最优化理论与方法论文

合集下载

最优化理论论文

最优化理论论文

列车运行调整的优化问题最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。

最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。

最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。

实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、国防等各个领域,发挥着越来越重要的作用。

本文主要论述最优化理论在列车运行调整中的应用。

1、列车运行调整的概述列车自动调整的主要任务是当列车运行受到干扰时通过适当地调整列车的运行计划,使列车群的运行尽快恢复到计划运行图上。

因而列车自动调整过程是一个不断对列车运行图进行局部调整以消除干扰的优化过程,列车运行图既是列车自动调整的依据,同时也是列车自动调整的目标。

列车运行调整即是当列车运行实际状态偏离预定值,造成列车运行紊乱时,通过重新规划列车运行时刻表,尽可能恢复列车有秩序运行状态的过程。

列车的运行过程可以分解为车站作业(发车、到达、通过)和区间运行。

通常列车群在区间的运行用区间运行时分描述即可,在区间对列车进行调整的常用手段就是压缩区间运行时分,而区间运行时分这一信息只影响列车在下一站的到达时分,可归结到车站去处理。

因此列车自动调整的重点是控制列车在车站的作业情况,即在城市交通列车群的相对确定的次序条件下,在多个约束条件下如何合理确定列车在各站的到点、发点。

1.1 列车运行调整本身具有的特点:●约束条件众多。

它要满足列车与列车,列车与车站,计划列车时刻表等来自多方面的约束,这其中包括了最小停站时间,最短追踪间隔,最短运行时间等等;●优化指标众多。

在传统的运行调整问题的研究中常用到的优化指标有总到达时间晚点最小,总晚点列车数目最少等;●动态性、实时性,复杂性。

浙江大学 数学专业毕业设计论文

浙江大学 数学专业毕业设计论文
max z x1 x2 x3 x4 s.t.x1 400 1.1x1 x2 440 1.21x1 1.1x2 x3 484 1.331x1 1.21x2 1.1x3 x4 532.4 xi 0, i 1,2,3,4
建立函数文件 FUN44.M function [f,g]=fun44(x) f=-(sqrt(x(1))+sqrt(x(2))+sqrt(x(3))+sqrt(x(4))); g(1)=x(1)-400; g(2)=1.1*x(1)+x(2)-440; g(3)=1.21*x(1)+1.1*x(2)+x(3)-484; g(4)=1.331*x(1)+1.21*x(2)+1.1*x(3)+x(4)-532.4; 键入命令 x0=[1;1;1;1];vlb=[0;0;0;0];vub=[];options=[]; x=constr('fun44',x0,options,vlb,vub) fun44(x)
优化方法与程序设计研究
一.最优化理论与方法综述
优化理论是以数量分析为基础,以寻找具有确定的资源、技术约束的系统最 大限度地满足特定活动目标要求的方案为目的, 帮助决策者或决策计算机构对其 所控制的活动进行实现优化决策的应用性理论。
浙江大学数学与应用数学 毕业设计
优化理论又称为数学规划, 依据优化理论对具体活动进行数学规划的方法成 为优化方法。在中国,优化理论通常被划为运筹学的范畴,所以在有些书籍中, 线性规划理论被称为运筹学的一个分支。 优化理论的主要分支结构为: 线性规划 整数规划 优化理论 目标规划 非线性规划 动态规划 随机规划 最优化理论与算法是一个重要的数学分支, 它所研究的问题是讨论在众多的 方案中什么样的方案最优以及怎样找出最优方案。这类问题普遍存在。例如,工 程设计中怎样选择设计参数,使得设计方案满足设计要求,又能降低成本;资源 分配中,怎样分配有限资源,使得分配方案既能满足各方面的基本要求,又能获 得好的经济效益;生产评价安排中,选择怎样的计划方案才能提高产值和利润; 原料配比问题中,怎样确定各种成分的比例,才能提高质量,降低成本;城建规 划中,怎样安排工厂、机关、学校、商店、医院、住户和其他单位的合理布局, 才能方便群众,有利于城市各行各业的发展;农田规划中,怎样安排各种农作物 的合理布局,才能保持高产稳产,发挥地区优势;军事指挥中,怎样确定最佳作 战方案,才能有效地消灭敌人,保存自己,有利于战争的全局;在人类活动的各 个领域中, 诸如此类, 不胜枚举。 最优化这一数学分支, 正是为这些问题的解决, 提供理论基础和求解方法,它是一门应用广泛、实用性强的学科。 z f x , opt ci x 0, i 1,2, , m, s.t. ci x 0, i m 1, m 2, , p, 最优化问题数学模型的一般形式为: 无约束优化问题的解法 解析解法 数值解法:最速下降法;Newton 法;共轭梯度法;拟 Newton 法;信赖域法 约束优化问题的解法 解析方法:Lagrange 法 数值解法: 外罚函数法 内障碍罚函数方法 广义 Lagrange 乘子法 序列二次规划方法 线性规划的解法: 单纯形法:小型 对偶单纯形法 内点算法:大型 整数规划的解法: 分支定界法

