矩阵与线性方程组问题1矩阵的初等变换与矩阵的秩有什么关系答

合集下载

矩阵的初等变换与线性方程组

矩阵的初等变换与线性方程组
1 2 1 1 1 2 1 1 1 2
.
1 a
1 1
,
r − 2r1 r3 + (a − 2)r2 2 3 a+2 3 2 0 −1 0 −1 a 1 r3 − 3r1 3 a −2 0 0 a − 2 −3 −1 0 0
1 −2


1 −2

x2 = k1 −3 + k2 −1 + 0 1 x 3 0 x4 1
1 . 0 0
其中 k1 , k2 为任意常数.
(II) 当 λ =
第三章
矩阵的初等变换与线性方程组
秩是矩阵的一种内在属性. 矩阵的这种内在属性是与生俱来的, 一个矩阵一旦诞生, 它 的这种内在属性就确定了. 虽然初等变换可以把它们变得面目全非, 但是它们的这个内在 属性是不变的. 等价的矩阵, 看上去各各不同, 但是有一个内在属性是一样的, 那就是它们 的秩.
§3.1
第三章 矩阵的初等变换与线性方程组
min R(A), R(B ) . 其中 A, B 分别为 s × n 和 n × m 矩阵.
(三) 线性方程组有解判别 (1) 一般的方程 Ax = b 的情形.
对 n 元线性方程组 Ax = b, 记 B = (A, b). 注意到 R(B ) 比 R(A) 只多 0 或 1.
是否出现矛盾方程是方程组有解与否的关键; 是否出现自由未知量又是区分有无限多解和有唯 一解的关键. 换成秩的角度去说问题, 就呈现为下面的表达:
n 元线性方程组 Ax = b 有解 ⇐⇒ R(A) = R(B ). 且 n 元线性方程组 Ax = b 无解 ⇐⇒ R(A) = R(B ). (2) 齐次方程组 Ax = 0 的情形. R(A) = R(B ) = n, 有唯一解; R(A) = R(B ) < n, 有无限多解.

矩阵的初等变换与矩阵的秩

矩阵的初等变换与矩阵的秩
对于 AT, 显有 R( AT ) R( A).
15
例3
求矩阵
A
1 2
2 3
3 5
的秩.
4 7 1

在 A 中,1
2 0.
23
又 A的 3 阶子式只有一个 A,且 A 0,
R( A) 2.
16
2 1 0 3 2
例4
求矩阵
B
0 0
3 0
1 0
2 4
5 3
的秩.
0 0 0 0 0
ri rj;
ri
(1) k

ri
k;
ri (k)rj 或 ri krj .
3
定义 如果矩阵 A 经有限次初等变换变成矩阵 B, 就称矩阵 A 与 B 等价,记作 A B. 等价关系的性质: (1) 反身性 A A;
(2)对称性 若 A B ,则 B A; (3)传递性 若 A B,B C,则 A C.
k n),位于这些行列交叉 处的个 k 2 元素,不改
变它们在 A中所处的位置次序而得 的k阶行列式,
称为矩阵 A 的 k 阶子式.
1 2 3 0
12 3 2 3 0
例如
A
2 4
3 7
5 1
2 4


2 4
3 7
5 ,3 17
-5 1
-2 4
1 3 0 12 0 2 -5 -2 ,2 3 -2 都是A的全部4个3阶子式. 4 1 4 47 4
Br13 r4
22r1 332r1
01 03 06
21 51 39
12 15 73
2 2 23 9 4
r3 r4
36032rr11

矩阵的初等变换与线性方程组

矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组本章的重点是研究矩阵更深层的性质——秩,它是矩阵理论的核心概念,是由德国数学家佛洛本纽斯在1879年首先提出的。

为了研究矩阵秩的概念,首先要介绍一个重要的工具———矩阵的初等变换概念,它不仅解决了求矩阵秩的问题,还是帮助求解线性方程组、求逆阵、判定向量组相关性等的有力工具,然后我们将应用秩理论解决方程组的求解问题,最后还要将初等变换概念在理论层次上加以提炼,即介绍初等方阵的概念。

§1 矩阵的初等变换矩阵的初等变换是矩阵之间的一种十分重要的变换,是从实际问题的解决中抽象得到的。

一、引例求解线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+-+=-+-=+-+=+--979634226442224321432143214321x x x x x x x x x x x x x x x x(1)(1) )(1B )(2B)(3B ⎪⎪⎩⎪⎪⎨⎧=-==+-=+-+00304244324321x x x x x x x x )(4B 问题10共采取了几种变换将(1)变为)(4B 的?(三种:(ⅰ) 交换方程的次序;(ⅱ) 用数)0(≠k 乘某方程; (ⅲ) 将某方程的k 倍加到另一方程上。

