金属材料学重点

金属材料学重点
金属材料学重点

一、填空题(30分,每空格1分)

1、钢的强化机制主要有固溶强化、位错强化、细晶强化、沉淀强化。其中细晶强化对钢性能的贡献是既提高强度又改善塑、韧性。

2、提高钢淬透性的作用是获得均匀的组织,满足力学性能要求、能采取比较缓慢的冷却方式以减少变形、开裂倾向。

3、滚动轴承钢GCr15的Cr质量分数含量为 1.5%左右。滚动轴承钢中碳化物不均匀性主要是指碳化物液析、碳化物带状、碳化物网状。

4、选择零件材料的一般原则是满足力学性能要求、良好的工艺性能、经济性和环境协调性等其它因素。

5、凡是扩大γ区的元素均使Fe-C相图中S、E点向左下方移动,例Mn、Ni 等元素(写出2个);凡封闭γ区的元素使S、E点向左上方移动,例Cr、Mo等元素(写出2个)。S点左移意味着共析碳含量降低。

6、QT600-3是球墨铸铁,“600”表示抗拉强度不小于600MPa,“3”表示延伸率不小于3%。

7、H68是黄铜,LY12是硬铝,QSn4-3是锡青铜。

1.8、在非调质钢中常用微合金化元素有Ti、V等(写出2个),这些元素的主要作用是细晶强化和沉淀强化。9、铝合金热处理包括固溶处理和时效硬化两过程,和钢的热处理最大的区别是没有同素异构转变

名词解释:

莱氏体钢:凝固过程会发生共晶相变使得凝固组织中含有共晶组织(莱氏体)的高合金钢。

合金元素:是指特别添加到钢中为了保证获得所要求的组织结构、物理、化学和机械性能的化学元素。

微合金元素:在钢中质量分数低于0.1%左右而对钢的性能和微观组织有显著或特殊影响的合金添加元素称微合金元素如Al、Nb、V、Ti、B、N i、Cr、Mo

合金钢:是指为了提高某些性能而添加入合金元素的钢。

微合金钢:合金元素(如V,Nb,Ti,Zr,B)含量小于或等于0.1%而能显著影响组织和性能的钢。

微合金化:在钢中加入少量(一般不大于0.2%,通常在0.1%以下)特殊的合金元素(如铌、钒、

钛、硼等)以提高性能的工艺技术。

水韧处理:即固溶处理,加热温度应在Acm线以上,一般为1050~1100℃在一定的保温时间下使炭化物全部融入奥氏体中的处理.

水韧处理实际为一种固溶处理,常用于高锰钢,沿奥氏体晶界析出的碳化物降低钢的韧性,为消除碳化物,将钢加热至奥氏体区温度(1050-1100℃,视钢中碳化物的细小或粗大而定)并保温一段时间(每25mm壁厚保温1h),使铸态组织中的碳化物基本上都固溶到奥氏体中,然后快速冷却,从而得到单一的过冷奥氏体组织。.

A稳定化处理:在奥氏体不锈钢冶炼时加入数倍于含碳量的钛或铌元素,可在形成Cr23C6之前优先形成钛或铌的碳化物,这些碳化物几乎不固溶于奥氏体中,从而大大提高了抗晶间腐蚀的能力。二次硬化:回火温度在500-600℃之间,钢的硬度、强度和塑性均有提高,而在550-570℃时可达到硬度、强度的最大值。在此温度区间,自马氏体中析出弥散的钨(钼)及钒的碳化物(W2C、Mo2C、VC),使钢的硬度大大提高,这种现象称为二次硬化。

铸铁孕育处理:指把孕育剂加入到铁液中去以改变铁液的冶金状态,从而改善铸铁的组织和性能

红硬性:在高温下保持高硬度的能力,

晶间腐蚀:金属材料在特定的腐蚀介质中沿着材料的晶粒边界或晶界附近发生腐蚀,是晶粒之间丧失结合力的一种局部破坏的腐蚀现象

冷处理:将工件淬火冷却至室温后,立即放置在低于室温的环境下停留一段时间,取出置于室温中,这种低于室温的处理叫冷处理

热脆:S与Fe形成熔点为989℃FeS相,会使钢在加热过程中产生热脆

冷脆:P与Fe形成硬脆的Fe3P相,使钢在冷变形加工过程中产生冷脆

球化处理:将球化剂加入到铁液的过程,使石墨以球状形态析出,从而改善球墨铸铁的力学性能

奥氏体形成元素:在γ-Fe中有较大溶解度并稳定γ固溶体的元素称为奥氏体形成元素。

与γ-Fe无限互溶:Ni、Mn、Co,开启γ相区。

与γ-Fe有限溶解:C、N、Cu,扩展γ相区。

铁素体形成元素:在α-Fe中有较大溶解度并稳定α固溶体的元素称为铁素体形成元素。

与α-Fe无限互溶:Cr、V,完全封闭γ相区。

与α-Fe有限溶解:Mo、W、Ti,γ相区被封闭,在相图上形成γ圈。

缩小γ相区:B、Nb、Zr,与封闭γ相区元素相似,但由于出现了金属间化合物,破坏了γ团。

贝氏体钢:通常是在轧制室冷却或控制冷却,直接获得贝氏体组织的钢

变质处理:浇注前在熔融合金中加入占铝合金总重的2-3%的变质剂,从而细化组织的方法

原位析出:指在回火过程中合金渗碳体原位转变成特殊碳化物。

异位析出:指直接由α相中析出特殊碳化物。

二次淬火:在回火过程中从残余奥氏体中析出合金碳化物,从而贫化残余奥氏体中的碳和合金元素,导致其马氏体转变温度高于室温,因而在冷却的过程中转变为马氏体。这种现象称为二次淬火。

调质钢:调质钢是指经过调质处理,即淬火并经高温回火后使用的结构钢。

高速钢有很好的红硬性,但不宜制造热锤锻模。

高速钢虽有高的耐磨性、红硬性,但韧性比较差、在较大冲击力下抗热疲劳性能比较差,高速钢没有能满足热锤锻模服役条件所需要高韧性和良好热疲劳性能的要求。

写出六个扩大奥氏体相区的元素.

Ni Mn Co C N Cu

写出能与α-Fe形成无限固溶体的元素.

Cr V

降低钢的Ms点的元素以碳最强烈,其次是.

Mn Si Cr Ni W Mo

电化学腐蚀的三个特点: 1存在两个区域:阴极区和阳极区,各自发生阴极和阳极反应。

2存在电流

分析比较:40Cr,40CrNi,40CrNiMo钢的淬透性,回火稳定性,塑韧性,回火脆性和经济性:

淬透性:40CrNiMo大于40CrNi大于40Cr

回火稳定性:40CrNiMo大于40CrNi大于40Cr

塑韧性:

回火脆性:40CrNi大于40Cr大于40CrNiMo

经济性:

简述共晶灰口铸铁和可锻铸铁的石墨化过程。

铸铁的石墨化过程.

灰口铸铁的石墨化:第一阶段:凡是发生在共析转变线P`S`K`以上的石墨化过程.

第二阶段:凡是发生在共析转变线P`S`K`以下的石墨化过程.

可锻铸铁的石墨化过程:第一阶段:白口铸铁加热至高温(950℃左右或更高)保温时,莱氏体中的渗碳体分解成奥氏体+石墨.

中间冷却阶段:若从900~950℃以较快速度(100℃/h)冷却的共析温度稍下(710~730℃)使奥氏体转变为珠光体就得到了以珠光体为基的可锻铸铁.

第二阶段石墨化:若继续在710~730℃进行低温阶段的石墨化使共析体中的渗碳体也发生分解,形成铁素体和团絮状石墨,最终便可得到以铁素体为基体的可锻铸铁.

什么是红硬性?为什么它是高速钢的一种重要性能?哪些元素在高速钢中有利于提高钢的红硬性?

答:红硬性:在高温下保持高硬度的能力。在高速切削过程中,刀具的刃部温度可达600℃以上,并且要满足切削性能和耐磨性,这要求它必须具有红硬性。提高红硬性元素:C碳、W钨、Mo钼、V钒、Co钴、N氮。

高速钢18-4-1淬火后三次回火目的是什么?这种回火在组织上引起什么样的变化?

答:当回火温度500~600℃之间时,残余应力松弛,基体中析出了部分碳化物,使残余奥氏体中合金元素

及碳含量下降,Ms点升高。这种贫化的残余奥氏体,在回火后的冷却过程中,转变为马氏体,使钢的硬度也有所提高。为了降低残余奥氏体量,需增加回火冷却次数,三次回火后残余奥氏体量完全转

变。

高速钢刀具在正常淬火后要进行560℃*1h三次回火,是否可以改为560℃*3h一次回火?为什么

由于高速钢中高合金度M的回火稳定性非常好,在560℃左右回火,才能弥散析出特殊碳化物,产生硬化。

同时在560℃左右回火,使材料的组织和性能达到了最佳状态,一次回火使大部分Ar发生M转变.二次回火使第一次回火产生的淬火M回火并使Ar更多的转变成M。三次回火可将Ar控制在合适的量,并使内

应力消除的更彻底。

试从合金化原理角度分析9Mn2V钢的主要特点。(10分)

1)Mn↑淬透性,D油 = ~30mm;

2)Mn↓↓ M S,淬火后A R较多,约20~22%,使工件变形较小;

3)V能克服Mn的缺点,↓过热敏感性,且能细化晶粒;

4)含0.9%C左右,K细小均匀,但钢的硬度稍低,回火稳定性较差,宜在200℃以下回火;

5)钢中的VC使钢的磨削性能变差。

9Mn2V广泛用于各类轻载、中小型冷作模具。

对马氏体不锈钢4Cr13和奥氏体不锈钢0Cr18Ni9Ti这两个不锈钢进行下述简要对比:

1力学性能2耐蚀性3热处理方式4使用状态的组织5使用腐蚀介质条件

力学性能:M有高的强度和耐磨性,r具有高的塑性、焊接性好、韧度及低温韧度好易加工硬化

耐蚀性:M钢随碳含量的升高耐蚀性降低,Cr含量的升高耐蚀性提高,M钢的耐蚀性比A钢差

热处理方式:M钢1)软化处理:由于空冷即会产生马氏体转变所以要进行软化处理,1高温回火,将锻

轧加热至700-800℃保温2-6h后空冷使M转化成S回,2完全退火,将工件加热至840-900℃后保温2-4h

后炉冷至600℃后在空冷。2)调制处理,以获得高的综合机械性能,最终组织为保留M位向的S回。3)淬火低温回火,4Cr13的热处理通过淬火+低温回火,可获得高硬度和耐磨性。A钢1)固溶处理,将Wc 《0.25%的钢加热到1000-1150℃,使K全部溶解到r中,然后快冷获得单相r固溶处理是r中最大粒度的

