矩阵的初等变换与矩阵的秩
矩阵求秩方法

矩阵求秩方法
求矩阵的秩是线性代数中常见的问题,以下是关于矩阵求秩的10条方法及其详细描述:
1. 奇异值分解法:通过对矩阵进行奇异值分解,将矩阵变换为一个对角矩阵,其中非零元素的个数即为矩阵的秩。
2. 初等变换法:利用矩阵的初等行(列)变换,将矩阵化简为行简化阶梯型矩阵,其中非零行的个数即为矩阵的秩。
3. 极大线性无关组法:通过逐步选择矩阵中的列,构建一个极大线性无关组,其中向量的个数即为矩阵的秩。
4. 秩-零空间法:矩阵的秩与其零空间的维数之和为矩阵的列数。
可以通过计算矩阵的零空间 (null space) 的维数来求解矩阵的秩。
5. 行列式法:矩阵的行列式非零的最大子阵的阶数就是矩阵的秩。
6. 直接检验法:将矩阵转换为梯形矩阵或行阶梯矩阵,其中非零行的个数即为矩阵的秩。
7. 特征值法:矩阵的秩等于其特征值不为零的个数。
8. 与单位矩阵求秩法:通过将矩阵与单位矩阵进行连接,得到一个增广矩阵,进而将其化简为行简化阶梯型矩阵,其中非零行的个数即为矩阵的秩。
9. Gauss-Jordan消元法:通过高斯消元法和高斯约当消元法将矩阵化简为行简化阶梯型矩阵,其中非零行的个数即为矩阵的秩。
10. 极大线性无关组与生成组比较法:利用极大线性无关组与生成组的关系来求解矩阵的秩,其中生成组的个数等于矩阵的秩。
矩阵的秩与初等变换

对于 n 阶矩阵 A,当 |A|≠0 时 R(A)=n, |A|=0 时 R(A)<n。
当 R(A)=r时,即 A 中所有的 r+1 阶子式全等于 0,则A中 所有高于 r+1 阶的子式 = ?
这些子式必0 的子式的最高阶数。
在 B 中总能找到与D相对应的 r 阶子式 D1,且有 D1=D 或 D1 = -D 或 D1 = kD,
因此 D1≠0,从而 R(B) ≥ r = R(A)。 2) 把某行的倍数加到另一行的初等变换。
由于对交换两行的初等变换已经证明结论成立,故只需证明 把第二行的某个倍数加到第一行时,秩不减即可。
即经过一系列初等行变换后,有
重复以上的作法。如果原来矩阵 A中第一列的元素全为零, 那么就依次考虑它的第二列元素,等等。
如此作下去直到变成行阶梯形为止。 上边的叙述可按归纳法给予严格的证明。
定理:初等变换不改变矩阵的秩。 证明:先证明若 A 经一次初等行变换变为 B,则 R(A) ≤ R(B); 设 R(A)=r,且 A 的某个 r 阶子式 D≠0。 1) 对交换两行与把某一行乘以非0常数k的初等变换,比如
注意行阶梯形矩阵与上三角矩阵的关系。
二 初等变换与矩阵秩的求法
定义 下面三种变换称为矩阵的初等行变换:
(i) 对调两行(对调 i, j 两行,记作
);
(ii) 以数 k≠0乘某一行中的所有元素(第i行乘k,记作ri×k);
(iii) 把某一行所有元素的 k 倍加到另一行对应的元素上去
(第 j 行的 k 倍加到第 i 行上,记作
R(A) ≤R(B).
又注意到 B 亦可经由一次初等行变换变为 A,故 R(B) ≤ R(A),
矩阵的秩及初等变换

1 2
3
4 1 2
( B1 )
2 3 4
3 21 31
3
4
( B2 )
1 2 2 3 52 4 32
x1 x2 2 x3 x4 4, x x x 0, 2 3 4 2 x 4 6, x 4 3, x1 x2 2 x3 x4 4, x x x 0, 2 3 4 x4 3, 0 0,
二、矩阵的初等变换
定义1 下面三种变换称为矩阵的初等行变换:
1 对调两行(对调 i , j 两行, 记作ri rj); 2 以数 k 0 乘以某一行的所有元素;
3 把某一行所有元素的 k 倍加到另一行
对应的元素上去(第 j 行的 k 倍加到第 i 行上 记作ri krj) .
显然,非零行的行数为2,
R A 2.
此方法简单!