且这三种变换都可以看成是只对方程组的系数和常数项进行的)20在这三种变换下,(1)与)(4B 是否同解?即这三种变换是否都可逆? (都可逆,即同解变换) 30采取这三种变换的目的是为了将(1)变为什么形状以便得到解? (阶梯形。

其寓意:方程④表明方程组有一个多余的方程; 将③代入②得32x x =,表明3x (或2x )可任意取值,称之为自由未知量,其余的未知量称为非自由未知量,当某层的阶宽多于一个未知量时,就必有自由未知量,一般我们取每层阶梯的第一个未知量为非自由未知量,由于一旦确定下自由未知量,任给自由未知量一组数值,就可得到方程组的一个解,所以我们特别重视自由未知量)40 由于(1)与其增广矩阵)(b A B =构成一一对应,那这三种变换在矩阵中对应的效果是什么?⎝⎛=B ⎪⎪⎪⎪⎭⎫ ⎝⎛------97963211322111241211 ⎪⎪⎪⎪⎭⎫⎝⎛-------34330635500222041211⎪⎪⎪⎪⎭⎫⎝⎛----310620000111041211 5000310000111041211B =⎪⎪⎪⎪⎭⎫ ⎝⎛---. 对于矩阵的行只作了三种变换,也就是说,为解线性方程组对方程组作变换,就相当于对其增广矩阵的行作同类变换,下面给出这三种对矩阵的行作的变换在矩阵中的正式定义:②-③ ③-2① ④-3① ①②③④①↔ ② ③ ÷③↔④ ④-2③ ③↔④ ④-2③ ①②③④②-③ ③-2①④-3① ②÷ 2③+5② ④-3②二、初等变换1、定义1 以下三种变换称为矩阵的初等行变换:(ⅰ) 对调两行(对调i 、j 两行记作:j i r r ↔);(ⅱ) 以数k ≠0乘某行中的所有元素(第i 行乘k 记作:k r i ⨯);(ⅲ) 将某行所有元素的倍加到另一行对应元素上去(将第j 行的k 倍加到第i 行记作:j i r k r +)。