软化处理,2)稳定化处理,将含Ti、Nb的r不锈钢经固溶处理后经850-900度保温1-4h后空冷,目的是

使之析出TiC、NbC,抑制Cr23C6析出,从而达到纺织晶间腐蚀的最大效果,3)去应力处理是消除刚在冷

加工或焊接后的残余应力的工艺,可降低晶间腐蚀倾向并提高钢抗应力腐蚀能力。

使用状态组织:M+F或M+K;A

使用耐腐蚀介质条件:M:制作抗弱腐蚀介质并承受冲击载荷的零件螺栓等;较高硬度和耐磨性好的医疗

器械,不锈钢刀具。A:z制作化学工业的耐蚀材料,作腐蚀性溶液的容器;焊接性好。

高锰钢(ZGMn13)在A cm以上温度加热后空冷得到大量的马氏体,而水冷却可得到全部奥氏体组织。

高锰钢在A cm以上温度加热后得到了单一奥氏体组织,奥氏体中合金度高(高C、高Mn),使钢的Ms低于室温以下。如快冷,就获得了单一奥氏体组织,而慢冷由于中途析出了大量的K,使奥氏体的合金度降低,Ms上升,所以空冷时发生相变,得到了大量的马氏体。

渗碳钢(成分、合金元素、合金化、工艺特点、参数、性能特点、表层组织)

?渗碳钢的表层,内部组织;成分合金化;工艺特点;工艺参数

?经过渗碳后的钢是一种很好的复合材料,表层相当于高碳钢而芯部是低碳钢

?含碳量在0.12%~0.25%个别钢种可达到0.28%,合金元素Mn Gr Ni作用主要是提高淬透性使较大尺寸的零件在淬火是芯部能获得大量的板条马氏体,还可改善渗碳层参数.Ti V W Mo可以阻止奥

氏体晶粒在高温渗碳时的长大能细化晶粒.

?一般渗碳零件的渗碳热处理温度为930℃左右.渗碳后淬火处理常有直接淬火,一次淬火和二次淬火等方法.

试总结Ni元素在合金钢中的作用,并简要说明原因。(10分)

答案要点:1)↑基体韧度→ Ni↓位错运动阻力,使应力松弛;

∑==?n i F i F i s C K 1σ2)稳定A ,→ Ni ↓A 1 ,扩大γ区,量大时,室温为A 组织;

3)↑淬透性→↓ΔG ,使“C”线右移,Cr-Ni 复合效果更好;

4)↑回火脆性 → Ni 促进有害元素偏聚;

5)↓Ms ,↑Ar → ↓马氏体相变驱动力。

从合金化角度考虑,提高钢的韧度主要有哪些途径?(8分)

1)加入Ti 、V 、W 、Mo 等强碳化物形成元素,细化晶粒;

2)提高回火稳定性,加入Ti 、V 等强碳化物形成元素和Si 元素;

3)改善基体韧性,主要是加入Ni 元素;

4)细化碳化物,如加入Cr 、V 等元素使K 小、匀、圆;

5)降低或消除钢的回火脆性,主要是Mo 、W 元素比较有效;

6.)在保证强度时尽可能降低C 含量。

一般地,钢有哪些强化与韧化途径?

答:强化机理1、固溶强化。(试验指出:定量评定合金铁素体的强化程度可以通过每个合金元素对Fe 的

α固溶体性能影响的叠加效果。这样,同时用若干种合金元素合金化铁素体时,其对强度的贡献可以

用下式来表达: 式中:K i F 是1%(重量)的第i 种合金元素固溶后引起铁素体屈服强度增量的强化系数;C i F 为第i 种合

金元素溶于铁素体中的重量百分浓度。2、细化晶粒强化 铁素体的屈服强度随晶粒度的减小按

Hall-Petch 公式而增加,即σs = σi + kd -0.5 其中:d 为晶粒直径;σi 为在晶粒中位错运动所需的应力(内摩擦力);k 为常数。实际晶粒越细,屈服强度越高,所以在加工钢铁材料时非常重视最终的铁素体晶粒尺寸。3、位错密度和缺陷密度引起的强化 钢铁在冷加工(轧制、拉拔)过程中,受力变形,使基体内的位错密度大大提高;钢铁在淬火后,基体内的位错密度以及缺陷密度也大幅度的增加,这都增加了钢材的强度。4、析出碳化物弥散强化 钢材在经淬火处理后,在回火过程中,以特殊碳化物的质点弥散析出,这些碳化物能有效地阻碍位错的运动,提高了钢的屈服强度。

韧化途径 1、细化晶粒 细化晶粒作为钢的主要强化机制是十分重要的,与此同时也改善了韧性和降

低脆性转变温度。因此,它是既强化又韧化钢材的唯一办法。2、降低有害元素的含量 减少钢中的P 、S 、N 、H 、O 以及其它有害元素的含量,则可减少它们在晶界的偏聚,一方面有利于抑制回火脆性倾向,另一方面也使延迟破坏和环境脆化的敏感性大大下降,从而改善钢的韧性。3、调整合金元素含量 合金元素抑制钢的脆性断裂倾向的原因在于:①改变显微组织。合金元素是通过控制淬透性、相变温度、析出物形态、晶粒度等而起作用,其效果随所得组织或随不同添加量而发生复杂的变化。②改善基体本身的韧性。合金元素是通过影响基体的塑性特性,即影响位错摩擦力、交叉滑移的难易程度而起作用。4、降低钢中的含碳量 碳是钢中必不可少的元素,然而加碳虽然强化作用很大,但却显著降低韧性,这是普遍倾向。针对这一特性,含碳量极低的(≤0.03%wt)、通过析出金属间化合物来强化的马氏体时效钢,具有高的韧性。

9SiCr 钢和T9钢相比,退火后硬度偏高,在淬火加热时脱碳倾向较大。

Si 是非K 形成元素,能有效地强化铁素体,所以使钢在退火后硬度偏高;Si 提高碳活度,

使渗碳体稳定性变差,促进了钢在加热时脱碳倾向较大。

9SiGr 热处理温度比T9高

直径为30~40mm 的9SiGr 钢在油中冷却会淬透,相关尺寸的T9不能,即9SiGr 的淬透性好.

9SiGr 的红硬性比T9好.

9SiGr 钢与T9钢相比退火后硬度偏高.

9SiGr 比T9钢淬火加热时脱碳倾向较大.

奥氏体不锈钢1Cr18Ni9晶界腐蚀倾向比较大。

1Cr18Ni9含C 较高,又没有Ti 等稳定C 的强碳化物形成元素,所以在晶界上容易析出

Cr 23C 6,从而使晶界上产生贫Cr 区,低于不锈钢的基本成分要求,所以在晶界处

的腐蚀倾向比较大。

在一般钢中,应严格控制杂质元素S、P的含量。

S能形成FeS,其熔点为989℃,钢件在大于1000℃的热加工温度时FeS会熔化,所以易产生热脆;P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。

4Cr13含碳量(质量分数)为0.4%左右,但已是属于过共析钢。

Cr元素使共析S点向左移动,当Cr含量达到一定程度时,S点已左移到小于0.4%C,所以4Cr13是属于过共析钢。

画出Fe-Fe3C二元相图(注明三相水平线的温度,以及每个三相平衡反应中三个单相的成分),并分析合金元素对Fe-Fe3C二元相图γ相区和共析点的影响,请举例说明。

合金元素影响:

1.改变奥氏体的位置

Ni、Co、Mn以及其它扩大γ相区的元素,均使共析点左移而GS线下沉,Cr、W、Mo、V、Ti、Si以及其它缩小γ相区的元素,均使三元系中的γ相区逐渐呈劈形

2.改变共析温度

Ni、Mn等扩大γ相区的元素,使共析点(S点)左移,GS下沉,使得A1和A3温度同时降低。Cr、W、Mo、V、Ti、Si以及其它缩小γ相区的元素,使γ相区呈劈形,且共析点(S点)左移,使得A1和A3温度同时升高。

3.改变共析体含量

所有合金元素均使共析点左移,说明在钢中C%不到0.77%时,钢就会变为过共析而析出二次渗碳体,从而降低了共析体中的含碳量。这样,合金钢加热至略高于A1时,所得到的奥氏体的含碳量总比碳钢低。

5.根据高速钢的物理冶金原理,分析讨论碳和合金元素在高速钢中的作用规律。

答:所有的高速钢中,在退火状态下都含有M

6C、M

23

C

6

。MC三种碳化物。典型的M

6

C型碳化物是Fe

4

W

2

C,钢

中含有的Cr、Mo、V可溶解在M6C中,Mo、V可置换W;Cr可置换Fe、W,这就使M6C稳定性不同。如

Cr溶入M6C中,使M6C稳定性下降。典型的M

23C

6

型碳化物是Cr23C6,其稳定性较差,淬火加热时,全

部溶于奥氏体中,增加钢的淬透性。典型MC型碳化物是VC,也能溶解少量的W、Mo、Cr等元素。在高温回火过程中析出,使高速钢产生弥散强化,从而使钢具有高的耐磨性。高速钢在回火过程中,当温

度超过500℃时,自马氏体中析出W

2C、Mo

2

C,引起钢的弥散硬化。当回火温度超过650℃时,则析出

M

6C及M

7

C

3

,它们容易聚集长大,使钢的硬度下降。

二、合金元素V、Cr、W、Mo、Co、Ni、Cu、Ti、Al中哪些是铁素体形成元素?哪些是奥氏体形成元

素?哪些能在a-Fe中形成无限固溶体?哪些能在γ-Fe中形成无限固溶体?为什么?