四、矩阵秩的求法
因为对于任何矩阵Amn , 总可经过有限次初 等行变换把他变为行阶梯形.
问题:经过变换矩阵的秩变吗?
定理 1 若 A ~ B, 则 R A R B .
证 先证明:若A经一次初等行变换变为B, 则R( A) R( B ).
4 2 B 1 2 9
2 r2 r31 1 1 1 2 1 r3 22 r1 0 B1 0 3 5 1 r4 32 r1 3 0 9 6 3
1 2 4 1 1 2 2 2 1 5 2 3 7 3 9 4
2
变它们在 A 中所处的位置次序而得 的k阶行列式, 称为矩阵 A 的 k 阶子式.
k k m n 矩阵 A 的 k 阶子式共有 Cm Cn 个.
矩阵求秩的方法

矩阵求秩的方法
求矩阵的秩的几种方法:
1、通过对矩阵做初等变换(包括行变换以及列变换)化简为梯形矩阵求秩。
此类求解一般适用于矩阵阶数不是很大的情况,可以精确确定矩阵的秩,而且求解快速比较容易掌握。
2、通过矩阵的行列式,由于行列式的概念仅仅适用于方阵的概念。
通过行列式是否为0则可以大致判断出矩阵是否是满秩。
3、对矩阵做分块处理,如果矩阵阶数较大时将矩阵分块通过分块矩阵的性质来研究原矩阵的秩也是重要的研究方法。
此类情况一般也是可以确定原矩阵秩的。
4、对矩阵分解,此处区别与上面对矩阵分块。
例如n阶方阵A,R分解(Q为正交阵,R为上三角阵)以及Jordan分解等。
通过对矩阵分解,将矩阵化繁为简来求矩阵的秩也会有应用。
5、对矩阵整体做初等变换(行变换为左乘初等矩阵,列变换为右乘初等矩阵)。
此类情况多在证明秩的不等式过程有应用,技巧很高与前面提到的分块矩阵联系密切。
扩展资料:
矩阵的秩是线性代数中的一个概念。
在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。
通常表示为r(A),rk(A)或rank A。
在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。
类似地,行秩是A的线性无关的横行的极大数目。
通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。
矩阵与线性方程组问题1矩阵的初等变换与矩阵的秩有什么关系答

矩阵与线性方程组问题1:矩阵的初等变换与矩阵的秩有什么关系?答:对矩阵施行初等变换后得到的矩阵与原矩阵等价,而等价的矩阵有相同的等价标准型,从而有相同的秩。
换言之,对矩阵施行初等变换不改变秩。
于是利用这一性质,可以求出矩阵的秩。
其过程可以描述为A 经过一系列初等变换化为阶梯形,阶梯形中非零行的行数即为矩阵的秩。
问题2: 线性方程组解的判定与矩阵的秩之间有何关系?答:齐次线性方程组0=⨯x A n m 必有解:当n A r =)(时,只有零解;当n A r <)(时,有非零解。
非齐次线性方程组b x A n m =⨯分有解和无解的情况,有解时分有唯一解还是无穷多解:b x A n m =⨯无解)~()(A r A r ≠⇔b x A n m =⨯有解)~()(A r A r =⇔有解的情况下:b AX n A r A r =⇒==)~()(有唯一解;b AX n A r A r =⇒==)~()(有无穷多解。
其中),(~b A A = 为增广矩阵。
问题3:已知A 是n m ⨯矩阵,B 是s n ⨯矩阵,且O AB =,证明:.)()(n B r A r ≤+ 分析:由于齐次线性方程组的基础解系中解向量的个数和系数矩阵的秩有直接关系,因此关于矩阵的秩的问题可以转化为齐次线性方程组的问题来处理。
证明:将B 按列分块),...,,(21s b b b B =,则由题可知O Ab Ab Ab b b b A AB s s ===),...,,(),...,,(2121即s i Ab i ,...,2,1,0==换言之,B 的每个列向量均是齐次线性方程组0=Ax 的解,即s b b b ,...,,21均可由0=Ax 的一组基础解系线性表示,设r A r =)(,则r n -ξξξ,...,,21为0=Ax 的一组基础解系。
则r n b b b r s -≤),...,,(21,故)()(A r n B r -≤,从而.)()(n B r A r ≤+问题4:设非齐次线性方程组b Ax =,其中A 是n m ⨯矩阵,则b Ax =有唯一解的充要条件是( )(A) n A r =)~(;(B)n A r =)(;(C)m A r =)~(;(D)n A r =)(,且b 为A 的列向量的线性组合. 分析:n m ≠,故Crame 法则失效;(A)n A r n A r =⇒/=)()~((或1-n ):若n A r =)(,有唯一解;若1)(-=n A r ,无解。
第3章矩阵的初等变换与矩阵的秩