矩阵的秩与线性方程组线性代数的应用技巧

矩阵的秩与线性方程组线性代数的应用技巧

矩阵的秩与线性方程组线性代数的应用技巧矩阵是线性代数中的重要概念,对于解决线性方程组以及其他相关问题非常有用。

在矩阵的运算中,秩是一个重要的指标,它可以帮助我们判断矩阵的性质以及求解线性方程组的解。

一、矩阵的秩的定义矩阵的秩是指矩阵中非零行的最大线性无关行数,用r(A)表示。

换言之,矩阵的秩是指矩阵经过初等行变换后,行阶梯形矩阵中非零行的个数。

二、线性方程组的解与矩阵的秩的关系线性方程组可以用矩阵来表示,对于一个m×n的矩阵A和一个n×1的矩阵B,线性方程组可以表示为AX=B。

1. 当矩阵A的秩小于n时,即r(A) < n,存在自由变量,线性方程组有无穷多个解。

这是因为秩小于n时,矩阵A的行向量之间存在线性相关性,会导致方程组中存在冗余的方程,从而使得方程组的解不唯一。

2. 当矩阵A的秩等于n时,即r(A) = n,不存在自由变量,线性方程组有唯一解。

这是因为秩等于n时,矩阵A的行向量之间线性无关,不会存在冗余的方程,方程组的解是唯一的。

三、矩阵的秩的计算方法1. 初等行变换法:通过初等行变换把矩阵A化为行阶梯形矩阵,然后矩阵的秩等于行阶梯形矩阵中非零行的个数。

2. 矩阵的秩与其特征值的关系:矩阵A与其特征值λ有关,矩阵A 的秩等于特征值λ不等于0的个数。

四、矩阵的秩在实际应用中的意义矩阵的秩在很多实际问题中都有广泛的应用,包括物理、工程、经济等领域。

1. 线性回归分析:在线性回归分析中,我们可以通过计算相关系数矩阵的秩来判断自变量之间的相关性。

如果相关系数矩阵的秩小于自变量的个数,说明自变量之间存在冗余,可以进行变量选择。

2. 图像处理:在图像处理中,我们可以使用矩阵的秩来判断图像的压缩比例或图像的清晰度。

秩越小的矩阵代表图像的冗余信息越多,而秩越大的矩阵则代表图像的信息丢失越少,图像越清晰。

3. 线性规划:在线性规划中,我们可以通过计算约束矩阵的秩来判断约束条件是否完全满足,进而判断解的可行性。

利用初等变换求矩阵的秩

利用初等变换求矩阵的秩

利用初等变换求矩阵的秩矩阵的秩是线性代数中一个非常重要的概念。

它可以帮助我们分析线性方程组的解的情况以及矩阵的性质。

在理解矩阵的秩之前,我们需要了解“初等变换”是什么。

初等变换是指对矩阵进行以下三种操作之一:1. 交换矩阵的任意两行;2. 用一个非零常数乘矩阵的任意一行;3. 将矩阵中某一行加上另一行的若干倍。

通过这些操作,我们可以得到新的矩阵。

如果一个矩阵可以通过一系列的初等变换得到另一个矩阵,那么这两个矩阵就是等价矩阵。

显然,等价矩阵具有相同的秩。

我们可以利用初等变换将原矩阵化为行阶梯形矩阵或者规范形矩阵。

具体来说,行阶梯形矩阵是指具有如下形式的矩阵:$$\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1n} \\0 & a_{22} & \cdots & a_{2n} \\\cdots & \cdots & \cdots & \cdots \\0 & 0 & \cdots & a_{mn}\end{array}\right]$$即在该矩阵中,第一行至少有一个非零元素,而且第二行非零元素的列数要比第一行少,第三行非零元素的列数要比第二行少,以此类推,最后一行最多只有一个非零元素。

规范形矩阵则更加简化,具有如下形式:即在该矩阵中,除了第一行第一个元素为1之外,其余元素都为0。

对于一个行阶梯形矩阵,它的秩就是矩阵中非零行的个数。

这是因为对于一个非零行,它一定是由前面的行通过初等变换得到的,因此它对应的向量可以写成前面所有向量的线性组合,也就是说它不会增加向量空间的维数。

举个例子,给定一个3×3的矩阵:通过初等变换,我们可以将它化为行阶梯形矩阵:可以看出,该矩阵中非零行的个数为2,因此原矩阵的秩为2。

总而言之,利用初等变换求矩阵的秩是一种非常方便和实用的方法。

矩阵的秩的性质以及矩阵运算和矩阵的秩的关系

矩阵的秩的性质以及矩阵运算和矩阵的秩的关系

高等代数第二次大作业1120133839 周碧莹30011303班矩阵的秩的性质1.阶梯型矩阵J的行秩和列秩相等,它们都等于J的非零行的数目;并且J的主元所在的列构成列向量的一个极大线性无关组。

2.矩阵的初等行变换不改变矩阵的行秩。

证明:设矩阵A的行向量组是a1,…,as.设A经过1型初等行变换变成矩阵B,则B的行向量组是a1,…,ai,kai+aj,…,as.显然a1,…,ai,kai+aj,…,as可以由a1,…,as线性表处。

由于aj=1*(kai+aj)-kai,因此a1,…,as可以由a 1,…,ai,kai+aj,…,as线性表处。

于是它们等价。

而等价的向量组由相同的秩,因此A的行秩等于B的行秩。

同理可证2和3型初等行变换使所得矩阵的行向量组与原矩阵的行向量组等价,从而不改变矩阵的行秩。

3.矩阵的初等行变换不改变矩阵的列向量组的线性相关性。

证明:一是为什么初等行变换不改变列向量的线性相关性?二是列向量进行初等行变换后,为什么可以根据行最简形矩阵写出不属于极大无关组的向量用极大无关组表示的表示式?第一个问题:设α1,α2,…,αn是n个m维列向量,则它们的线性相关性等价于线性方程组AX=0(其中A=(α1,α2,…,αn),X=(x1,x2,…,xn)T)是否有非零解,即α1,α2,…,αn线性相关等价于AX=0有非零解,α1,α2,…,αn 线性无关等价于AX=0只有零解。