最优控制理论及其在工程中的应用研究

最优控制理论及其在工程中的应用研究

最优控制理论及其在工程中的应用研究【摘要】论文介绍了最优控制理论及其求解方法,最优控制理论的研究进展,并对工程中的几个案例进行了分析,得到最优化的控制方法。

【关键词】最优控制;负载摆动;最优控制器;遗传算法;运动估计最优控制是使控制系统的性能指标实现最优化的基本条件和综合方法。

可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。

从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。

解决最优控制问题的主要方法有古典变分法(对泛函求极值的一种数学方法)、极大值原理和动态规划。

最优控制已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。

最优控制理论是现代控制理论的重要组成部分,是研究和解决从一切可能的控制方案中寻找最优解的一门学科,基本内容和常用方法包括动态规划、最大值原理和变分法。

最优控制理论的实现离不开最优化技术。

最优化技术就是研究和解决最优化问题,主要包括两个需要研究和解决的方面:一个是如何将最优化问题表示为数学模型;另一个是如何根据数学模型尽快求出其最优解。

1最优化问题的基本求解方法所谓最优化问题,就是寻找一个最优控制方案或最优控制规律。

使系统能最优地达到预期的目标。

在最优化问题的数学模型建立后。

主要是如何通过不同的求解方法求出其最优解。

一般而言。

最优化问题的求解方法大致可分为4类:1.1解析法:对于目标函数及约束条件具有简单而明确的数学表达式的最优化问题,通常可采用解析法来解决。

其求解方法是先按照函数极值的必要条件,用数学分析方法求出其解析解。

然后按照充分条件或问题的实际物理意义间接地确定最优解。

在解决实际问题时,由于描述实际问题的解析形式的数学表达式较难找到。

(运筹学与控制论专业优秀论文)一类最优化问题的算法设计

(运筹学与控制论专业优秀论文)一类最优化问题的算法设计
ii
知识水坝为您提供优质论文
承诺书
本人郑重声明:所呈交的学位论文,是本人在导师指导下,独立 进行研究工作所取得的成果。尽我所知,除文中已经注明引用的内容 外,本学位论文的研究成果不包含任何他人享有著作权的内容。对本 论文所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明 确方式标明。
本人授权南京航空航天大学可以有权保留送交论文的复印件,允 许论文被查阅和借阅,可以将学位论文的全部或部分内容编入有关数 据库进行检索,可以采用影印、缩印或其他复制手段保存论文。
1.3 本文的主要内容
本文主要研究一类具有特殊形式的最优化问题,求解这一类最优化问题的全 局最优解,并应用到求解互补问题上。虽然目前已经有很多算法,但是我们考虑 到本最优化问题的约束条件是特殊的,因此可以利用约束条件的特殊性构造更为 简单有效的算法。
本文提出了一类新的函数,将它定义为半正定函数。利用这类函数将原问题; 分别转化为无约束最优化和含等式约束的最优化问,并分别设计了算法,进行了 数值实验,验证了算法的有效性。为了给出问题的全局最优解,我们又研究了算 法子问题的全局最优化算法,利用填充函数法来求解子问题。这样就保证了前面 设计的算法可以求得问题的全局最优解。最后,针对约束最优化问题(P),提出 了拟填充函数的概念,构造了一类拟填充函数并设计了算法。具体内容如下:
In this article we propose a new type of function, which is called a semi-positive function. We use this function to make another function, then we can turn the original problem into another one. We give algorithms and numerical results. Then we investigate the sub-problem. Also we propose the definition of quasi-filled function. We propose a quasi-filled function and design algorithm. It mainly contains the following six chapters:

最优化方法及应用【范本模板】

最优化方法及应用【范本模板】

研究生课程(论文类)试卷2 0 1 4 /2 0 1 5 学年第一学期课程名称:课程代码:论文题目:学生姓名:专业﹑学号:学院:课程(论文)成绩:课程(论文)评分依据(必填):任课教师签字:日期:年月日经过若干次迭代搜索到最优点。

这种方法常常根据经验或通过试验得到所需结果。

对于一维搜索(单变量极值问题),主要用消去法或多项式插值法;对于多维搜索问题(多变量极值问题)主要应用爬山法。

③数值计算法:这种方法也是一种直接法。

它以梯度法为基础,所以是一种解析与数值计算相结合的方法。

④其他方法:如网络最优化方法等。

一、最优化方法的发展简史公元前500年古希腊在讨论建筑美学中就已发现了长方形长与宽的最佳比例为1.618,称为黄金分割比。

其倒数至今在优选法中仍得到广泛应用。

在微积分出现以前,已有许多学者开始研究用数学方法解决最优化问题。

例如阿基米德证明:给定周长,圆所包围的面积为最大。

这就是欧洲古代城堡几乎都建成圆形的原因。

但是最优化方法真正形成为科学方法则在17世纪以后。

17世纪,I.牛顿和G.W。

莱布尼茨在他们所创建的微积分中,提出求解具有多个自变量的实值函数的最大值和最小值的方法.以后又进一步讨论具有未知函数的函数极值,从而形成变分法。

这一时期的最优化方法可以称为古典最优化方法.第二次世界大战前后,由于军事上的需要和科学技术和生产的迅速发展,许多实际的最优化问题已经无法用古典方法来解决,这就促进了近代最优化方法的产生.近代最优化方法的形成和发展过程中最重要的事件有: 以苏联Л。

В。

康托罗维奇和美国G.B。

丹齐克为代表的线性规划;以美国库恩和塔克尔为代表的非线性规划;以美国R。

贝尔曼为代表的动态规划;以苏联Л.С。

庞特里亚金为代表的极大值原理等。

这些方法后来都形成体系,成为近代很活跃的学科,对促进运筹学、管理科学、控制论和系统工程等学科的发展起了重要作用。

小学数学单元整体教学论文

小学数学单元整体教学论文

小学数学单元整体教学论文撰写如下:第一部分:研究背景与意义一、背景介绍随着教育改革的不断深入,小学数学课程的教学方法和内容也在不断更新。

单元整体教学作为一种全新的教学模式,逐渐被广大教育工作者所接受和推崇。

它强调从整体上把握知识,注重知识的内在联系,有助于提高学生的思维品质和创新能力。

在此背景下,研究小学数学单元整体教学具有重要的现实意义。

二、研究意义1. 提高教学质量:通过单元整体教学,教师可以系统地梳理和整合知识,使学生在掌握知识的同时,形成良好的认知结构,提高教学质量。

2. 促进学生发展:单元整体教学有助于培养学生的整体观念、逻辑思维和创新能力,使学生在面对复杂问题时,能够从多角度进行分析和解决。

3. 丰富教学理论:研究小学数学单元整体教学,可以为我国数学教育改革提供有益的实践经验,丰富和发展教学理论。

4. 提升教师专业素养:通过对单元整体教学的研究,教师可以不断提高自身的教学水平和专业素养,更好地适应教育改革的发展需求。

三、研究目标1. 分析小学数学单元整体教学的理论基础,为实际教学提供指导。

2. 探讨小学数学单元整体教学的设计原则和实施策略,提高教学效果。

3. 通过实证研究,验证小学数学单元整体教学对学生学习效果的影响。

4. 总结小学数学单元整体教学的经验和教训,为教育工作者提供借鉴。

四、研究内容1. 小学数学单元整体教学的理论研究:分析国内外相关研究成果,梳理单元整体教学的理论体系。

2. 小学数学单元整体教学的实践探索:以具体教学内容为载体,设计并实施单元整体教学。

3. 小学数学单元整体教学的效果评价:通过对比实验,评价单元整体教学对学生学习效果的影响。

4. 小学数学单元整体教学的案例分析与反思:总结成功经验和存在的问题,为今后的教学提供借鉴。

本部分旨在阐述小学数学单元整体教学的研究背景、意义、目标和内容,为后续研究打下基础。

接下来,我们将进入第二部分,对小学数学单元整体教学的理论基础进行深入探讨。

函数极值与最值研究毕业论文

函数极值与最值研究毕业论文

函数极值与最值研究毕业论文
摘要
本文主要研究函数极值与最值的理论,该理论是微积分领域重要的分支,涉及到极值问题的研究,它可以解决实际问题中存在的最优化问题,
以及运筹学中解决其中一种特定条件下的最优解问题。