答:,奥氏体形成元素:C,N,Cu,Mn,Ni,Co,W等。铁素体形成元素:Cr,V,Si,Al,Ti,Mo。V、Cr 与α-Fe可形成无限置换固溶体;Mn、Co、Ni与γ-Fe可形成无限置换固溶体。决定组元在置换固溶体中的溶解条件是:(1)溶剂与溶质的点阵相同;(2)原子尺寸因素(形成无限固溶体时,两者之差不大于±8%);(3)组元的电子结构(组元在周期表中的相对位置)。Mn、Co、Ni与γ-Fe符合上述条件,可形成无限置换固溶体,V、Cr与α-Fe符合上述条件,可形成无限置换固溶体。

四、如何解释二次硬化与二次淬火两个概念的异同点。

答:二次淬火:在回火过程中从残余奥氏体中析出合金碳化物,从而贫化残余奥氏体中的碳和合金元素,导致其马氏体转变温度高于室温,因而在冷却的过程中转变为马氏体。这种现象称为二次淬火。二次硬化:回火温度在500-600℃之间,钢的硬度、强度和塑性均有提高,而在550-570℃时可达到硬度、强度的最大值。在此温度区间,自马氏体中析出弥散的钨(钼)及钒的碳化物(W2C、Mo2C、VC),使钢的硬度大大提高,这种现象称为二次硬化。

五、对调质钢、弹簧钢进行成分、热处理、组织及性能的比较并熟悉各自主要钢种。

答:A弹簧的性能:1 具有高的强度极限,高的屈强比σs/σb。2 具有高的疲劳极限。3 具有良好的表面状态。4 具有较好的工艺性能弹簧钢的化学成分特点:1 碳含量(碳素弹簧钢的碳含量一般为

0.8%~0.9%,合金弹簧钢的碳含量为0.45%~0.7%。)2 加入Si、Mn (Si和Mn是弹簧钢中经常采用

的合金元素,目的是提高淬透性、固溶强化铁素体、提高钢的回火稳定性。)3 加入Cr、W、V、Nb 克服硅锰弹簧钢的不足(Cr、W、V、Nb为碳化物形成元素,它们可以防止过热(细化晶粒)和脱碳,从而保证重要用途弹簧具有高的弹性极限和屈服极限。)4 弹簧钢的纯度对疲劳强度有很大影响,因此,弹簧钢均为优质钢(P≤0.04%,S≤0.04%)或高级优质钢(P≤0.035%,S≤0.035%)。弹簧钢的热处理特点:弹簧钢的热处理一般为淬火+中温回火。B调质钢的基本特点:①具有中等的碳含量;

②热处理工艺为:淬火+500~650℃高温回火;③具有良好的强度、塑性及韧性配合。调质钢的合

金化及热处理的主要原则:①保证钢具有必需的淬透性,使零件在淬火后具有足够厚的马氏体层;

②钢在高温回火后能获得预期的综合机械性能。调质钢的化学成分:①碳含量一般在0.3~0.5%之间;

②主加合金元素:Si、Mn、Cr、Ni。③辅加合金元素:Mo、V、W、Ti、Al、B。④重要的调质钢一

般都含有多种合金元素。调质钢的组织:调质钢经淬火+高温回火后的金相组织是回火索氏体(多边形铁素体+粒状碳化物)。调质钢的热处理特点:调质钢在淬火+高温回火

六、GCr15钢是什么类型钢,它最终组织是什么?从性能要求角度谈为何采用此组织形态。

答:GCr15钢是轴承钢。轴承钢经淬火及回火后的组织为极细的回火马氏体、均匀分布的细粒状碳化物以及少量的残余奥氏体,硬度为62~66HRC。对于精密轴承,为了保证能长期存放和使用中不变形,在淬火后要立即进行“冷处理”,以使钢中未转变的残余奥氏体进一步发生转变。滚动轴承的性能要求:

1 高的淬硬性和必要的淬透性;

2 高的耐磨性;

3 高的接触疲劳性能;

4 高的弹性极限和一定的冲击

韧性;5 尺寸要精确而经久稳定;6 一定的抗腐蚀能力;7 良好的工艺性能。高碳为了保证轴承钢有高的硬度和耐磨性,Cr的作用是提高钢的淬透性和钢的耐腐蚀性能。碳化物能以细小质点均匀分布于钢基体组织中,既可提高钢的回火稳定性,又可提高钢的硬度,进而提高钢的耐磨性和接触疲劳强度。马氏体中的碳含量在0.45%-0.5%时,轴承钢既具有高硬度,又有良好的韧性,还具有最高的接触疲劳寿命。淬火后应立即回火,以消除内应力,提高韧性、稳定组织和尺寸。

七、滚动轴承钢的预先热处理和最终热处理分别是是什么?为什么采取预先热处理?

答:由于轴承钢是过共析钢,并且对碳化物的形状和分布要求较高,因此其预先热处理通常采用球化退火。

(球化退火温度范围为770~810℃,790℃最适宜)轴承钢的最终热处理是淬火加低温回火。

八、说明氮化钢及渗碳钢的合金化特点?

答:氮化钢:氮化物形成元素(如铝、钛、铌、钒、钼、铬、钨等)能在α相中形成微细的氮化物颗粒,对α相起强化作用。氮化物形成元素阻碍氮原子向内部扩散,减少氮化层的层深。非氮化物形成元素(如镍、硅、铜等)则阻碍氮原子的吸收,降低表面氮浓度,减少氮化层的深度。铬、钼、钒元素溶入马氏体中时,分别能使钢在400~500℃、500~600℃、550~650℃回火时保持高的强度。钼可使钢在510~580℃氮化长期保温和随后炉冷时不致产生回火脆化。渗碳钢:常加入的合金元素有Si、Mn、Cr、Ni、Mo、W、V、Ti、B等,可以提高钢材的淬透性和机件的强度和韧性;V、Ti可以细化奥氏体晶粒。碳化物形成元素对渗碳的作用:(a)增大钢表面吸收碳原子的能力;(b)增大渗碳层表面碳浓度;(c)阻碍碳在奥氏体中的扩散。前两因素加速渗碳,有利于渗碳层的加厚,而后一因素不利于渗碳层的加厚。总的效果是铬、锰、钼等元素加大渗碳层的厚度,钛减小渗碳层的厚度。非碳化物形成元素对渗碳的作用与碳化物形成元素相反:总的效果是镍、硅、铜等元素减慢渗碳,不利于渗碳层的加厚。碳化物形成元素含量过多,将在渗碳层中产生许多块状碳化物,造成表面脆性。所以合金元素的含量要适当。锰是一个较好的合金元素,既可以加速渗碳层增厚,又不过多提高渗碳层的含碳量。

对于一般零件:(1)渗碳层的含碳量限制为0.8~1.1%C;(2)渗碳层的深度控制在0.6~2.0mm之内。九、低合金工具钢中的主要合金元素是哪些?在钢中有什么作用?

答:a铬Cr是碳化物形成元素,提高过冷奥氏体的稳定性,增加淬透性。Cr阻止渗碳体型碳化物的聚集、长大,提高了马氏体的分解温度,从而有效地提高了钢的回火抗力。Cr还能防止Si的石墨化倾向。b 硅增加钢的淬透性,提高钢的回火稳定性。Si是石墨化元素,在高碳钢中,高温加热时引起脱碳和促进石墨化,必须同时添加W、Cr、Mn等,减少钢的脱碳倾向。c锰提高钢的淬透性,但Mn增加钢的过热倾向。d钨W在工具钢中形成较稳定的碳化物,阻止钢的过热,保证晶粒细化,有利于提高钢的耐磨性。e钒V比其他元素更为有效地阻止奥氏体晶粒长大,降低过热敏感性。

十一、根据高速钢的物理冶金原理,分析讨论碳和合金元素在高速钢中的作用规律。

答:所有的高速钢中,在退火状态下都含有M6C、M23C6。MC三种碳化物。典型的M6C型碳化物是Fe4W2C,钢中含有的Cr、Mo、V可溶解在M6C中,Mo、V可置换W;Cr可置换Fe、W,这就使M6C稳定

性不同。如Cr溶入M6C中,使M6C稳定性下降。典型的M23C6型碳化物是Cr23C6,其稳定性较差,淬火加热时,全部溶于奥氏体中,增加钢的淬透性。典型MC型碳化物是VC,也能溶解少量的W、Mo、Cr等元素。在高温回火过程中析出,使高速钢产生弥散强化,从而使钢具有高的耐磨性。高速钢在回火过程中,当温度超过500℃时,自马氏体中析出W2C、Mo2C,引起钢的弥散硬化。当回火温度超过650℃时,则析出M6C及M7C3,它们容易聚集长大,使钢的硬度下降。

十二、叙述18-4-1高速钢从液态冷凝至室温时发生的反应和铸态显微组织特征。为什么高速钢在热处理之前一定要大量地热加工?

答:高速钢的铸态组织常常由鱼骨状莱氏体(Ld)、中心黑色的共析体、白亮的马氏体和残余奥氏体组成。

高速钢锻造以后,必须进行球化退火,其目的不仅在于降低钢的硬度,以利切削加工,而且也为以后的淬火作组织上的准备。高速钢在空气中冷却即可进行马氏体转变。18-4-1钢的AC1温度是820-860℃,故退火温度为860℃~880℃。在该温度保温2~3h,大部分合金碳化物未溶入奥氏体中,此时奥氏体中合金元素含量不多,冷却时易于转变为粒状珠光体和剩余碳化物。为什么:高速钢的铸态组织很不均匀。大量不均匀分布的粗大碳化物,将造成强度及韧性的下降。这种缺陷不能用热处理工艺来矫正,必须借助于反复压力热加工(锻、轧),将粗大的共晶碳化物和二次碳化物破碎,并使其均匀分布在基体内。

十三、高速钢18-4-1的最终热处理的加热温度为什么高达1280摄氏度?在加热过程中为什么要在600-650摄氏度和800-850摄氏度进行二次预热保温?

答:18-4-1钢的淬火温度1280℃是因为淬火温度越高,合金元素溶入奥氏体的数量越多,淬火之后马氏体的合金浓度越高。只有合金含量高的马氏体才具有高的回火稳定性,在高温回火时析出弥散合金碳化

物产生二次硬化使钢具有高的硬度和红硬性。温度超过1300℃时,各元素的溶解量虽还有增加,但奥氏体晶粒则急剧长大,甚至在晶界处发生溶化现象。使淬火钢的韧性大大下降。所以,1280℃作为淬火温度。由于高速钢的导热性差而淬火温度又极高,为减少工件在加热时的变形开裂和缩短高温保持时间,减少脱碳,可采用预热。一次预热在800-850℃二次预热在800-850℃前加一次500-600℃预热。十六、合金元素与碳的亲和力与什么条件有关?列举几种强、中等强、若碳化物形成元素。

答:碳化物在钢中的相对稳定性取决于合金元素与碳的亲和力的大小,即取决于合金元素d层电子数。金属元素的d层电子数越少,它与碳的亲和力就越大,所析出的碳化物在钢中就越稳定。Hf > Zr > Ti > Ta > Nb > V > W > Mo > Cr > Mn > Fe 铪、锆、钛、铌、钒是强碳化物形成元素,形成最稳定的MC 型碳化物;钨、钼、铬是中等强碳化物形成元素;锰、铁是弱碳化物形成元素。

十七、什么是第一类回火脆性?第一类回火脆性产生的原因是什么?如何防止第一类回火脆性的产生?

