压电陶瓷压电性能测定实验报告

合集下载

压电陶瓷性能实验报告

压电陶瓷性能实验报告

一、实验目的1. 了解压电陶瓷的基本性能、结构、用途、制备方法。

2. 掌握压电陶瓷常见的表征方法及检测手段。

3. 通过实验,掌握压电陶瓷的性能测试方法,并对实验数据进行处理和分析。

二、实验原理压电陶瓷是一种具有压电效应的陶瓷材料,当受到外力作用时,会在其表面产生电荷;反之,当施加电场时,压电陶瓷会产生形变。

压电陶瓷的性能主要包括压电系数、介电常数、损耗角正切、机械品质因数等。

三、实验材料与仪器1. 实验材料:压电陶瓷样品2. 实验仪器:(1)电容测微仪(2)机械标定仪(3)直流电源(4)扫描隧道显微镜(5)谐振法测定仪(6)准静态法测定仪四、实验步骤1. 样品准备:将压电陶瓷样品清洗干净,并用无水乙醇进行脱脂处理。

2. 压电陶瓷性能测试:(1)电容测微仪测试:将压电陶瓷样品固定在电容测微仪上,通过改变直流电压,观察样品的轴向变形和弯曲变形。

(2)谐振法测定:将压电陶瓷样品固定在谐振法测定仪上,测量样品的频率响应曲线和压电耦合系数。

(3)准静态法测定:将压电陶瓷样品固定在准静态法测定仪上,测量样品的压电常数d33。

3. 数据处理与分析:将实验数据输入计算机,进行数据处理和分析,得出压电陶瓷的性能参数。

五、实验结果与分析1. 电容测微仪测试结果:通过电容测微仪测试,得出压电陶瓷样品的轴向变形和弯曲变形与电压的关系曲线。

根据曲线,计算出样品的压电系数。

2. 谐振法测定结果:通过谐振法测定,得出压电陶瓷样品的频率响应曲线和压电耦合系数。

根据曲线,计算出样品的介电常数和损耗角正切。

3. 准静态法测定结果:通过准静态法测定,得出压电陶瓷样品的压电常数d33。

根据测定结果,分析样品的压电性能。

六、实验结论1. 压电陶瓷样品具有良好的压电性能,满足实验要求。

2. 实验过程中,通过电容测微仪、谐振法测定和准静态法测定,分别获得了压电陶瓷样品的轴向变形、弯曲变形、频率响应曲线、压电耦合系数、介电常数、损耗角正切和压电常数等性能参数。

压电陶瓷电特性测试与分析

压电陶瓷电特性测试与分析

摘要:通过对压电陶瓷器件进行阻抗测试可得到压电振子等效电路模型参数与谐振频率。

通过对压电陶瓷器件电容值、温度稳定性、绝缘电阻、介质耐电压等电性能参数进行测量与分析后可知:压电陶瓷器件电特性符合一般电容器特点,所用连接线材在较低频率下寄生电容不明显,在常温下工作较稳定,厚度较厚的产品绝缘性和可靠性指标较好。

关键词:压电陶瓷;等效电路模型;电特性;可靠性0 引言压电陶瓷(Piezoelectric Ceramics,PZT)受到微小外力作用时,能把机械能变成电能,当加上电压时,又会把电能变成机械能。

它通常由几种氧化物或碳酸盐在烧结过程中发生固相反应而形成,其制造工艺与普通的电子陶瓷相似。

与其他压电材料相比,具有化学性质稳定,易于掺杂、方便塑形的特点[1],已被广泛应用到与人们生活息息相关的许多领域,遍及工业、军事、医疗卫生、日常生活等。

利用铁电陶瓷的高介电常数可制作大容量的陶瓷电容器;利用其压电性可制作各种压电器件;利用其热释电性可制作人体红外探测器;通过适当工艺制成的透明铁电陶瓷具有电控光特性,利用它可制作存贮,显示或开关用的电控光特性器件。

通过物理或化学方法制备的PZT、PLZT等铁电薄膜,在电光器件、非挥发性铁电存储器件等有重要用途[2-5]。

为了保护生态环境,欧盟成员国已规定自2006年7月1日起,所有在欧盟市场上出售的电子电气产品设备全部禁止使用铅、水银、镉、六价铬等物质。

我国对生态环境的保护也是相当重视的。

因此,近年来对无铅压电陶瓷进行了重点发展和开发。

但无铅压电陶瓷性能相对于PZT陶瓷来说,总体性能还是不足以与PZT陶瓷相比。

因此,当前乃至今后一段时间内压电陶瓷首选仍将是以PZT为基的陶瓷。

本文将应用逆压电效应以压电陶瓷蜂鸣片为例进行阻抗测试、电容值、绝缘电阻、介质耐电压等电性能参数进行测量与分析。

1 测量参数和实验方法依据目前我国现有的关于压电陶瓷材料的测试标准主要有以下:GB/T 3389-2008 压电陶瓷材料性能测试方法GB/T 6427-1999 压电陶瓷振子频率温度稳定性的测试方法GB/T 16304-1996 压电陶瓷电场应变特性测试方法GB 11387-89 压电陶瓷材料静态弯曲强度试验方法GB 11320-89 压电陶瓷材料性能方法(低机械品质因数压电陶瓷材料性能的测试)GB 11312-89 压电陶瓷材料和压电晶体声表面波性能测试方法GB 11310-89 压电陶瓷材料性能测试方法相对自由介电常数温度特性的测试压电陶瓷蜂鸣片由一块两面印刷有电极的压电陶瓷板和一块金属板(黄铜或不锈钢等)组成。