第3章 矩阵的初等变换与矩阵的秩3.1 矩阵的初等变换矩阵的初等行(列)变换:(1) 交换第i 行(列)和第j 行(列);(2) 用一个非零常数乘矩阵某一行(列)的每个元素;(3) 把矩阵某一行(列)的元素的k 倍加到另一行(列).对矩阵施行初等变换时,由于矩阵中的元素已经改变,变换后的矩阵和变换前的矩阵已经不相等,所以在表达上不能用等号,而要用箭号"→".例1 求矩阵⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=042111210A 的逆矩阵.3.2 初等矩阵单位矩阵作一次初等变换得到的矩阵叫初等矩阵.概括起来,初等矩阵有3类,分别是(1)交换第行和第i j 行(交换第列和第i j 列)⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎛=1101111011).(%"""###%###"""%j i E(2)用常数λ乘第行(i λ乘第i 列)⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎛=1111))((%%λλi E (3)第i 行的k 倍加到第j 行(第j 列的k 倍加到第列) i⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎛=1111))((%"%#%k k ij E显然,初等矩阵都可逆,其逆矩阵仍是初等矩阵,且有),(),(1j i E j i E =−;⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛=−λλ1))((1i E i E ; ))(())((1k ij E k ij E −=−.初等矩阵与初等变换有着密切的关系:左乘一个初等矩阵相当于对矩阵作了一次与初等矩阵相应类型一样的初等行变换.例如要将矩阵的第1行和第3行交换,则左乘一个初等矩阵A )3,1(E :⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛001010100⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛333231232221131211a a a a a a a a a =⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛131211232221333231a a a a a a a a a . 右乘一个初等矩阵相当于对矩阵作了一次与初等矩阵相应类型一样的初等列变换.例2 设⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=333231232221131211a a a a a a a a a A ,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=231322122111333231232221a a a a a a a a a a a a B ,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=1000100111E ,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=0010101002E ,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=1000010103E .则以下选项中正确的是B A E E E A =321)(;B E E AE B =321)(;B A E E EC =123)(;B E E AE D =123)(.例3 设是3阶可逆矩阵,将的第1行和第3行对换后得到的矩阵记作.A AB (1) 证明可逆;B (2) 求. 1−AB例4 设⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=011431321A ,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=000110101B ,是否存在可逆矩阵P ,使得B PA =?若存在,求P ;若不存在,说明理由.例5 设是3阶方阵,将的第1列与第2列交换得,再把的第2列加到第3列得C ,A AB B 则满足C AQ =的可逆矩阵Q 为(A) ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛101001010 (B) ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛100101010 (C) ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛110001010 (D) ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛1000011103.3 矩阵的等价与等价标准形 若矩阵B 可以由矩阵经过一系列初等变换得到,则称矩阵和等价.A AB 矩阵的等价是同型矩阵之间的一种关系,它具有如下性质:(1) 反身性:任何矩阵和自己等价;(2) 对称性:若矩阵和矩阵等价,则矩阵和A B B矩阵也等价;A (3) 传递性:若矩阵和矩阵等价,矩阵和矩阵C 等价,则矩阵和矩阵C 等价.A B B A 形如⎟⎠⎞⎜⎝⎛000r E 的矩阵称为矩阵的等价标准形. 任意矩阵A 都与一个等价标准形⎟⎠⎞⎜⎝⎛000r E 等价.其中r E 是r 阶单位矩阵.这个r 是一个不变量,它就是矩阵的秩.任何矩阵总存在一系列的初等矩阵s P P P ,,,21",和初等矩阵t Q Q Q ,,,21"使得11P P P s s "−A t Q Q Q "21=⎟⎠⎞⎜⎝⎛000r E . 令P =,Q =11P P P s s "−t Q Q Q "21,于是对任意的矩阵,总存在m 阶可逆矩阵n m ×A P 和n 阶可逆矩阵Q ,使得PAQ =⎟⎠⎞⎜⎝⎛000r E .例6 设阶矩阵与等价,则必有n A B (A) 当)0(≠=a a A 时,a B =.