答:淬火钢在250-400 ℃回火后出现的脆性,称为低温回火脆性,又叫第一类回火脆性。产生第一类回火脆性的原因:1.由于马氏体分解时沿马氏体板条或片的界面析出断续的碳化物,降低晶界的断裂强度;2.杂质元素在原奥氏体晶界的偏聚,使晶界强度进一步降低;3.板条相界残余奥氏体薄膜的失稳分解。抑制第一类回火脆性的方法:1.推迟Fe3C的形核与长大;2.减少杂质元素的含量或改变其分布;

十九、什么是控制轧制?控制轧制的目的是什么?请详细描述控制轧制的整个过程以及每个阶段晶粒大小的变化。

答:控制轧制:在热轧过程中,通过对金属加热、轧制和冷却的合理控制,使范性形变与固态相变过程相结合,以获得良好的晶粒组织,使钢材具有优异的综合性能的轧制技术。控制轧制是高温形变热处理的一种派生形式,其主要目的是细化晶粒组织,从而提高热轧钢的强韧性。

控制轧制主要由三个阶段组成:①高温下的再结晶区变形;②在紧靠Ar3以上的低温无再结晶区变形;③在奥氏体+铁素体两相区变形。

阶段1:使粗大的奥氏体(a)多次变形和再结晶而细化(b),但是这时由γ转变的铁素体仍较粗大(bˊ);

阶段2:在伸长而未再结晶的奥氏体(c)内形成变形带,而且使铁素体在变形带以及γ晶界上形核,从而形成细小的α(cˊ);阶段3:在γ+α两相区的变形,继续阶段2的过程,此时铁素体也发生变形,从而形成亚结构。

19题图:

1.合金元素与碳的亲和力与

什么条件有关?列举几种强、中等强、若碳化物形成元素。答:碳化物在钢中的相对稳定性取决于合金元素与碳的亲和力的大小,即取决于合金元素d层电子数。金属元素的d层电子数越少,它与碳的亲和力就越大,所析出的碳化物在钢中就越稳定。Hf > Zr > Ti > Ta > Nb > V > W > Mo > Cr > Mn > Fe 铪、锆、钛、铌、钒是强碳化物形成元素,形成最稳定的MC型碳化物;钨、钼、铬是中等强碳化物

形成元素;锰、铁是弱碳化物形成元素。

二十、什么是双相钢?双相钢有哪些优点?其原因是什么?获得双相钢的方法有哪些?

答:所谓双相不锈钢是在其固淬组织中铁素体相与奥氏体相各占一半,一般最少相的含量也许要达到30%。

双相钢的组织为:铁素体+马氏体(岛状)+少量的残余奥氏体。

双相钢性能的特点为:l具有连续强度的σ-ε曲线;2 低的屈服强度,一般不超过350 Mpa;3 高的应变硬化速率和优良的抗拉强度与塑性的配合。

双相钢优异性能的原因:低屈服强度和高应变硬化率的原因存在三种可能:首先,在马氏体区域存在残余应力,这些应力来源于快速冷却时马氏体相变的体积和形状变化。其次,由于这些体积和形状变化效应,使周围铁素体经受塑性变形,导致铁素体中存在高密度的可动位错。再次,伴随着马氏体的残余奥氏体,在成形操作时,发生应变诱发马氏体相变。所有这些原因,均引起起始屈服发生在较低应力水平下,同时这些过程进行时,进一步塑性变形所需应力迅速增加。

双相组织的获得方法

1、热处理双相处理(退火双相钢)

钢在(α+γ)两相区加热退火,然后空冷或快冷,得到铁素体+马氏体组织。

2、热轧双相钢

生产双相钢的另一工艺是热轧后,控制冷却,使钢形成80~90%的细小多边形铁素体。在剩余奥氏体岛中C和一些合金元素富化,促使奥氏体岛的稳定,因此它既不转变为珠光体,也不转变为贝氏体,而是在较低相变温度下形成M-A组成体。

2、高速钢的热处理工艺比较复杂,试回答下列问题:(12分,每小题3分)

1)淬火加热时,为什么要预热?

2)高速钢W6Mo5Cr4V2的A C1在800℃左右,但淬火加热温度在1200~1240℃,淬火加热温度为什么这样高?

3)高速钢回火工艺一般为560℃左右,并且进行三次,为什么?

4)淬火冷却时常用分级淬火,分级淬火目的是什么?

1)高速钢合金量高,特别是W,钢导热性很差。预热可减少工件加热过程中的变形开裂倾向;缩短高温保温时间,减少氧化脱碳;可准确地控制炉温稳定性。

2)因为高速钢中碳化物比较稳定,必须在高温下才能溶解。而高速钢淬火目的是获得高合金度的马氏体,在回火时才能产生有效的二次硬化效果。

3)由于高速钢中高合金度马氏体的回火稳定性非常好,在560℃左右回火,才能弥散析出特殊碳化物,产生硬化。同时在560℃左右回火,使材料的组织和性能达到了最佳状态。一次回火使大部分的残留奥氏体发生了马氏体转变,二次回火使第一次回火时产生的淬火马氏体回火,并且使残留奥氏体更多地转变为马氏体,三次回火可将残留奥氏体控制在合适的量,并且使内应力消除得更彻底。

4)分级淬火目的:降低热应力和组织应力,尽可能地减小工件的变形与开裂

试分析20CrMnTi钢碳及合金元素的作用,说明常用热处理工艺,指出性能特点及应用。

常用的中淬透性渗碳钢,具有良好的综合力学性能,低温冲击韧度较高,晶粒长大倾向小,冷加工性能均好。应用:一般制造截面较大且承受重载荷的重要渗碳零件,如高负荷的齿轮,涡轮,蜗杆,周,转向器轴承等。

金属材料学基础试题及答案

金属材料的基本知识综合测试 一、判断题(正确的填√,错误的填×) 1、导热性好的金属散热也好,可用来制造散热器等零件。() 2、一般,金属材料导热性比非金属材料差。() 3、精密测量工具要选用膨胀系数较大的金属材料来制造。() 4、易熔金属广泛用于火箭、导弹、飞机等。() 5、铁磁性材料可用于变压器、测量仪表等。() 6、δ、ψ值越大,表示材料的塑性越好。() 7、维氏硬度测试手续较繁,不宜用于成批生产的常规检验。() 8、布氏硬度不能测试很硬的工件。() 9、布氏硬度与洛氏硬度实验条件不同,两种硬度没有换算关系。() 10、布氏硬度试验常用于成品件和较薄工件的硬度。 11、在F、D一定时,布氏硬度值仅与压痕直径的大小有关,直径愈小,硬度值愈大。() 12、材料硬度越高,耐磨性越好,抵抗局部变形的能力也越强。() 13、疲劳强度是考虑交变载荷作用下材料表现出来的性能。() 14、20钢比T12钢的含碳量高。() 15、金属材料的工艺性能有铸造性、锻压性,焊接性、热处理性能、切削加工性能、硬度、强度等。() 16、金属材料愈硬愈好切削加工。() 17、含碳量大于0.60%的钢为高碳钢,合金元素总含量大于10%的钢为高合金钢。() 18、T10钢的平均含碳量比60Si2Mn的高。() 19、一般来说低碳钢的锻压性最好,中碳钢次之,高碳钢最差。() 20、布氏硬度的代号为HV,而洛氏硬度的代号为HR。() 21、疲劳强度是考虑交变载荷作用下材料表现出来的性能。() 22、某工人加工时,测量金属工件合格,交检验员后发现尺寸变动,其原因可能是金属材料有弹性变形。() 二、选择题 1、下列性能不属于金属材料物理性能的是()。 A、熔点 B、热膨胀性 C、耐腐蚀性 D、磁性 2、下列材料导电性最好的是()。 A、铜 B、铝 C、铁烙合金 D、银 3、下列材料导热性最好的是()。 A、银 B、塑料 C、铜 D、铝 4、铸造性能最好的是()。 A、铸铁 B、灰口铸铁 C、铸造铝合金 D、铸造铝合金 5、锻压性最好的是()。

南航金属材料学期末考试重点(带答案)

1.试述碳素钢中C的作用。(书上没有,百度的) 答:随C含量的增加,其强度和硬度增加,而塑性韧性和焊接性下降。当含碳量大于0.25时可焊性变差,故压力管道中一般采用含碳量小于0.25的钢。含碳量的增加,其球化和石墨化的倾向增加。 2.描述下列元素在普通碳素钢的作用:(a)锰、(b)硫、(c)磷、(d)硅。(P5、P6) 答:Mn在碳钢中的含量一般小于0.8%。可固溶,也可形成高熔点MnS(1600℃)夹杂物。 MnS在高温下具有一定的塑性,不会使钢发生热脆,加工后硫化锰呈条状沿轧向分布。 Si在钢中的含量通常小于0.5%。可固溶,也可形成SiO2夹杂物。夹杂物MnS、SiO2将使钢的疲劳强度和塑、韧性下降。S是炼钢时不能除尽的有害杂质。在固态铁中的溶解度极小。 S和Fe能形成FeS,并易于形成低熔点共晶。发生热脆 (裂)。P也是在炼钢过程中不能除尽的元素。磷可固溶于α-铁。但剧烈地降低钢的韧性,特别是低温韧性,称为冷脆。磷可以提高钢在大气中的抗腐蚀性能。S和P还可以改善钢的切削加工性能。 3.描述下列元素在普通碳素钢的作用:(a)氮、(b)氢、(c)氧。(P6) 答:N在α-铁中可溶解,含过饱和N的钢经受冷变形后析出氮化物—机械时效或应变时效,降低钢的性能。N可以与钒、钛、铌等形成稳定的氮化物,有细化晶粒和沉淀强化。H在钢中和应力的联合作用将引起金属材料产生氢脆。常见的有白点和氢致延滞断裂。 O在钢中形成硅酸盐2MnO?SiO2、MnO?SiO2或复合氧化物MgO?Al2O3、MnO?Al2O3。 4.为什么钢中的硫化锰夹杂要比硫化亚铁夹杂好? (P5) 答:硫化锰为高熔点的硫化物(1600),在高温下具有一定的塑性,不会使钢发生热脆。而硫化铁的熔点较低,容易形成低熔点共晶,沿晶界分布,在高温下共晶体将熔化,引起热脆。 5. 当轧制时,硫化锰在轧制方向上被拉长。在轧制板材时,这种夹杂的缺点是什么? (P5) 答:这些夹杂物将使钢的疲劳强度和塑性韧性下降,当钢中含有大量硫化物时,轧成钢板后会造成分层。 6.对工程应用来说,普通碳素钢的主要局限性是哪些? 答:弹性模量小,不能保证足够的刚度;抗塑性变形和断裂的能力较差;缺口敏感性及冷脆性较大;耐大气腐蚀和海水腐蚀性能差;含碳量高,没有添加合金元素,工艺性差. 7.列举五个原因说明为什么要向普通碳素钢中添加合金元素以制造合金钢? 答:提高淬透性;提高回火稳定性;使钢产生二次硬化;(老师课上只说了这三点) 8、哪些合金元素溶解于合金钢的铁素体?哪些合金元素分布在合金钢的铁素体和碳化物相之间?按照形成碳化物的倾向递增的顺序将它们列出。(P17—P18) 答:①Si、Al、Cr、W、Mo、V、Ti、P、Be、B、Nb、Zr、Ta②Ti、Zr、Nb、V、Mo、W、Cr 9、叙述1.0~1.8%锰添加剂强化普通碳素钢的机理。 答:①锰可以作为置换溶质原子形成置换固溶体,通过弹性应力场交互作用、电交互作用、化学交互作用阻碍位错运动;②增加过冷奥氏体稳定性,使C曲线右移,在同样的冷却条件下,可以得到片间距细小的珠光体,同时还可起到细化铁素体晶粒的作用,从而达到晶界强化的目的。③促进淬火效应。淬火后希望获得板条马氏体,造成位错型亚结构。 ④通过降低层错能,使位错易于扩展和形成层错,增加位错交互作用,防止交叉滑移。 10、合金元素V、Cr、W、Mo、Mn、Co、Ni、Cu、Ti、Al中哪些是铁素体形成元素?哪些是奥氏体形成元素?哪些能在α-Fe中形成无限固溶体?哪些能在γ-Fe 中形成无限固溶体?(P15-P16) 答:①V、Cr、W、Mo、Ti、Al②Mn、Co、Ni、Cu ③V、Cr、W、Mo、Ti、Al ④Mn、Co、Ni 11、钢中常见的碳化物类型主要有六种,例如M6C就是其中的一种,另外还有其它哪五种?哪一种碳化物最不稳定? 答:①MeX、Me2X、Me3X、Me7X3、Me23X6②Me3X