本文将从定义函数
极值和最值开始讨论,分析它们之间的区别和关系,然后详细介绍求解极
值最大化和最小化的求解步骤和例子,通过计算分析表示函数最值和极值
的方法,最后以简单题举例计算极和最值的步骤,以验证前面所讲的理论。

关键词:函数极值;最值;求解;最大化;最小化
1.绪论
函数极值与最值是数学分支学科微积分的重要研究内容,它是一种极
限方法,主要探讨函数在其定义域内什么时候达到极值和最值,又有什么
样的求解方法,可以使函数达到极大和最小值。

函数极值与最值常用在经
济学,工程,计算机科学,生物,运筹学,机器学习,决策等方向上,能
够帮助研究者们对最优解的求解,极大的提高了实际中的计算能力。

2.函数极值与最值的定义
函数极值是指函数在其定义域内的极大或者极小值,即函数值达到最
大或者最小时的x值,这种x值对应的函数值称为极值。

Matlab在最优化问题中的应用举例

Matlab在最优化问题中的应用举例

在企业生产和日常生活中,人们总是希望用最少的人力、物力、财力和时间去办更多的事,这就是所谓的最优化问题。

线性规划方法是解决最优化问题的有效方法之一,因此受到人们的普遍关注。

在企业生产过程中,生产计划安排直接影响到企业的经济效益,而生产计划本质就是在目标一定时,对于人力、时间和物质资源的优化配置问题。

1。

综述了最优化方法,归纳了最优化闯题中线性规划和非线性规划模型的解法,并给出了相应的matlab求解代码。

2。

提出了基于信息增益率的用电客户指标选择方法,根据信息增益率的大小选择对分类有贡献的指标。

关键词:Matlab,最优化方法,应用举例In enterprise production and daily life, people always hope with the least amount of human, material and financial resources and time to do more things, this is the so-called optimization problem. Linear programming method is to solve the optimal problem, so one of the effective method by people's attention. In enterprise production process, production plan directly affect the enterprise economic benefit, but in essence is the production plan for the target certain human, time and material resources optimization allocation problem.1·Studying the optimization,summing up the solutions ofoptimization problem for both linear and non-linear programming model and proposing the matlabcode.2·Proposing a new way based on information-gain-ratio to choose the powercustomer indices,selecting the indices which are more contributive to theclassification,in order to avoid over learning。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

优化理论与方法全局及个性化web服务组合可信度的动态规划评估方法摘要:随着Internet的快速发展,web服务作为一种软件构造形式其应用越来越广泛。

单个web服务无法满足日益复杂的用户需求,web服务组合有效地解决了这个问题。

然而,随着功能相似的web服务实例的不断出现,如何选择可信的web服务组合成为了人们关注的热点。

服务选择依赖于web服务组合的评估结果,因此,本文主要从web服务组合着手,对其可信性进行研究,提供一种可信web服务组合评估方法。

:针对web服务组合的全局及个性化问题,提出了基于全局的个性化web服务组合可信评估方法。

从全局角度动态地调整评估模型;同时引入用户业务关注度来描述原子web服务对服务组合可信性的影响程度;结合前文的度量及评估方法,构建一个全局的个性化服务组合可信评估模型;并分析了模型的相关应用,给出了改进的动态规划模型。

关键字:web服务组合可信评价;全局个性化;动态规划;0.引言随着软件系统规模的日趋复杂,运行环境的不断开放,软件的可信性要求日益增加,可信软件成为了研究的热点。