(B) 当)0(≠=a a A 时,a B −=. (C) 当0≠A 时,0=B . (D) 当0=A 时,0=B .3.4 矩阵的秩在矩阵中,任取n m ×A k 行k 列,位于这k 行k 列交叉处的2k 个元素按其原来的次序组成一个k 阶行列式,称为矩阵的一个A k 阶子式.若矩阵中有一个A r 阶子式不为零,而所有1+r 阶子式全为零,则称矩阵的秩为A r .矩阵的秩记作.A )(A r 零矩阵的秩规定为零.显然有 ⇔≥r A r )(A 中有一个r 阶子式不为零;中所有A r A r ⇔≤)(1+r 阶子式全为零.若n 阶方阵,有A n A r =)(,则称是满秩方阵. A 对于n 阶方阵, A 0)(≠⇔=A n A r .矩阵的初等变换不改变矩阵的秩.例7 求矩阵⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=45532511014132232211A 的秩. 例8 求阶矩阵n ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=a b b b a b b b a A """""""的秩, 2≥n .例9 设⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=71534321101111a b A ,已知3)(=A r , 求.b a , 常用的矩阵的秩的性质: (1);)()(T A r A r =(2))()()(B r A r B A r +≤+;(3)))(),(min()(B r A r AB r ≤,(4))()(00B r A r B A r +=⎟⎠⎞⎜⎝⎛; (5))()(0B r A r B C A r +≥⎟⎠⎞⎜⎝⎛;(6)若0=AB ,则n B r A r ≤+)()(,其中n 为矩阵的列数.A (7)若可逆,则A )()(B r AB r =(8)若列满秩,则A )()(B r AB r =(9)若行满秩,则B )()(A r AB r =例10 设B A ,都是阶方阵,满足n E AB A =−22,求=+−)(A BA AB r ?例11 设是矩阵,A 34× ,301020201,2)(⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−==B A r 求.)(AB r 例12 已知⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=62321321t A ,是3阶非零B 矩阵,且满足0=AB ,则4)(=t A 时,的秩必为1;B 4)(=t B 时,的秩必为2;B 4)(≠tC 时,的秩必为1;B 4)(≠t D 时,的秩必为2.B 例13 设B A ,都是阶非零矩阵,且满足n 0=AB , 则A 和的秩B)(A必有一个等于零; )(B都小于n ; )(C一个小于n ,一个等于; n )(D 都等于n .例14 设是矩阵,B 是A n m ×m n ×矩阵,若 m n < 证明:0=AB .例15 设是2阶方阵,已知A 05=A ,证明. 02=A3. 5 伴随矩阵设 ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=nn n n n n a a a a a a a a a A """""""212222111211, 记的代数余子式为,令ij a ij A ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=nn n nn n A A A A A A A A A A """""""212221212111* 为矩阵的伴随矩阵.因此,若A ()ij a A =,则 ()T ij A A =*.伴随矩阵的基本关系式:E A A A AA ==**. *11A A A =−,或 1*−=A A A . 1*−=n A A .⎪⎩⎪⎨⎧−<−===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r例16 设⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=122212221A ,求的伴随矩阵. A *A 例17 设⎟⎠⎞⎜⎝⎛−=⎟⎠⎞⎜⎝⎛−−=1111,23212121A A , ⎟⎟⎠⎞⎜⎜⎝⎛=−12100A A B 则 *B =? 例18 设是3阶矩阵,A 21=A ,求*12)3(A A −−. 例19 设⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=8030010100100001*A ,且E XA AXA 311+=−−,求X .。
山东大学《线性代数》课件01-5矩阵的初等变换与矩阵的秩

2
3
1 3 0 6
0 0
8 2
2 12 1 4
1 4 1 3 1 4
2 12 0 6 4 4
8
2
0 9 6 6
1 4 4 4 0 0
r( A) 2
1 2 3 4 1 2 3 4
2.B
1 13
0 1 2
1 1 0
2 05
0 0 0
2 7 0
2 10 3
2 192
1
0 0 0
2 1 7 0
3 1 10 3
4 1 192
1
0
0 0
2 1 0 0
3 1 3 3
4
1
95
1 2 3 4
0 00
1 0 0
1 3 0
1
45
r(B) 4
1 A 4
2 t
2 3
3 12
t为何值时, r( A) 3?