金属材料学考试题库

第一章钢中的合金元素 1、合金元素对纯铁γ相区的影响可分为哪几种 答:开启γ相区的元素:镍、锰、钴属于此类合金元素 扩展γ相区元素:碳、氮、铜属于此类合金元素 封闭γ相区的元素:钒、鈦、钨、钼、铝、磷、铬、硅属于此类合金元素 缩小γ相区的元素:硼、锆、铌、钽、硫属于此类合金元素 2、合金元素对钢γ相区和共析点会产生很大影响,请举例说明这种影响的作用 答:合金元素对α-Fe、γ-Fe、和δ-Fe的相对稳定性以及同素异晶转变温度A3和A4均有很大影响 A、奥氏体(γ)稳定化元素 这些合金元素使A3温度下降,A4温度上升,即扩大了γ相区,它包括了以下两种情况:(1)开启γ相区的元素:镍、锰、钴属于此类合金元素 (2)扩展γ相区元素:碳、氮、铜属于此类合金元素 B、铁素体(α)稳定化元素 (1)封闭γ相区的元素:钒、鈦、钨、钼、铝、磷、铬、硅 (2)缩小γ相区的元素:硼、锆、铌、钽、硫属于此类合金元素 3、请举例说明合金元素对Fe-C相图中共析温度和共析点有哪些影响 答: 1、改变了奥氏体相区的位置和共析温度 扩大γ相区元素:降低了A3,降低了A1 缩小γ相区元素:升高了A3,升高了A1 2、改变了共析体的含量 所有的元素都降低共析体含量 第二章合金的相组成 1、什么元素可与γ-Fe形成固溶体,为什么

答:镍可与γ-Fe形成无限固溶体 决定组元在置换固溶体中的溶解条件是: 1、溶质与溶剂的点阵相同 2、原子尺寸因素(形成无限固溶体时,两者之差不大于8%) 3、组元的电子结构(即组元在周期表中的相对位置) 2、间隙固溶体的溶解度取决于什么举例说明 答:组元在间隙固溶体中的溶解度取决于: 1、溶剂金属的晶体结构 2、间隙元素的尺寸结构 例如:碳、氮在钢中的溶解度,由于氮原子小,所以在α-Fe中溶解度大。 3、请举例说明几种强、中等强、弱碳化物形成元素 答:铪、锆、鈦、铌、钒是强碳化物形成元素;形成最稳定的MC型碳化物钨、钼、铬是中等强碳化物形成元素 锰、铁、铬是弱碳化物形成元素 第四章合金元素和强韧化 1、请简述钢的强化途径和措施 答:固溶强化 细化晶粒强化 位错密度和缺陷密度引起的强化 析出碳化物弥散强化 2、请简述钢的韧化途径和措施 答:细化晶粒 降低有害元素含量 调整合金元素含量

最新金属材料学课后习题总结

习题 第一章 1、何时不能直接淬火呢?本质粗晶粒钢为什么渗碳后不直接淬火?重结晶为什么可以细化晶粒?那么渗碳时为什么不选择重结晶温度进行A化? 答:本质粗晶粒钢,必须缓冷后再加热进行重结晶,细化晶粒后再淬火。晶粒粗大。A 形核、长大过程。影响渗碳效果。 2、C是扩大还是缩小奥氏体相区元素? 答:扩大。 3、Me对S、E点的影响? 答:A形成元素均使S、E点向左下方移动。F形成元素使S、E点向左上方移动。 S点左移—共析C量减小;E点左移—出现莱氏体的C量降低。 4、合金钢加热均匀化与碳钢相比有什么区别? 答:由于合金元素阻碍碳原子扩散以及碳化物的分解,因此奥氏体化温度高、保温时间长。 5、对一般结构钢的成分设计时,要考虑其M S点不能太低,为什么? 答:M量少,Ar量多,影响强度。 6、W、Mo等元素对贝氏体转变影响不大,而对珠光体转变的推迟作用大,如何理解? 答:对于珠光体转变:Ti, V:主要是通过推迟(P转变时)K形核与长大来提高过冷γ的稳定性。 W,Mo: 1)推迟K形核与长大。 2)增加固溶体原子间的结合力,降低Fe的自扩散系数,增加Fe的扩散激活能。 3)减缓C的扩散。 对于贝氏体转变:W,Mo,V,Ti:增加C在γ相中的扩散激活能,降低扩散系数,推迟贝氏体转变,但作用比Cr,Mn,Ni小。 7、淬硬性和淬透性 答:淬硬性:指钢在淬火时硬化能力,用淬成马氏体可能得到的最高硬度表示。 淬透性:指由钢的表面量到钢的半马氏体区组织处的深度。 8、C在γ-Fe与α-Fe中溶解度不同,那个大? 答:γ-Fe中,为八面体空隙,比α-Fe的四面体空隙大。 9、C、N原子在α-Fe中溶解度不同,那个大? 答:N大,因为N的半径比C小。 10、合金钢中碳化物形成元素(V,Cr,Mo,Mn等)所形成的碳化物基本类型及其相对稳定性。 答:V:MC型;Cr:M7C3、M23C6型;Mo:M6C、M2C、M7C3型;Mn:M3C型。 复杂点阵:M23C6、M7C3、M3C、稳定性较差;简单点阵:M2C、MC、M6C稳定性好。 11、如何理解二次硬化与二次淬火? 答:二次硬化:含高W、Mo、Cr、V钢淬火后回火时,由于析出细小弥散的特殊碳化物及回火冷却时A’转变为M回,使硬度不仅不下降,反而升高的现象称二次硬化。 二次淬火:在高合金钢中回火冷却时残余奥氏体转变为马氏体的现象称为二次淬火。

金属材料学复习资料

金属材料学复习资料 题型:判断,选择,简答,问答 第一章 1.要清楚的三点: 1)同一零件可用不同材料及相应工艺。例:调质钢;工具钢 代用 调质钢:在机械零件中用量最大,结构钢在淬火高温回火后具有良好的综合力学性能,有较高的强韧性。适用于这种处理的钢种成为调质钢。调质钢的淬透性原则,指淬透性相同的同类调质钢可以互相代用。 2)同一材料,可采用不同工艺。例:T10钢,淬火有水、水- 油、分级等。强化工艺不同,组织有差别,但都能满足零件要求。力求最佳的强化工艺。 淬火冷却方式常用水-油双液淬火、分级淬火。成本低、工艺性能好、用量大。 3)同一材料可有不同的用途。例:602有时也可用作模具。低合 金工具钢也可做主轴,15也可做量具、模具等。 602是常用的硅锰弹簧钢,主要用于汽车的板弹簧。低合金工具钢可制造工具尺寸较大、形状比较复杂、精度要求相对较高的模具。15只在对非金属夹杂物要求不严格时,制作切削

工具、量具和冷轧辊等。 2.各种强化机理(书24页) 钢强化的本质机理:各种途径增大了位错滑移的阻力,从而提高了钢的塑性变形抗力,在宏观上就提高了钢的强度。 1)固溶强化:原子固溶于钢的基体中,一般都会使晶格发生畸 变,从而在基体中产生弹性应力场,弹性应力场与位错的交互作用将增加位错运动的阻力。从而提高强度,降低塑韧性。 2)位错强化:随着位错密度的增大,大为增加了位错产生交割、 缠结的概率,所以有效阻止了位错运动,从而提高了钢的强度。但在强化的同时,也降低了伸长率,提高了韧脆转变温度。 3)细晶强化:钢中的晶粒越细,晶界、亚晶界越多,可有效阻 止位错运动,并产生位错塞积强化。细晶强化既提高了钢的强度,又提高了塑性和韧度,所以是最理想的强化方法。 4)第二相强化:钢中微粒第二相对位错有很好的钉扎作用,位 错通过第二相要消耗能量,从而起到强化效果。 根据位错的作用过程,分为切割机制和绕过机制。 根据第二相形成过程,分为回火时第二相弥散沉淀析出强化; 淬火时残留第二相强化。