而对A进行三种行初等变换分别相当于对线性方程组中的方程进行:两个方程交换位置,对一个方程乘一个非零常数,将一个方程的常数倍对应加到另一个方程上。

显然进行三种变换后所得方程组与原方程组同解,若设所得方程组为BX=0,则B即为对A进行行初等变换后所得矩阵。

B 的列向量的线性相关性与BX=0是否有解等价,也就是与AX=0是否有解等价,即与A的列向量的线性相关性等价!第二个问题以一个具体例子来说明。

例:设矩阵,求A的列向量组的一个极大无关组,并把不属于极大无关组的列向量用极大无关组线性表示。

矩阵与线性方程组问题1矩阵的初等变换与矩阵的秩有什么关系答

矩阵与线性方程组问题1矩阵的初等变换与矩阵的秩有什么关系答

矩阵与线性方程组问题1:矩阵的初等变换与矩阵的秩有什么关系?答:对矩阵施行初等变换后得到的矩阵与原矩阵等价,而等价的矩阵有相同的等价标准型,从而有相同的秩。

换言之,对矩阵施行初等变换不改变秩。

于是利用这一性质,可以求出矩阵的秩。

其过程可以描述为A 经过一系列初等变换化为阶梯形,阶梯形中非零行的行数即为矩阵的秩。

问题2: 线性方程组解的判定与矩阵的秩之间有何关系?答:齐次线性方程组0=⨯x A n m 必有解:当n A r =)(时,只有零解;当n A r <)(时,有非零解。

非齐次线性方程组b x A n m =⨯分有解和无解的情况,有解时分有唯一解还是无穷多解:b x A n m =⨯无解)~()(A r A r ≠⇔b x A n m =⨯有解)~()(A r A r =⇔有解的情况下:b AX n A r A r =⇒==)~()(有唯一解;b AX n A r A r =⇒==)~()(有无穷多解。

其中),(~b A A = 为增广矩阵。

问题3:已知A 是n m ⨯矩阵,B 是s n ⨯矩阵,且O AB =,证明:.)()(n B r A r ≤+ 分析:由于齐次线性方程组的基础解系中解向量的个数和系数矩阵的秩有直接关系,因此关于矩阵的秩的问题可以转化为齐次线性方程组的问题来处理。

证明:将B 按列分块),...,,(21s b b b B =,则由题可知O Ab Ab Ab b b b A AB s s ===),...,,(),...,,(2121即s i Ab i ,...,2,1,0==换言之,B 的每个列向量均是齐次线性方程组0=Ax 的解,即s b b b ,...,,21均可由0=Ax 的一组基础解系线性表示,设r A r =)(,则r n -ξξξ,...,,21为0=Ax 的一组基础解系。

则r n b b b r s -≤),...,,(21,故)()(A r n B r -≤,从而.)()(n B r A r ≤+问题4:设非齐次线性方程组b Ax =,其中A 是n m ⨯矩阵,则b Ax =有唯一解的充要条件是( )(A) n A r =)~(;(B)n A r =)(;(C)m A r =)~(;(D)n A r =)(,且b 为A 的列向量的线性组合. 分析:n m ≠,故Crame 法则失效;(A)n A r n A r =⇒/=)()~((或1-n ):若n A r =)(,有唯一解;若1)(-=n A r ,无解。