3
1
1
9
1 A 0
2 t 8
a1n
ai1
ka j1
ai2 kaj2
ain
kajn
B
a j1
a j2
a jn
am1
am2
amn
由此可以推出:
r( A) r(B) r( A) r(B) r( A) r(B)
例:求矩阵的秩:
2 3 1.A 2 12 1 3
1 3
A 2 12
r1r3
1 2 2 3
1
2
2 3
B 4 3 3 12 0 11 11 0
3 1 1 9 0 7 7 0
1 0
2 1
2 1
矩阵的秩和初等变换.

本节先建立矩阵的秩的概念,讨论矩阵的初等变换,
并提出求秩的有效方法.
再利用矩阵的秩来研究齐次线性方程组有非零解
的充分必要条件,并介绍用初等变换解线性方程
组的方法.
内容丰富,难度较大.
1矩阵的秩
2矩阵的初等变换
3用初等变换求矩阵的秩
4线性方程组与矩阵的初等变换
一.矩阵的秩
定义1 在 m n 矩阵 A中任取k行与 k 列(k m, k n) , 位于这些行列交叉处k2 个元素不改变它们在A中 所处的位置次序而得的k 阶行列式称为矩阵 A 的 k 阶子式.
下面的定理对此作出肯定回答.
定理 1:初等变换不改变矩阵的
秩
(即若 A B , 则 R( A) R(B) .)
初等变换求矩阵秩的方法:
把矩阵用初等变换变成为行阶梯形矩阵,
行阶梯形矩阵中非零行的行数就是矩阵的秩.
3 2 0 5 0
例2
设
A
3 2 1
2 0 6
3 1 4
6 5 1
413求矩阵 A的秩 .
1 0 0
1 0 0
1 1 0
0 03
B1
可见用初等行变换可把矩阵B化为行阶梯形矩阵 B1
由前例可知,对于一般的矩阵当行数与列数较高 时,按定义求秩是很麻烦的. 对于行阶梯形矩阵, 它的秩就等于非零行的行数。
因此可用初等变换把矩阵B化为行阶梯形矩阵.
可用初等变换把矩阵B化为行阶梯形矩阵 B1
但两个等价矩阵的秩是否相等?
定义 3 下面三种变换称为矩阵的初等行变换:
()对调两行(对调 i , j两行记作 ri rj ) ; ( )以数 k o 乘某一行中所有元素(第 i 行乘 k ,记
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15
例3
求矩阵
A
1 2
2 3
3 5
的秩.
4 7 1
解
在 A 中,1
2 0.
23
又 A的 3 阶子式只有一个 A,且 A 0,
R( A) 2.
16
2 1 0 3 2
例4
求矩阵
B
0 0
3 0
1 0
2 4
5 3
的秩.
0 0 0 0 0
ri rj;
ri
(1) k
或
ri
k;
ri (k)rj 或 ri krj .
3
定义 如果矩阵 A 经有限次初等变换变成矩阵 B, 就称矩阵 A 与 B 等价,记作 A B. 等价关系的性质: (1) 反身性 A A;
(2)对称性 若 A B ,则 B A; (3)传递性 若 A B,B C,则 A C.
k n),位于这些行列交叉 处的个 k 2 元素,不改
变它们在 A中所处的位置次序而得 的k阶行列式,
称为矩阵 A 的 k 阶子式.
1 2 3 0
12 3 2 3 0
例如
A
2 4
3 7
5 1
2 4
,
则
2 4
3 7
5 ,3 17
-5 1
-2 4
1 3 0 12 0 2 -5 -2 ,2 3 -2 都是A的全部4个3阶子式. 4 1 4 47 4
Br13 r4
22r1 332r1
01 03 06
21 51 39
12 15 73
2 2 23 9 4
r3 r4
36032rr11
B2
r2 2 r3 5r2 r4 3r2
1 1 2 1 4
0 0
1 0
1 0
1 2
0 6
B3
0 0 0 1 3
6
1 rBr343 2rr34000
具有上述三条性质的关系称为等价. 例如,两个线性方程组同解,
就称这两个线性方程组等价
4
例1
2 1 1 1 2
A
1
1 2
1
4
4 6 2 2 4
3
6 9
7
9
1 1 2 1 4
r1 r2 r3 2
2 2 3
1 3
6
1 1
9
1 1
7
2 2
B1
9
5
r2 r31 1 12 12 41 r2 4r3
(1)位于左上角的子块是一个 r 阶的单位矩阵;
(2)其余的子块都是零矩阵; 则称为标准形矩阵.
A
Er O
O
O
mn
此标准形由m,n,r 三个数唯一确定,其中r 就是 行阶梯形矩阵中非零行的行数.