金属材料学总结

第一章 1、为什么钢中的硫和磷一般情况下总是有害的?控制硫化物形态的方法有哪些? 答:S与Fe形成FeS,会导致钢产生热脆;P与形成Fe3P,使钢在冷加工过程中产生冷脆性,剧烈降低钢的韧性,使钢在凝固时晶界处发生偏析。 硫化物形态控制:a、加入足量的锰,形成高熔点MnS;b、控制钢的冷却速度;c、改善其形态最好为球状,而不是杆状,控制氧含量大于0.02%;d、加入变形剂,使其在金属中扩散开防止聚焦产生裂纹。 2、钢的强化机制有哪些?为什么一般钢的强化工艺采用淬火加回火?答:a、固溶强化(合金中形成固溶体、晶格畸变、阻碍位错运动、强化) b、细晶强化(晶粒细化、晶界增多、位错塞积、阻碍位错运动、强化) c、加工硬化(塑性变形、位错缠绕交割、阻碍位错运动、强化) d、弥散强化(固溶处理的后的合金时效处理、脱溶析出第二相、弥散分布在基体上、与位错交互作用、阻碍位错运动、强化) 淬火处理得到强硬相马氏体,提高钢的强度、硬度,使钢塑性降低;回火可有效改善钢的韧性。淬火和回火结合使用提高钢的综合性能。 3、按照合金化思路,如何改善钢的韧性? 答:a、加入可细化晶粒的元素Mo、W、Cr; b、改善基体韧性,加Ni元素;

c、提高冲击韧性,加Mn、Si元素; d、调整化学成分; e、形变热处理; f、提高冶金质量; g、加入合金元素提高耐回火性,以提高韧性。 4、试解释40Cr13属于过共析钢,Cr12钢中已出现共晶组织,属于莱氏体钢。 答、Cr元素使共析点左移,当Cr量达到一定程度时,共析点左移到碳含量小于0.4%,所以40Cr13属于过共析钢;Cr12中含有高于12%的Cr元素,缩小Fe-C平衡相图的奥氏体区,使共析点右移。 5、试解释含Mn钢易过热,而含Si钢高淬火加热温度应稍高,且冷作硬化率高,不利于冷变性加工。 答:Mn在一定量时会促使晶粒长大,而过热就会使晶粒长大。 6、合金钢中碳化物形成规律①②③④⑤⑥⑦ 答:①、K类型:与Me的原子半径有关;②、相似相容原理;③、强碳化物形成元素优先于碳结合形成碳化物;④、NM/NC比值决定了K类型;⑤、碳化物稳定型越好,溶解越难,析出越难,聚集长大也越难。 第二章 1、简述工程钢一般服役条件、加工特点和性能要求。 答:服役条件:静载、无相对运动、受大气腐蚀。 加工特点:简单构件是热轧或正火状态,空气冷却,有焊接、剪切、

金属材料学复习思考题及答案

第一章钢的合金化原理 1.名词解释 1)合金元素: 特别添加到钢中为了保证获得所要求的组织结构从而得到一定的物理、化学或机械性能的化学元素。(常用M来表示) 2)微合金元素: 有些合金元素如V,Nb,Ti, Zr和B等,当其含量只在0.1%左右(如B, 0.001%;V,0.2 %)时,会显著地影响钢的组织与性能,将这种化学元素称为微合金元素。 3)奥氏体形成元素:在γ-Fe中有较大的溶解度,且能稳定γ相;如 Mn, Ni, Co, C, N, Cu; 4)铁素体形成元素: 在α-Fe中有较大的溶解度,且能稳定α相。如:V, Nb, Ti 等。5)原位析出: 元素向渗碳体富集,当其浓度超过在合金渗碳体中的溶解度时, 合金渗碳体就在原位转变成特殊碳化物如Cr钢中的Cr: ε-Fe x C→Fe3C→(Fe, Cr)3C→(Cr, Fe)7C3→(Cr, Fe)23C6 6)离位析出:在回火过程中直接从α相中析出特殊碳化物,同时伴随着渗碳体的溶解,可使硬度和强度提高(二次硬化效应)。如 V,Nb, Ti等都属于此类型。 2.合金元素V、Cr、W、Mo、Mn、Co、Ni、Cu、Ti、Al中哪些是铁素体形成元素?哪些是奥氏体形成元素?哪些能在α-Fe中形成无限固溶体?哪些能在γ-Fe 中形成无限固溶体? 答:铁素体形成元素:V、Cr、W、Mo、Ti、Al; 奥氏体形成元素:Mn、Co、Ni、Cu; 能在α-Fe中形成无限固溶体:V、Cr; 能在γ-Fe 中形成无限固溶体:Mn、Co、Ni 3.简述合金元素对扩大或缩小γ相区的影响,并说明利用此原理在生产中有何意义?(1)扩大γ相区:使A3降低,A4升高一般为奥氏体形成元素 分为两类:a.开启γ相区:Mn, Ni, Co 与γ-Fe无限互溶. b.扩大γ相区:有C,N,Cu等。如Fe-C相图,形成的扩大的γ相区,构成了钢的热处理的基础。 (2)缩小γ相区:使A3升高,A4降低。一般为铁素体形成元素 分为两类:a.封闭γ相区:使相图中γ区缩小到一个很小的面积形成γ圈,其结果使δ相区与α相区连成一片。如V, Cr, Si, A1, Ti, Mo, W, P, Sn, As, Sb。 b.缩小γ相区:Zr, Nb, Ta, B, S, Ce 等 (3)生产中的意义:(请补充)。 4.简述合金元素对铁碳相图(如共析碳量、相变温度等)的影响。 答:1)改变了奥氏体区的位置:(请补充) 2)改变了共晶温度:(l)扩大γ相区的元素使A1,A3下降;如:(请补充)

材料科学基础知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,

金属材料学 简要总结

《金属材料学》复习总结 第1章:钢的合金化概论 一、名词解释: 合金化:未获得所要求的组织结构、力学性能、物理性能、化学性能或工艺性能而特别在钢铁中加入某些元素,称为合金化。 过热敏感性:钢淬火加热时,对奥氏体晶粒急剧长大的敏感性。 回火稳定性:淬火钢在回火时,抵抗强度、硬度下降的能力。 回火脆性:淬火钢回火后出现韧性下降的现象。 二、填空题: 1.合金化理论是金属材料成分设计和工艺过程控制的重要原理,是材料成分、工艺、组织、 性能、应用之间有机关系的根本源头,也是重分发结材料潜力和开发新材料的基本依据。 2.扩大A相区的元素有:Ni、Mn、Co(与Fe -γ无限互溶);C、N、Cu(有限互溶); α无限互溶);Mo、W、Ti(有限互溶); 扩大F相区的元素有:Cr、V(与Fe - 缩小F相区的元素有:B、Nb、Zr(锆)。 3.强C化物形成元素有:Ti、Zr、Nb、V; 弱C化物形成元素有:Mn、Fe; 4.强N化物形成元素有:Ti、Zr、Nb、V; 弱N化物形成元素有:Cr、Mn、Fe; 三、简答题: 1.合金钢按照含量的分类有哪些?具体含量是多少?按含碳量划分又如何? ●按照合金含量分类:低合金钢:合金元素总量<5%; 中合金钢:合金元素总量在5%~10%; 高合金钢:合金元素总量>10%; ●按照含碳量的分类:低碳钢:w c≤0.25%; 中碳钢:w c=0.25%~0.6%; 高碳钢:w c>0.6%; 2.加入合金元素的作用? ①:与Fe、C作用,产生新相,组成新的组织与结构; ②:使性能改善。 3.合金元素对铁碳相图的S、E点有什么影响?这种影响意味着什么? (1)A形成元素均使S、E点向左下方移动,如Mn、Ni等; F形成元素均是S、E点向左上方移动,如Cr、V等 (2)S点向左下方移动,意味着共析C含量减小,使得室温下将得到A组织; E点向左上方移动,意味着出现Ld的碳含量会减小。 4.请简述合金元素对奥氏体形成的影响。 (1)碳化物形成元素可以提高碳在A中的扩散激活能,对A形成有一定阻碍作用; (2)非碳化物形成元素Ni、Co可以降低碳的扩散激活能,对A形成有一定加速作用。 (3)钢的A转化过程中存在合金元素和碳的均匀化过程,可以采用淬火加热来达到成 分均匀化。 5.有哪些合金元素强烈阻止奥氏体晶粒的长大?组织奥氏体晶粒长大有什么好处? (1)Ti、Nb、V等强碳化物形成元素会强烈阻止奥氏体晶粒长大,因为:Ti、Nb、V等

(完整版)金属材料学复习答案(完整)

第一章答案 1、为什么说钢中的S、P杂质元素总是有害的? 答:S容易和Fe结合成熔点为989℃的FeS相,会使钢产生热脆性;P和Fe结合形成硬脆的Fe3P相使钢在冷加工过程中产生冷脆性。 2、合金元素对Fe-C相图的S、E点有什么影响?这种影响意味着什么? 答:凡是扩大γ相区的元素均使S、E点向左下方移动,如Mn、Ni; 凡是封闭γ相区的元素均使S、E点向左上方移动,如Cr、Si、Mo。E点左移意味着出现莱氏体的碳含量减小;S点左移意味着共析碳含量减小。 3、那些合金元素能够显著提高钢的淬透性?提高钢的淬透性有什么作用? 答:B、Mn、Mo、Cr、Si、Ni等元素能够显著提高钢的淬透性。提高钢的淬透性一方面可以使工件得到均匀而良好的力学性能,满足技术要求;另一方面在淬火时,可以选用比较缓和的冷却介质以减小零件的变形和开裂的倾向。 4、为什么说合金化的基本原则是“复合加入”?举二例说明合金复合作用的机 理。 答:1.提高性能,如淬透性;2.扬长避短,合金元素能对某些方面起积极作用,但往往还有些副作用,为了克服不足,可以加入另一些合金元素弥补,如Si-Mn,Mn-V;3.改善碳化物的类型和分布,某些合金元素改变钢中碳化物的类型和分布或改变其他元素的存在形式和位置,从而提高钢的性能,如耐热钢中Cr-Mo-V,高速钢中V-Cr-W。 5、合金元素提高钢的韧度主要有哪些途径? 答:1.细化A晶粒;2.提高钢的回火稳定性;3.改善机体韧度;4.细化碳化物;5.降低或消除钢的回火脆性;6.在保证强度水平下适当降低碳含量;7.提高冶金质量;8.通过合金化形成一定量的残余A,利用稳定的残余A提高钢的韧度。 6、钢的强化机制有那些?为什么一般的强化工艺都采用淬火-回火? 答:固溶强化、细晶强化、位错强化、第二相强化。因为一般的钢的强化都要求它有一定的强度的同时又要保持一定的任性,淬火后钢中能够形成M,这给了钢足够的强度,但是带来的后果就是韧度不够,而回火能够在强度降低不大的情况下给淬火钢以足够的韧性,这样能够得到综合力学性能比较优良的材料,所以一般钢的强化工艺都采用淬火加回火。 7、铁置换固溶体的影响因素? 答:1.溶剂与溶质的点阵结构;2.原子尺寸因素;3.电子结构。 第二章 1、叙述构件用钢一般的服役条件、加工特点、性能要求? 答:服役条件:工程结构件长期受静载荷;互相无相对运动;受大气(海水)侵蚀;