据《中国互联网发展状况统计报告》统计显示,截至2014年12月底,我国网民数量突破8亿,全年新增网民5580万。

互联网普及率较上年底提升4个百分点,达到38。

3%。

因此,随着Internet 的广泛应用和网络技术的快速发展,面向服务的软件体系结构(SOA)作为一种新型的网络化软件应用模式已经被工业界和学术界广为接受。

同时,网民对互联网电子商务类应用稳步发展,网络购物、网上支付、网上银行和在线旅游预订等应用的用户规模全面增长。

因而,对web服务的可信性要求更高。

单个web服务的功能有限,往往难以满足复杂的业务需求,只有通过对已有web服务进行组合,才能真正发挥其潜力。

在现有的web服务基础上,通过服务组装或者Mashup方式生成新web服务作为一种新型的软件构造方式,已成为近年的研究热点之一。

web服务组合并不是多个原子web服务的简单累加,各原子web服务之间有着较强的联系。

因此对web服务组合的可信需求更高。

目前大量的研究工作着重于如何实现原子web服务间的有效组合,对服务组合的可信评估研究较少。

如今,随着web服务资源快速发展,出现了大量功能相同或相似的web服务,对web服务组合而言,选择可信的web服务变得越来越难。

在大量的功能相似的原子web服务中,如何选出一组可信的web服务组合,成为了人们关注的热点问题。

本文将从web服务组合着手,对其可信性进行研究,旨在提供一种可信web服务组合评估方法,为web服务组合的选择提供依据。

web服务组合的可信度主要包括以下三个部分:1)基于领域本体的web服务可信度量模型。

2)基于偏好推荐的原子web服务可信评估方法。

3)基于全局的个性化web服务组合可信评估方法。

研究思路:本文主要研究基于全局的个性化web服务组合的可信评估方法,其研究思路可以大致如下:基于领域本体的web服务可信度和基于偏好推荐的原子web 服务可信评估方法。

针对web服务组合的四种基本组合结构模式,主要研究如何从全局角度动态地调整评估模型;同时引入用户业务关注度来表达原子web 服务对服务组合可信性的影响程度(从用户角度);应用动态规划的方法构建一个全局的个性化web服务组合可信评估模型,最后给出一个代表性的数值算例。

文章结构布局:1节将主要介绍几种不同的服务组合模式,并对进行分析,引入基于全局的问题,并给出一种解决方法;2节将主要介绍如何构建一个全局的个性化服务组合评估模型,并根据用户的业务关注度,获得各原子web服务对服务组合的可信性影响权重,进而获得可信评估值。

