 为 A 的一个三阶子式。
1 0 1
显然, m n 矩阵 A 共有 cmk cnk 个 k 阶子式。
2. 矩阵的秩
定义2 设 A aij mn ,有r 阶子式不为0,任何r+1阶
子式(如果存在的话)全为0 , 称r为矩阵A的秩,
0 1
2 3
4 6
求 RA.
1 1 1 2
线性代数-矩阵的秩

设A
=
2 −2 3
−4 4 −6
8 −2 0
−036 , b
=
2 43
求矩阵A及矩阵B = ( A b)的秩. 解 分析:设 B 的行阶梯形矩阵为 B~ = ( A~,b~),
则 A~ 就是 A 的行阶梯形矩阵, 故从 B~ = ( A~,b~) 中可同时看出 R( A) 及 R(B).
1 − 2 2 − 1 1
故 R(AT A) = R(A).
又由于 B 也可经一次初等变换变为 A, 故也有 R(B) ≤ R( A).
因此 R( A) = R(B).
经一次初等行变换矩阵的秩不变,即可知经 有限次初等行变换矩阵的秩仍不变.
设A经初等列变换变为 B,也有R( A) = R(B).
设 A 经初等列变换变为 B, 则 AT 经初等行变换变为 BT , R( AT ) = R(BT ),
6 11
则这个子式便是A 的一个最高阶非零子式.
设 n 阶可逆矩阵 A, A ≠ 0, ∴ A 的最高阶非零子式为 A, R( A) = n, 故 A 的标准形为单位阵 E, A ~ E.
可逆矩阵的秩等于阶数 ,故称可逆矩阵 为满秩矩阵. 奇异矩阵为降秩矩阵 .
1 − 2 2 − 1 1
例5
− 2 0 1 5
解
13 02 −2 0
1 0
3 = 2 ≠ 0, 2
计算A的3阶子式,
−2
1 3 2 1 −2 2
− 1 = 0, 0 2 3 = 0, 0 − 1 3 = 0,
1
−2 0 5 −2 1 5
3 −2 2
2 − 1 3 = 0, ∴ R(A) = 2.
015
1 3 − 2 2 另解 对矩阵 A = 0 2 − 1 3 做初等变换,
最新线性代数矩阵的秩教学讲义ppt

1
1
r4
r2
0
0 1
0
3
4
0
2 0 0
1
1
0 1
2
3
1 2 0 0
r4
r3
0
2
1
1
故
0 0 2 3
0
0
0
1
R(A) 4
例4
已知
n( 1)
a
阶方阵
A
b
b a
b b
b b
求R (A)
b b b a
a b b
b
rk r1
b
a
ab
0
解: A
ba 0 ab
k2,3, ,n
子宫瘢痕妊娠(cesarean scarpregnancy, CSP)
CSP的发生率为1∶2216~1∶1800,占有剖宫产史 妇女的1.15%,占有前次剖宫产史妇女异位妊娠的 6.1%
发病机制尚不清楚
临床表现
CSP早孕期无特异性的临床表现,或仅有类似先兆 流产的表现,如阴道少量流血、轻微下腹痛等。
Ⅰ型:
(1)妊娠囊部分着床于子宫瘢痕处,部分或大部 分位于宫腔内,少数甚或达宫底部宫腔;
(2)妊娠囊明显变形、拉长、下端成锐角; (3)妊娠囊与膀胱间子宫肌层变薄,厚度>3 mm; (4)CDFI:瘢痕处见滋养层血流信号(低阻血
流)。
Ⅱ型:
(1)妊娠囊部分着床于子宫瘢痕处,部分或大部 分位于宫腔内,少数甚或达宫底部宫腔;
0
矩阵A的所有4阶子式全为0(为什么?)有一个3阶
子式不为0,故 R(A)=3
二:利用初等变换求矩阵的秩
定理2 矩阵经初等变换后其秩不变 即 A ~ B, 则 R(A) = R(B).
求矩阵的秩的三种方法