最新金属材料学考试题库资料

精品文档钢中的合金元素第一章 相区的影响可分为哪几种?1、合金元素对纯铁γ相区的元素:镍、锰、钴属于此类合金元素答:开启γ相区元素:碳、氮、铜属于此类合金元素扩展γ相区的元素:钒、鈦、钨、钼、铝、磷、铬、硅属于此类合金元素封闭γ相区的元素:硼、锆、铌、钽、硫属于此类合金元素缩小γ 2、合金元素对钢γ相区和共析点会产生很大影响,请举例说明这种影响的作用均A4δ-Fe的相对稳定性以及同素异晶转变温度A3和答:合金元素对α-Fe、γ-Fe、和有很大影响)稳定化元素A、奥氏体(γ它包括了以下两种情况:温度上升,即扩大了γ相区,A4 这些合金元素使A3温度下降,相区的元素:镍、锰、钴属于此类合金元素(1)开启γ相区元素:碳、氮、铜属于此类合金元素(2)扩展γ)稳定化元素B、铁素体(α相区的元素:钒、鈦、钨、钼、铝、磷、铬、硅1)封闭γ()缩小2γ相区的元素:硼、锆、铌、钽、硫属于此类合金元素(、请举例说明合金元素对Fe-C相图中共析温度和共析点有哪些影响?3 答: 1、改变了奥氏体相区的位置和共析温度A1 A3,降低了γ扩大相区元素:降低了A1 A3,升高了缩小γ相区元素:升高了 2、改变了共析体的含量所有的元素都降低共析体含量 合金的相组成第二章 形成固溶体,为什么?1、什么元素可与γ-Fe 形成无限固溶体答:镍可与γ-Fe 决定组元在置换固溶体中的溶解条件是:、溶质与溶剂的点阵相同1 )2、原子尺寸因素(形成无限固溶体时,两者之差不大于8% 、组元的电子结构(即组元在周期表中的相对位置)3 2、间隙固溶体的溶解度取决于什么?举例说明 答:组元在间隙固溶体中的溶解度取决于: 1、溶剂金属的晶体结构 2、间隙元素的尺寸结构 例如:碳、氮在钢中的溶解度,由于氮原子小,所以在α-Fe中溶解度大。 3、请举例说明几种强、中等强、弱碳化物形成元素 答:铪、锆、鈦、铌、钒是强碳化物形成元素;形成最稳定的MC型碳化物 钨、钼、铬是中等强碳化物形成元素 锰、铁、铬是弱碳化物形成元素 精品文档. 精品文档 第四章合金元素和强韧化 1、请简述钢的强化途径和措施 答:固溶强化 细化晶粒强化 位错密度和缺陷密度引起的强化 析出碳化物弥散强化 2、请简述钢的韧化途径和措施 答:细化晶粒 降低有害元素含量 调整合金元素含量 降低钢中含碳量

材料科学基础试题及答案

第一章 原子排列与晶体结构 1. fcc 结构的密排方向是 ,密排面是 ,密排面的堆垛顺序是 ,致密度为 ,配位数是 ,晶胞中原子数为 ,把原子视为刚性球时,原子的半径r 与点阵常数a 的关系是 ;bcc 结构的密排方向是 ,密排面是 ,致密度为 ,配位数是 ,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 ;hcp 结构的密排方向是 ,密排面 是 ,密排面的堆垛顺序是 ,致密度为 ,配位数是 ,, 晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 。 2. Al 的点阵常数为0.4049nm ,其结构原子体积是 ,每个晶胞中八面体间隙数为 ,四面体间隙数为 。 3. 纯铁冷却时在912ε 发生同素异晶转变是从 结构转变为 结构,配位数 ,致密度降低 ,晶体体积 ,原子半径发生 。 4. 在面心立方晶胞中画出)(211晶面和]211[晶向,指出﹤110﹥中位于(111)平 面上的方向。在hcp 晶胞的(0001)面上标出)(0121晶面和]0121[晶向。 5. 求]111[和]120[两晶向所决定的晶面。 6 在铅的(100)平面上,1mm 2有多少原子?已知铅为fcc 面心立方结构,其原子半径R=0.175×10-6mm 。 第二章 合金相结构 一、 填空 1) 随着溶质浓度的增大,单相固溶体合金的强度 ,塑性 ,导电性 ,形成间隙固溶体时,固溶体的点阵常数 。 2) 影响置换固溶体溶解度大小的主要因素是(1) ; (2) ;(3) ;(4) 和环境因素。 3) 置换式固溶体的不均匀性主要表现为 和 。 4) 按照溶质原子进入溶剂点阵的位置区分,固溶体可分为 和 。 5) 无序固溶体转变为有序固溶体时,合金性能变化的一般规律是强度和硬度 ,塑性 ,导电性 。 6)间隙固溶体是 ,间隙化合物是 。 二、 问答 1、 分析氢,氮,碳,硼在?-Fe 和?-Fe 中形成固溶体的类型,进入点阵中的位置和固溶度大小。已知元素的原子半径如下:氢:0.046nm ,氮:0.071nm ,碳:0.077nm ,硼:0.091nm ,?-Fe :0.124nm ,?-Fe :0.126nm 。 2、简述形成有序固溶体的必要条件。 第三章 纯金属的凝固 1. 填空 1. 在液态纯金属中进行均质形核时,需要 起伏和 起伏。 2 液态金属均质形核时,体系自由能的变化包括两部分,其中 自由能

金属材料学重点

1.为什么说钢中的S、P杂质元素在一般情况下总是有害的?S、P会导致钢的热脆和冷脆,并且容易在晶界偏聚,导致合金钢的第二类高温回火脆性,高温蠕变时的晶界脆断。S能形成FeS,其熔点为989℃,钢件在大于1000℃的热加工温度时FeS会熔化,所以易产生热脆;P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。 2.钢中的碳化物按点阵结构分为哪两大类?有什么特点?简单点阵结构和复杂点阵结构简单点阵结构的特点:硬度较高、熔点较高、稳定性较好;复杂点阵结构的特点:硬度较低、熔点较低、稳定性较差。 3.简述合金钢中碳化物形成规律。①当rC/rM>0.59时,形成复杂点阵结构;当rC/rM<0.59时,形成简单点阵结构;②相似者相溶:完全互溶:原子尺寸、电化学因素均相似;有限溶解:一般K都能溶解其它元素,形成复合碳化物。③NM/NC比值决定了碳化物类型④碳化物稳定性越好,溶解越难,析出难越,聚集长大也越难;⑤强碳化物形成元素优先与碳结合形成碳化物。 4.合金元素对Fe-C相图的S、E点有什么影响?这种影响意味着什么?A形成元素均使S、E点向左下方移动,F形成元素使S、E点向左上方移动。S点左移意味着共析碳量减小,E点左移意味着出现莱氏体的碳量降低。 5.试述钢在退火态、淬火态及淬火-回火态下,不同合金元素的分布状况。退火态:非碳化物形成元素绝大多数固溶于基体中,而碳化物形成元素视C和本身量多少而定。优先形成碳化物,余量溶入基体。淬火态:合金元素的分布与淬火工艺有关。溶入A体的因素淬火后存在于M、B中或残余A中,未溶者仍在K中。回火态:低温回火,置换式合金元素基本上不发生重新分布;>400℃,Me开始重新分布。非K形成元素仍在基体中,K形成元素逐步进入析出的K中,其程度取决于回火温度和时间。 6.有哪些合金元素强烈阻止奥氏体晶粒的长大?阻止奥氏体晶粒长大有什么好处?Ti、Nb、V等强碳化物形成元素(好处):能够细化晶粒,从而使钢具有良好的强韧度配合,提高了钢的综合力学性能。 7.哪些合金元素能显著提高钢的淬透性?提高钢的淬透性有何作用?在结构钢中,提高马氏体淬透性作用显著的元素从大到小排列:Mn、Mo、Cr、Si、Ni等。作用:一方面可以使工件得到均匀而良好的力学性能,满足技术要求;另一方面,在淬火时,可选用比较缓和的冷却介质,以减小工件的变形与开裂倾向。 8.能明显提高回火稳定性的合金元素有哪些?提高钢的回火稳定性有什么作用?Cr、Mn、Ni、Mo、W、V、Si作用:提高钢的回火稳定性,可以使得合金钢在相同的温度下回火时,比同样碳含量的碳钢具有更高的硬度和强度;或者在保证相同强度的条件下,可在更高的温度下回火,而使韧性更好些。 9.第一类回火脆性和第二类回火脆性是在什么条件下产生的?如何减轻和消除?第一类回火脆性:脆性特征:①不可逆;②与回火后冷速无关;③断口为晶界脆断。产生原因:钢在200-350℃回火时,Fe3C 薄膜在奥氏体晶界形成,削弱了晶界强度;杂质元素P、S、Bi等偏聚晶界,降低了晶界的结合强度。防止措施:①降低钢中杂质元素的含量;②用Al脱氧或加入Nb(铌)、V、Ti等合金元素细化奥氏体晶粒;③加入Cr、Si调整温度范围;④采用等温淬火代替淬火回火工艺。第二类回火脆性:脆性特征:①可逆;②回火后满冷产生,快冷抑制;③断口为晶界脆断。产生原因:钢在450-650℃回火时,杂质元素Sb、S、As或N、P等偏聚于晶界,形成网状或片状化合物,降低了晶界强度。高于回火脆性温度,杂质元素扩散离开了晶界或化合物分解了;快冷抑制了杂质元素的扩散。防止措施:①降低钢中的杂质元素;②加入能细化A晶粒的元素(Nb、V、Ti)③加入适量的Mo、W元素;④避免在第二类回火脆性温度范围回火 14.合金元素V在某些情况下能起到降低淬透性的作用,为什么?而对于40Mn2和42Mn2V,后者的淬透性稍大,为什么?钒和碳、氨、氧有极强的亲和力,与之形成相应的稳定化合物。钒在钢中主要以碳化物的形式存在。其主要作用是细化钢的组织和晶粒,降低钢的强度和韧性。当在高温溶入固溶体时,增加淬透性;反之,如以碳化物形式存在时,降低淬透性。 19.试解释40Cr13已属于过共析钢,而Cr12钢中已经出现共晶组织,属于莱氏体钢。①因为Cr属于封闭y相区的元素,使S点左移,意味着共析碳量减小,所以钢中含有Cr12%时,共析碳量小于0.4%,所以含0.4%C、13%Cr的40Cr13不锈钢就属于过共析钢。②Cr使E点左移,意味着出现莱氏体的碳含量减小。在Fe-C相图中,E点是钢和铁的分界线,在碳钢中是不存在莱氏体组织的。但是如果加入了12%