3节将主要介绍如何应用此模型,并给出了一个最优服务组合选择方法(动态规划模型)。

1.基于组合全局的调整策略基于全局的评估策略,是指从全局角度计算服务组合的可信评估值。

目前已有的全局评估模型,基本都是采用原子服务属性值汇总,再加权评估的方式,没有考虑到组合服务的业务逻辑关系(服务组合模式)。

在本节的全局策略中,将充分考虑服务组合方式对服务组合可信性的影响,为可信web服务组合评估提供一种更可信的全局策略。

首先,介绍基本的服务组合模式;接着,分析不同模式的影响;最后,给出考虑全局的调整方法。

服务组合流程可以被定义为一组相互关系的任务(或业务),这些任务具有各种不同的功能,并通过原子服务完成。

在常见的服务组合应用中,原子web服务通过一定的组合模式构成服务组合。

研究者提供了多种原子web服务组合模式,提WS4BPEL支持多种组合模式。

但实质上都可以分解为顺序模式、分支模式、并行模式和循环模式的有限递归嵌套,因此本文仅讨论这4中模式。

1)顺序模式相当于程序结构中的顺序结构,服务组合中的服务根据业务被分解为多个阶段。

每个服务按顺序依次完成其业务功能。

2)分支结构相当于程序结构中的分支结构,多个分支中根据一定的判断条件选择一条分支执行。

在计算该模式下的属性值时,由于无法判断具体运行那条,一般采用统计方式估算,即根据可能执行的概率计算平均值。

3)并行模式相当于程序结构中的并行结构,多条分支同时进行。

一般用于为下一阶段的业务准备多个初始条件。

这些任务之间相互独立,全部完成后,才能进入下一阶段。

4)循环模式相当于程序结构中的循环结构,一条路径被重复循环地执行次。

可以看作顺序模式的一个复合结构,即把这条路径展开Z次执行。

在进行可信评估时,需要考虑执行的次数。

由上面四种结构组合出来的服务组合网络有多种形式,如何从中识别出关键的路线成了研究的关键步骤;关键路径:服务组合业务流程中执行时间最长的那一条路径。

关键路径上的业务称为关键任务,其他任务称为非关键任务。

其中关键路径的识别问题类似求解最短路径问题(目标函数转化为最大),可采用E.W. Dijkstra提出的T、P标号算法或L.R.Ford提出的Ford算法。

2.基于全局的个性化web服务组合可信评估模型2.1构建评价模型步骤目前大部分关于服务组合评估的研究中,基本都是采用的全局一致化的评估模型。

即在服务组合中,每个原子服务釆用相同的评估属性项及权重,然后根据每个原子服务的属性评估值计算出服务组合全局的各属性评估值,最后结合权重得到服务组合的综合评估值。

虽然这种评估方法取得了一定的成果,但是每个原子服务的类型存在差异,其处在的领域不同,根据前面分析,显然,其评估属性及其权重是不一致的。

所以,这种全局一致化的评估模型很难得到可信的评估值本文提出全局个性化的可信评估模型在原子服务个性化的评估模型基础上合成服务组合的评估模型。

其构建步骤如下:步骤1:构建服务组合中原子web 服务的个性化评估模型:步骤1.1:识别服务组合中各原子web 服务的类型;步骤1.2:根据类型构建基于领域的评估模型(算法2。

1 WSTAM )。

步骤2:构建好个性化的评估模型后,需根据原子web 服务在服务组合中的位置(关键路径、非关键路径),动态地调整其评估模型:步骤2.1:识别非关键任务;步骤2.2:对并行路径非关键任务上的web 服务评估模型进行调整。

2.2确定原子web 服务权重不同的用户对服务组合中不同的原子服务的关注程度是不同的。

如,在网上购物流程中,用户对选择商品、网上支付、提交评价信息这三个原子服务,更多地关注前两个原子服务的可信性,对提交评价信息这个服务的关注较少。

虑到用户对每个原子服务的关注度是定性的,采用先排序后比较相邻关注度的方法,将用户的定性关注度转化为定量的权重值。

具体步骤如下:步骤1:将服务组合中所有的原子服务组成集合…,步骤2:用户根据个人对服务组合中原子服务关注程度的高低进行降序排序,获得降序序列(1)(2)(3)()n s s s s >>> 其中,可以通过不断地从剩余的原子服务中选择出最重要的一个原子服务来完成排序。

步骤3:用户设定序列(1)(2)(3)()n s s s s >>> 中,相邻两个原子服务()i s 与(+1)i s 的相对关注度。

步骤4:根据用户给出的相对关注度等级,获得相对权重(1)(2)(1)[,,]n r r r - 其中()i r是两个原子服务的绝对权重之比。

又因为:()(1)()(1)(2)()1()()()(1)i i i i i n n a a a k i i n a a a k i r r r r +++--==⨯⨯=⨯⨯=∏ 其中:()i 11n i a ==∑,()()()111111()()()()111(1)i n n n n n n a k i n a n a a i i i k i ra a ----=======-∑∑∑ 则有: 11()11()(1)n n k i k i n r a --==+=∑ (4.1)1()()()n i n k k i a a r -==⨯∏ (4.2) 按公式4-1和4-2计算得到用户对每个原子服务的用户关注度权重,即每个原子服务对整个服务组合可信评估重要程度权重。

121[,,],1n n i i A a a a a ===∑(4.3)计算服务组合可信评估值,需要的信息包括各原子web 服务的可信属性及属性权重值,各原子web 服务相对服务组合的权重,各属性的评估值。

在计算web 服务组合评估值时还需考虑其执行的概率i p ,和次数i l ,因此服务组合评估值的计算公式如下: 11ni i i ii n i i ii p L a D p L a D ==⨯⨯⨯⨯⨯∑=∑ (4.4)其中,i a ,i D 分别表示第i 个原子web 服务的权重和可信评估值,D 是整个服务组合的可信评估值3.动态规划在服务组合可信评价方案中的应用对web 服务进行可信评估的目的是为了在大量满足功能需求的web 服务中选择出最可信的web 服务组合。

根据web 服务组合的状态,其应用可分为两类:1)对已有的web 服务组合进行评估,选择最优的web 服务组合;2)选择最优的原子web 服务组合成可信的web 服务组合。

下面将从这两方面分析其应用。

3.1 web 服务组合的选择对多个已经组合好的web 服务组合,我们只需按其组合模式分解成多个原子web 服务,再釆用第2节中的方法,获得每个web 服务组合的可信评估值。

排序选择评估值最大的web 服务组合即可,选择出的服务组合可信性最好。

具体的操作,上文中已详述,此处不再重复。

3.2原子web 服务的最优组合根据本文提出的评估方法,原子web 服务最优组合问题,可转化为了一个动态规划问题。

即将最优组合问题转化为多阶段决策问题,随着时间的推移,在每一阶段上做出最恰当的决策,以实现web 服务组合的可信性全局最优。

相关文档
最新文档