求矩阵的秩的三种方法矩阵是线性代数中的一个重要概念,它由一个数域中的矩形阵列组成,是线性变换的一种表现形式。
矩阵的秩是矩阵的重要性质之一,它可以告诉我们矩阵中行向量或列向量之间的关系。
在实际应用中,求解矩阵的秩是非常常见的问题。
本文将介绍矩阵的三种求解秩的方法。
方法一:高斯消元法高斯消元法是求解矩阵秩的一种基础方法。
对于一个矩阵A,如果它的秩为r,则A必然存在一个大小为r的非零行列式。
我们可以通过对矩阵A进行初等行变换将矩阵转化为行简化阶梯矩阵,然后统计矩阵中非零行的个数来确定矩阵的秩。
具体步骤如下:1. 对矩阵A进行高斯列变换,将A转化为行简化阶梯矩阵形式。
2. 统计矩阵中非零行的个数,即为矩阵的秩。
对于下面的矩阵A,我们可以通过高斯消元法求解矩阵的秩:$$A=\begin{bmatrix}1 &2 & 3\\4 &5 & 6\\7 & 8 & 9\end{bmatrix}$$按照高斯消元法的步骤对A进行初等行变换,得到行简化阶梯矩阵:方法二:矩阵的列空间对于一个矩阵A,其列空间是由A中所有列向量所张成的向量空间。
矩阵的秩等于它的列空间的维度。
我们可以先求解矩阵A的列空间的维度,然后确定矩阵A的秩。
具体步骤如下:2. 取矩阵A中与非零列对应的列向量,将它们作为张成列空间的一组基。
3. 求解列空间的维度,即为矩阵A的秩。
阶梯矩阵中非零列的位置分别是1和2,因此取A中的第1列和第2列作为列空间的一组基。
可以看出,这组基中存在一个线性关系:第2列 = 2*第1列。
矩阵A的列空间实际上只由A中的第1列张成,其维度为1,因此矩阵A的秩为1。
总结:本文介绍了求解矩阵秩的三种方法:高斯消元法、矩阵的列空间和矩阵的行空间。
对于一般的矩阵,三种方法的求解结果并不一定相同。
但无论采用哪种方法,都能够有效地求解矩阵的秩。
还有一些特殊的矩阵,它们的秩具有一些特殊性质:1. 对于一个n阶矩阵A,如果它是一个可逆矩阵,那么它的秩为n。
第一章 第五讲 矩阵的秩

第五讲 矩阵的秩矩阵的秩是线性代数中又一重要概念,它描述了矩阵的一个重要的数值特征:在判定向量组的线性相关性,线性方程组是否有解,求矩阵的特征值以及在多项式、空间几何中等多个方面都有广泛的应用。
本讲我们主要了解矩阵秩的求方法以及其与方程组各类型解的关系。
5.1.1 矩阵秩的定义在第二讲中,我们通过矩阵的初等变换定义了矩阵的行阶梯形、矩阵的行最简形以及矩阵的标准形。
其中矩阵行阶梯形与矩阵行最简形不唯一,但矩阵的标准形唯一。
因此,下面就利用矩阵标准形的唯一性来给出矩阵秩的概念。
定义5.1 对于给定的m n ⨯矩阵A ,它的标准形(-)(-)(-)(-)rr n r m r r m r n r m nE OF O O ⨯⨯⨯⨯⎛⎫=⎪⎝⎭由数r 完全确定,我们称数r 为矩阵m n A ⨯的秩(rank ),记作()R A 。
其中, r E 是r 阶单位矩阵;其余都是零矩阵。
注:(1) 零矩阵的秩为零:()0R O =;(2) 矩阵的秩就是矩阵标准形中左上角单位矩阵的阶数。
(3)对于n 阶方阵A ,当()R A n =时,称A 为满秩矩阵。
当()R A n <时,称A 为降秩矩阵.例5.1 求矩阵111610121210A ⎛⎫⎪=-- ⎪ ⎪-⎝⎭的秩。
解 先将A 通过初等变换化为标准形111610121210A ⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭2131111601280306r r r r --⎛⎫⎪−−−→ ⎪ ⎪⎝⎭323111601280026r r -⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭111601280013⎛⎫ ⎪→ ⎪ ⎪⎝⎭12312101201280013r r r ---⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭13232100101020013r r r r +-⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭ ()4142433312,3100001000010c c c c c c E O -⨯--⎛⎫⎪−−−−−→= ⎪ ⎪⎝⎭可看出,矩阵A 的标准形中左上角是3阶单位矩阵,所以()3R A =. 矩阵秩有如下性质 性质5.1 ()()T R A R A =; 性质5.2 }{0()min ,R A m n ≤≤;性质5.3 如果n 阶方阵A 可逆,则()R A n =;(可逆矩阵也称为满秩矩阵) 性质5.4 {}()min (),()R PA R P R A ≤; 当P 可逆时,()()R PA R A =;若 P Q 、都可逆,且有PAQ B =,则()()R A R B =.性质5.5 max {}(),()()()+()R A R B R A B R A R B ≤≤ ;特别地,当B 为列矩阵时,有max {}(),()()()+1R A R B R A B R A ≤≤ ;性质5.6 ()()();()()().r A B r A r B r A B r A r B +≤+-≥-性质5.7 设A 为m n ⨯矩阵,(),r A r =则A 的任意S 行组成的矩阵B ,有().r B r s n ≥+-下面只证明性质5.3和性质5.4,其余的性质请学生自证。
2.5 矩阵的秩及其求法