金属材料学复习 文九巴

1.钢中的杂质元素:O H S P 2.合金元素小于或等于5%为低合金钢,在5%-10%之间为中合金钢,大于10%为高合 金钢 3.奥氏体形成元素:Mn Ni Co(开启γ相区) C N Cu(扩展γ相区) 4.铁素体形成元素:Cr V Ti Mo W 5.间隙原子:C N B O H R溶质/R溶剂<0.59 6.碳化物类型:简单间隙碳化物MC M2C 复杂间隙碳化物M6C M23C M2C3 7.合金钢中常见的金属间化合物有σ相、AB2相和B2A相 8.二次硬化:淬火钢在回火时在一定温度下,由于特殊碳化物的析出的初期阶段,形 成[M-C]偏聚团,硬度不降低,反而升高的现象。 9.二次淬火:淬火钢在回火时,冷却过程残余奥氏体转变为马氏体的现象。 10.合金元素对铁碳相图的影响 1.改变奥氏体相区位置 2.改变共析转变温度 3.改变S和E等零界点的含碳量 11.合金元素对退火钢加热转变的影响 1.对奥氏体形成速度的影响中强碳化物形成元素与碳形成难溶于奥氏体的合金碳 化物,减慢奥氏体的形成速度 2.对奥氏体晶粒大小的影响大多数合金元素都有阻止奥氏体晶粒长大的作用,影 响程度不同。V Ti强碳化物和适量的AL强烈阻碍晶粒长大,他们的碳化物或氮化物熔点高,高温下稳定,不易聚集长大,能强烈阻碍奥氏体晶粒长大。 Wu Mo Cr中强碳化物也有阻碍作用,但是影响程度中等。Si Ni非碳化物形成

元素影响不大。Mn P等元素含量在一定限度下促进奥氏体晶粒长大 12.合金元素对淬火钢回火转变的影响 1.提高耐回火性合金元素在回火过程中推迟马氏体分解和残留奥氏体的转变;提 高铁素体在结晶温度,使碳化物难以聚集长大,从而提高钢的耐回火性。 2.淬火钢在回火时产生二次硬化和二次淬火,提高钢的性能。 3.对回火脆性的影响产生第一类回火脆性和第二类回火脆性,降低晶界强度,从 而使钢的脆性增加 13.钢的强化机制:固溶强化、细晶强化、形变强化和第二相强化 14.合金元素对钢在淬火回火状态下力学性能的影响 1.合金元素一般均能减缓钢的回火转变过程,特别是阻碍碳化物的聚集长大,相对 的提高钢中组成相的弥散度 2.合金元素溶解于铁素体,是铁素体强化,并提高了铁素体的再结晶温度。 3.强碳化物形成元素提高了钢的耐回火性,并产生沉淀强化的作用 4.钼、钨等有利于防止或消除第二类回火脆性 15.合金元素对钢高温力学性能的影响 1.可以净化晶界,使易熔杂质元素从晶界转移到晶界内,强化晶界 2.可以提高合金原子间的结合力,增大原子自扩散激活能 3.强碳化物形成元素的加入,可以对位错运动有阻碍作用,可提高合金的高温性能16.合金元素对钢热处理性能的影响 淬透性、淬硬性、变形开裂性、过热敏感性、氧化脱碳倾向和回火脆化倾向 17.合金元素对钢的焊接性能影响

金属材料学复习思考题及答案

安徽工业大学材料学院金属材料学复习题 一、必考题 1、金属材料学的研究思路是什么?试举例说明。 答:使用条件→性能要求→组织结构→化学成分 ↑ 生产工艺 举例略 二、名词解释 1、合金元素:添加到钢中为了保证获得所要求的组织结构从而得到一定的物理、化学或机械性能 的含量在一定范围内的化学元素。(常用M来表示) 2、微合金元素:有些合金元素如V,Nb,Ti, Zr和B等,当其含量只在0.1%左右(如B 0.001%, V 0.2 %)时,会显著地影响钢的组织与性能,将这些化学元素称为微合金元素。 3、奥氏体形成元素:使A3温度下降,A4温度上升,扩大γ相区的合金元素 4、铁素体形成元素:使A3温度上升,A4温度下降,缩小γ相区的合金元素。 5、原位析出:回火时碳化物形成元素在渗碳体中富集,当浓度超过溶解度后,合金渗碳体在原位 转变为特殊碳化物。 6、离位析出:回火时直接从过饱和α相中析出特殊碳化物,同时伴随有渗碳体的溶解。 7、二次硬化:在含有Mo、W、V等较强碳化物形成元素含量较高的高合金钢淬火后回火,硬度不 是随回火温度的升高而单调降低,而是在500-600℃回火时的硬度反而高于在较

低 温度下回火硬度的现象。 8、二次淬火:在强碳化物形成元素含量较高的合金钢中淬火后残余奥氏体十分稳定,甚至加热到 500-600℃回火时仍不转变,而是在回火冷却时部分转变成马氏体,使钢的硬度提高的现象。 9、液析碳化物:钢液在凝固时产生严重枝晶偏析,使局部地区达到共晶成分。当共晶液量很少时, 产生离异共晶,粗大的共晶碳化物从共晶组织中离异出来,经轧制后被拉成条带 状。由于是由液态共晶反应形成的,故称液析碳化物。 10、网状碳化物:过共析钢在热轧(锻)后缓慢冷却过程中,二次碳化物沿奥氏体晶界析出呈网 状分布,称为网状碳化物。 11、水韧处理:将高锰钢加热到高温奥氏体区,使碳化物充分溶入奥氏体中,并在此温度迅速水 冷,得到韧性好的单相奥氏体组织的工艺方式。 12、晶间腐蚀:金属材料在特定的腐蚀介质中沿着材料的晶界发生的一种局部腐蚀。 13、应力腐蚀:金属材料在特定的腐蚀介质和拉应力共同作用下发生的脆性断裂。 14、n/8规律:当Cr的摩尔分数每达到1/8,2/8,3/8……时,铁基固溶体的电极电位跳跃式地 增加,合金的腐蚀速度都相应有一个突然的降低,这个定律叫做n/8规律。 15、碳当量:将铸铁中的石墨元素(Si、P)都折合成C的作用所相当的总含碳量。 16、共晶度:铸铁实际含碳量与其共晶含碳量之比,它放映了铸铁中实际成分接近共晶成分的程度。 17、黄铜:以Zn为主要合金元素的铜合金。 18、锌当量系数:黄铜中每质量分数1%的合金元素在组织上替代Zn的量。 19、青铜:是Cu和Sn、Al、Si、Be、Mn、Zr、Ti等元素组成的合金的通称。 20、白铜:是以Ni为主要合金元素的铜合金。

金属材料学

名词解释 合金元素:特别添加到钢中为了保证获得所要求的组织结构从而得到一定的物理、化学或机 械性能的化学元素。(常用Me表示) 微合金元素:有些合金元素如V,Nb,Ti, Zr和B等,当其含量只在0.1%左右(如B 0.001%,V 0.2 %)时,会显著地影响钢的组织与性能,将这种化学元素称为微合金元素。 奥氏体形成元素:在γ-Fe中有较大的溶解度,且能稳定γ-Fe的元素C,N,Cu,Mn,Ni,Co,W 等 铁素体形成元素:在α-Fe中有较大的溶解度,且能α-Fe稳定的元素Cr,V,Si,Al,Ti,Mo等 原位析出:指在回火过程中,合金渗碳体转变为特殊碳化物。碳化物形成元素向渗碳体富集,当其浓度超过在合金渗碳体中的溶解度时, 合金渗碳体就在原位转变成特殊碳化物。如Cr 钢碳化物转变 异位析出:含强碳化物形成元素的钢,在回火过程中直接从过饱和α相中析出特殊碳化物,同时伴随着渗碳体的溶解,如V,Nb,Ti。(W和Mo既有原味析出又有异位析出) 网状碳化物:热加工的钢材冷却后,沿奥氏体晶界析出的过剩碳化物(过共析钢)或铁素 体(亚共析钢)形成的网状碳化物。 水韧处理:高锰钢铸态组织中沿晶界析出的网状碳化物显著降低钢的强度、韧性和抗磨性。将高锰钢加热到单相奥氏体温度范围,使碳化物完全溶入奥氏体,然后在水中快冷,使碳化 物来不及析出,从而获得获得单相奥氏体组织。(水韧后不再回火) 超高强度钢:用回火M或下B作为其使用组织,经过热处理后抗拉强度大于1400 MPa (或屈服强度大于1250MPa)的中碳钢,均可称为超高强度钢。 晶间腐蚀:沿金属晶界进行的腐蚀(已发生晶间腐蚀的金属在外形上无任何变化,但实际 金属已丧失强度) n/8规律:随着Cr含量的提高,钢的的电极电呈跳跃式增高。即当Cr的含量达到1/8,2/8,3/8,……原子比时,Fe的电极电位就跳跃式显著提高,腐蚀也跳跃式显著下降。这个定律 叫做n/8规律。 黄铜: Cu与Zn组成的铜合金 青铜: Cu与Zn、Ni以外的其它元素组成的铜合金 白铜: Cu与Ni组成的铜合金 灰口铸铁:灰口铸铁中碳全部或大部分以片状石墨形式存在,其断口呈暗灰色。(片状石墨 对基体产生割裂作用,并在尖端造成应力集中,故灰口铸铁力学性能较差) 可锻铸铁:可锻铸铁中的碳全部以或大部分以图案絮状的石墨形式存在,它是由一定成分的 白口铸铁经长时间高温石墨化退火而形成的。又称韧性铸铁。 蠕墨铸铁:蠕墨铸铁中的碳大部分以蠕虫状石墨形式存在。(高耐热性) 麻口铸铁::麻口铸铁中的碳一部分以渗碳体形式存在,另一部分以石墨形式存在,端口呈 黑白相间。(无实用价值)。 基体钢:指其成分含有高速钢淬火组织中除过剩余碳化物以外的基体化学成分的钢种。(高 强度高硬度,韧性和疲劳强度优于高速钢,可做冷热变形模具刚,也可作超高强度钢) 双相钢:是指显微组织主要是由铁素体和5%-20%体积分数的马氏体所组成的低合金高 强度结构钢,即在软相铁素体基体上分布着一定量的硬质相马氏体。 黑色组织:高速钢在实际铸锭凝固时,冷速>平均冷速。合金元素来不及扩散,在结晶和固 态相变过程中转变不能完全进行,共析转变形成δ共析体为两相组织,易被腐蚀,在金相组 织上呈黑色,而称作黑色组织。 低(中高)合金钢:合金元素总量小于5%的合金钢叫低合金钢。合金含量在5%-10%

相关文档
最新文档