线性代数第五讲 矩阵的初等变换及其性质

线性代数第五讲 矩阵的初等变换及其性质

线性代数第五讲矩阵的初等变换及其性质一、初等矩阵及其性质在前面的讲义中,我们已经学习到了矩阵的基本概念,包括矩阵的定义、矩阵的运算、矩阵的秩等基本知识点。

本章我们将学习一些矩阵的“变换”的概念,主要介绍矩阵的初等变换及其性质。

矩阵的初等变换指的是将一个矩阵通过某种方式变化成另外一个矩阵的运算。

初等变换可以分为三种:交换矩阵的某两行或某两列;用一个非零数乘以矩阵的某一行或某一列;用一个非零数乘以矩阵的某一行或某一列,再加到另一行或另一列上。

这三种变换分别称为矩阵的第一类、第二类和第三类变换。

对于任意一个矩阵A,我们可以进行一系列的初等变换,从而将A变换成标准形。

标准形主要有三种:行简化阶梯形矩阵、列简化阶梯形矩阵和对角矩阵。

从定义可以看出,行简化阶梯形矩阵和列简化阶梯形矩阵都是初等矩阵形式,是矩阵的标准形。

初等矩阵的定义:如果矩阵B是A通过一次初等变换得到的,则称矩阵B为矩阵A的初等矩阵。

我们前面已经学习过,矩阵的逆是一个重要的概念。

下面我们就来发现一个有趣的性质:一个矩阵是可逆矩阵,当且仅当它可以表示为一系列初等矩阵的乘积。

定理1:矩阵可逆的充分必要条件是它可以表示为一系列初等矩阵的乘积。

以上两个定理的证明可以参考矩阵论相关的课程。

二、矩阵的等价关系在学习矩阵的初等变换时,我们介绍了三类变换,也就是矩阵的第一类、第二类和第三类变换。

我们可以使用这三类变换将一个矩阵变换成另一个矩阵。

如果对于任意的矩阵A、B,B可以通过一系列的初等变换变成A,那么我们就称A和B是等价的。

性质1:等价关系具有反身性、对称性和传递性。

性质2:如果一个矩阵可以通过初等变换化为一个标准形,则标准形是唯一的。

性质3:如果一个矩阵可逆,则它和单位矩阵等价。

性质4:如果A、B等价,则r(A)=r(B)。

三、矩阵的秩和特殊矩阵在前面的讲义中,我们已经学习到了矩阵的秩的定义和性质。

矩阵的秩是矩阵实际所包含的信息量,因此秩是矩阵的一个重要特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵与线性方程组
问题1:矩阵的初等变换与矩阵的秩有什么关系?
答:对矩阵施行初等变换后得到的矩阵与原矩阵等价,而等价的矩阵有相同的等价标准型,从而有相同的秩。

换言之,对矩阵施行初等变换不改变秩。

于是利用这一性质,可以求出矩阵的秩。

其过程可以描述为A 经过一系列初等变换化为阶梯形,阶梯形中非零行的行数即为矩阵的秩。

问题2: 线性方程组解的判定与矩阵的秩之间有何关系?
答:齐次线性方程组0=⨯x A n m 必有解:
当n A r =)(时,只有零解;
当n A r <)(时,有非零解。

非齐次线性方程组b x A n m =⨯分有解和无解的情况,有解时分有唯一解还是无穷多解:
b x A n m =⨯无解)~()(A r A r ≠⇔
b x A n m =⨯有解)~()(A r A r =⇔
有解的情况下:b AX n A r A r =⇒==)~()(有唯一解;
b AX n A r A r =⇒==)~()(有无穷多解。

其中),(~
b A A = 为增广矩阵。

问题3:已知A 是n m ⨯矩阵,B 是s n ⨯矩阵,且O AB =,证明:.)()(n B r A r ≤+ 分析:由于齐次线性方程组的基础解系中解向量的个数和系数矩阵的秩有直接关系,因此关于矩阵的秩的问题可以转化为齐次线性方程组的问题来处理。

证明:将B 按列分块),...,,(21s b b b B =,则由题可知
O Ab Ab Ab b b b A AB s s ===),...,,(),...,,(2121
即s i Ab i ,...,2,1,0==
换言之,B 的每个列向量均是齐次线性方程组0=Ax 的解,即s b b b ,...,,21均可由0=Ax 的一组基础解系线性表示,设r A r =)(,则r n -ξξξ,...,,21为0=Ax 的一组基础解系。

则r n b b b r s -≤),...,,(21,故)()(A r n B r -≤,从而.)()(n B r A r ≤+
问题4:设非齐次线性方程组b Ax =,其中A 是n m ⨯矩阵,则b Ax =有唯一解的充要条件是( )
(A) n A r =)~(;(B)n A r =)(;(C)m A r =)~(;(D)n A r =)(,且b 为A 的列向量的线性组合. 分析:n m ≠,故Crame 法则失效;
(A)n A r n A r =⇒/=)()~((或1-n ):若n A r =)(,有唯一解;若1)(-=n A r ,无解。

(A)错误;
(B)n A r n A r =⇒/=)~()((或1+n ):若n A r =)~(,有唯一解;若1)~(+=n A r ,无解。

(B)错误;
(C)m A r m A r =⇒/=)()~
((或1-m ):若m A r =)(,有解,且n m =,有唯一解;n m <,有无穷多解; 若1)(-=m A r ,无解。

(C)错误;
(D)由b Ax =可知b 可由A 的列向量的线性表示,另外b Ax =有唯一解可知b Ax =的导出组0=Ax 有唯一解(即零解),从而A 列满秩,即n A r =)(,故(D)正确。

问题5:求矩阵的秩有哪些方法?
答:求矩阵的秩有以下几种方法:
(1)利用定义,计算矩阵的各阶子式,找出非零子式的最高阶数,即为矩阵的秩;
(2)对矩阵进行初等变换(行、列均可),因为初等变换不改变矩阵的秩,将其化为行阶梯形, 非零行的行数即为矩阵的秩;
(3)利用矩阵的秩的性质,如()()T r A r A =,(),0()()()()()0,
0r A k r kA r PA r AQ r PAQ r A k ≠⎧====⎨=⎩,,其中Q P ,均为可逆矩阵
(4)利用矩阵的三秩相等,即矩阵的秩=行秩=列秩,通过求行或列向量组的秩来判定。

相关文档
最新文档