2 1
0 1
2
1 2 3 1 2 2 共有C 3 例如 设 A 4 6 5 4 , C 4 18 1 0 1 1 3 3 个二阶子式,有 C 4 C 3 4 个三阶子式。
1 2
而
3 5 为 A 的一个三阶子式。
D3 4 6
1 0 1
E
16
关于秩的一些结论(熟记): 规定: 零矩阵的秩为 0 . T R ( A ) R ( A ). (1) 根据行列式的性质, (2) A为m×n矩阵, 0 ≤R(A) ≤min { m , n } .
R(AB) R(A), R(AB) R(B),即 R(AB) min{R(A),R(B)}。 设A是 m n 矩阵, B是 n t 矩阵, 定理4 R( A) R( B ) n R( AB). 定理3 推论1 推论2 推论3 如果 A B = 0 则 R( A) R( B) n. 则 B = 0。 如果 R(A)= n, A B = 0
6
a 1 1 例3 设 A 1 a 1 如果 R A 3 , 求 a . 1 1 a 分析:R(A)<3,A所有的3阶子式为零, 即A的行列式为零。
解 R A 3 A 1 1 a 1 或 a 2
a 1 1 a 1 (a 2)(a 1) 0
1
12
Ex1.
求矩阵A 的秩,并求A 的一个最高阶非零子式。 解 先求A 的秩,对A 作初等行变换化为行阶梯形:
故R(A)= 3 。
再求A 的一个最高阶非零子式。
因R(A)= 3 ,知A 的最高阶非零子式为 3 阶, 易计算A 的前三行构成的子式
因此这个子式便是A 的一个最高阶子式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五节:矩阵的秩及其求法之宇文皓月创作
一、矩阵秩的概念 1. k 阶子式 定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的
阶行列式,称为A 的一个k 阶子式。
例如共有个二阶子式,有 个三阶子式
矩阵 A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而
为 A 的一个三阶子式。
显然, 矩阵 A 共有 个k 阶子式。
2. 矩阵的秩 定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全为0 ,称r 为矩阵A 的秩,记作R (A )或秩(A )。
规定: 零矩阵的秩为 0 .
注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式
所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 .
(2) 有行列式的性质,
(3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } .
(4) 如果An ×n , 且 则 R ( A ) = n .反之,如 R
()
n
m ij a A ⨯=
{})
,m in 1(n m k k ≤≤4
3334=C C 1
015
6
43213-=D n
m ⨯()
n
m ij a A ⨯=
0,
r D ≠()().
T R A R A =0,
A ≠0.
A ≠
( A ) = n ,则
因此,方阵 A 可逆的充分需要条件是 R ( A ) = n . 二、矩阵秩的求法
1、子式判别法(定义)。
例1 设 为阶梯形矩阵,求R (B )。
解 由于 存在一个二阶子式不为0,而任何三阶子
式全为0,则R (B ) = 2.
结论:阶梯形矩阵的秩=台阶数。
例如 一般地,行阶梯形矩阵的秩等于其“台阶数”——非零行的行数。
例2 设 如果 求
a .
解 或
例3
则 2、用初等变换法求矩阵的秩
定理2矩阵初等变换不改变矩阵的秩。
即则
注: 只改变子行列式的符号。
是 A 中对应子式的k 倍。
202
1≠⎪⎪⎪⎭⎫ ⎝⎛=010*********A ⎪⎪⎪⎭⎫ ⎝⎛=001021B ⎪⎪⎪⎭
⎫ ⎝⎛=100010011C 125034000D ⎛⎫ ⎪
= ⎪ ⎪
⎝⎭212350815300072000
00E ⎛⎫
⎪
⎪= ⎪
⎪⎝⎭
⎪⎪⎪
⎭
⎫ ⎝⎛=a a a A 111111(),3<A R ()3
<A R 1=∴a 2
-=a ()3
=A R =K 3
-B A →)
()(B R A R =j
i r
r ↔.1i
r
k .2
是行列式运算的性质。
求矩阵A 的秩方法:
1)利用初等行变换化矩阵A 为阶梯形矩阵B
2)数阶梯形矩阵B 非零行的行数即为矩阵A 的秩。
例4求 解
R(A ) = 2
例
5
三、满秩矩阵
定义3A 为n 阶方阵时, 称 A 是满秩阵,(非奇异矩阵)
称 A 是降秩阵,(奇异矩阵) 可见:
对于满秩方阵A 施行初等行变换可以化为单位阵E ,又根据初等阵的作用:每对A 施行一次初等行变换,相当于用一个对应的初等阵左乘A,由此得到下面的定理. 定理3设A 是满秩方阵,则存在初等方阵 使得
对于满秩矩阵A ,它的行最简形是n 阶单位阵 E . 例如
A 为满秩方阵。
关于矩阵的秩的一些重要结论:
j
i kr
r +.3().
A R μλμλ,2,6352132111,求)(且设=⎪⎪⎪⎭
⎫ ⎝⎛--=A R A (),
n A R =(),
n A R <()0
≠⇔
=A n
A R E
A P P P P s s =-121,
定理5R (AB )R (A ),R (AB )R (B ),即R (AB )min{R (A ),R (B )}
设A 是 矩阵,B 是 矩阵, 性质1
性质2 如果 A B = 0 则
性质3 如果 R (A )= n, 如果A B = 0 则 B = 0。
性质4 设A,B 均为矩阵,则
例8 设A 为n 阶矩阵,证明R (A+E )+R (A-E )≥n 证: ∵ (A+E )+(E-A )=2E
∴R (A+E )+ R ( E-A )≥ R (2E )=n
而 R ( E-A )=R ( A-E ) ∴ R (A+E )+R (A-E )≥n
≤
n
m ⨯t
n ⨯).
()()(AB R n B R A R ≤-+.
)()(n B R A R ≤+n
m ⨯).
()()(B R A R B A R +≤±。