定理2.6 任意非零矩阵都可经过初等变换化为标准形矩阵.
注意 3 行最简形阶梯矩阵再经过初等列变换,可化成 标准 形矩阵.
对任何非零矩阵A总可以经过有限次的初等行变换 化为行阶梯矩阵与行最简型阶梯矩阵. 注意1:行最简型矩阵是由方程组唯一确定的,行阶梯形 矩阵的行数也是由方程组唯一确定的. 注意2:任意可逆矩阵也可以经过有限次的初等行变换化 为单位矩阵.
9
1 2 3
例2
将
A
2 3
2 4
1 3
化为单位矩阵.
1 2 3
对应的元素上去(第 j 行的 k 倍加到第 i 行上 记作ri krj).
2
同理可定义矩阵的初等列变换 (把“r”换成“c”).
初等行变换 矩阵的初等变换包括 初等列变换
通常称变换为 (1) 对换变换 (2) 倍乘变换 (3) 倍加变换
初等变换的逆变换仍为初等变换, 且变换类型相同.
ri rj 逆变换 ri k 逆变换 ri krj 逆变换
1 2 3
解
A
2
3
2 4
1
3
r2 2r1 r3 3r1
0 0
2 2
5 6
r1 r2 r3 r2
1 0 2
1 0 0
1 0 0
0
2
5
0 0 1
r1 2r3 r2 5r3
0
2
0
0 0 1
r2 (2) r3 (1)
0
1
0
0 0 1
10
定义2.17 若一个矩阵具有如下特征:
14
定义2.19 设在矩阵A中有一个不等于 0 的 k 阶子 式 D,且所有 r 1 阶子式(如果存在的话 )全等 于 0,那末 D 称为矩阵A的最高阶非零子式,数 r 称为矩阵 A 的秩,记作 R( A) .并规定零矩阵的秩 等于零.
m n 矩阵 A 的秩 R( A) 是 A 中不等于零的 子式的最高阶数.
11 10 00 00
12 11 00 00
12 11 20 10
14 10 16 03
4 030rr34 2Brr344
r1 r2 r2 r3
1 0 1 0 4
0 3
B
5
0 0 0 0 0
7
矩阵 B4 和 B5 都称为行阶梯形矩阵 . 其特点:
(1)可划出一
条阶梯线,线的 下方全为零;
(2)每个台 阶只有一行,
1 0 1 0 4
0 0
1 0
1 0
0 1
3 3
B
5
0 0 0 0 0
台阶数即是非零行的行数,阶梯线的竖线后面 的第一个元素为非零元,即非零行的第一个非 零元.
8
行阶梯形矩阵B5还称为行最简型阶梯矩阵,即非零 行的第一个元素是1,且这些非零元素所在列的其它元素 都为零.
注意 5 有时仅用初等行变换或初等列变换不一定能将矩阵 化为标准形矩阵.
二.矩阵秩的概念
任何矩阵总可经过有限次初等行变换把它变为行阶 梯形,行阶梯形矩阵中非零行的行数是唯一确定的.它 反映了矩阵的一个本质特征 ——— 矩阵的秩.
13
定义2.18 在 m n 矩阵 A中任取 k 行 k 列(k m,
§2.4 矩阵的初等变换与矩阵的秩
主要内容 1.矩阵的初等变换 2.矩阵的秩 3.初等变换求逆矩阵
矩阵的初等变换是矩阵分析的重要工具,在 线性代数中有十分广泛的应用,所以必须熟练掌 握矩阵初等变换的方法。
1
一. 矩阵的初等变换
1. 矩阵的初等变换 定义2.14 下面三种变换称为矩阵的初等行变换:
1 对调两行(对调i, j两行,记作ri rj); 2 以数 k 0 乘以某一行的所有元素; 3 把某一行所有元素的k 倍加到另一行
解 B是一个行阶梯形矩阵,其非零行有3行,
B 的所有 4 阶子式全为零.
2 1 3 而 0 3 2 0,
11
例如,
1 0 1 0 4
B5
0 0
1 0
1 0
0 1
3 3
0 0 0 0 0
c3 c4 c4 c1 c2
1 0
0
c5
4c1
3c2
3c3
0
0 1 0 0
0 0 1 0
0 1 044
0 0 0
1 0 0
000033033
F
矩阵 F 称为矩阵 B 的标准形.
12
注意 4 行最简形阶梯矩阵是唯一的,