压电陶瓷压力与应电压曲线测试分析

压电陶瓷压力与应电压曲线测试分析
4、通过改变输入信号的频率和振幅,重复上述实验过程,得到一系列实验 数据;
5、根据实验数据,计算压电陶瓷片的压电常数等参数。
参考内容二
引言
压电陶瓷是一种具有特殊电学性质的陶瓷材料,具有广泛的应用前景,如超 声波探测、医学成像、传感测量等领域。为了更好地发挥压电陶瓷的特性,本次 演示将对压电陶瓷的特性进行详细分析,并通过实验测试探究其性能表现。
实验测试
为了验证压电陶瓷的特性,我们设计了一系列实验测试。首先,我们选取了 一种常见的压电陶瓷材料,按照一定比例制备成试样。接着,我们对试样进行了 静电力学测试,以评估其压电性能。实验过程中,我们将试样置于应变模式下, 通过调节电压,观察试样的形变情况。同时,我们用万用表测量了试样的电阻值, 以评估其绝缘性能。
背景
压电陶瓷是一种可产生压电效应的陶瓷材料。压电效应是指材料在受到机械 应力作用时,会产生电荷,形成电场;或者在电场作用下,会产生机械形变。压 电陶瓷的这种特性使得它成为一种重要的电子材料,可用于各种能量转换和传感 应用。
特性分析
1、特点
压电陶瓷具有许多特点,如高灵敏度、高分辨率、低噪声等。这些特点使得 压电陶瓷在许多领域中具有独特的应用优势。此外,压电陶瓷的响应时间快、温 度稳定性好,可适用于各种复杂环境。
3、通过对比不同温度下的测试结果,发现温度对压电陶瓷材料的压电性能 也有一定影响,高温条件下材料的压电性能会有所提高。
4、在相同压力下,材料的应电压会随着温度的升高而降低,这可能是由于 高温下材料的热膨胀系数发生变化所致。
参考内容
引言
压电陶瓷片是一种具有压电特性的无机非金属材料,具有优异的机电耦合性 能和频率稳定性。压电陶瓷片的压电特性是指其在受到机械应力时会产生电场, 反之,在电场作用下会产生机械形变。这种特性被广泛应用于超声波换能器、振 动传感器、音频设备等众多领域。本次演示将介绍一种测试与分析压电陶瓷片压 电特性的方法,以期为相关领域的研究与应用提供参考。

压电陶瓷的测试-

压电陶瓷的测试-

第二章压电陶瓷测试2.4 NBT基陶瓷的极化与压电性能测试2.4.1 NBT基陶瓷的极化1. 试样的制备为对压电陶瓷进行极化和性能测试,烧结后的陶瓷需要进行烧银处理。

烧银就是在陶瓷的表面上涂覆一层具有高导电率,结合牢固的银薄膜作为电极。

电极的作用有两点:(1)为极化创造条件,因为陶瓷本身为强绝缘体,而极化时要施加高压电场,若无电极,则极化不充分;(2)起到传递电荷的作用,若无电极则在性能测试时不能在陶瓷表面积聚电荷,显示不出压电效应。

首先将烧结后的圆片状样品磨平、抛光,使两个平面保持干净平整。

然后在样品的表面涂覆高温银浆(武汉优乐光电科技有限公司生产,型号:SA-8021),并在一定温度干燥。

将表面涂覆高温银浆的样品放入马弗炉进行处理,慢速升温到320~350℃,保温15min以排除银浆中的有机物,快速升温到820℃并保温15min后随炉冷却,最后将涂覆的银电极表面抛光。

2. NBT基压电材料的极化利用压电材料正负电荷中心不重合,对烧成后的压电陶瓷在一定温度、一定直流电场作用下保持一定的时间,随着晶粒中的电畴沿着电场的择优取向定向排列,使压电陶瓷在沿电场方向显示一定的净极化强度,这一过程称为极化[70]。

极化是多晶铁电、压电陶瓷材料制造工艺中的重要工序,压电陶瓷在烧结后是各向同性的多晶体,电畴在陶瓷体中的排列是杂乱无章的,对陶瓷整体来说不显示压电性。

经过极化处理后,陶瓷转变为各向异性的多晶体,即宏观上具有了极性,也就显示了压电性。

对于不同类型的压电陶瓷,进行合适的极化处理才能充分发挥它们最佳的压电特征。

决定极化条件的三个因素为极化电压、极化温度和极化时间。

为了确定NBT基压电材料的最佳极化条件,本文采用硅油浴高压极化装置(华仪电子股份有限公司生产,型号:7462)详细研究了样品的极化行为,并确定了最佳的极化条件。

2.4.2 NBT基陶瓷的压电性能测试1.压电振子及其等效电路图2.11 压电振子的等效电路利用压电材料的压电效应,可以将其按一定取向和形状制成有电极的压电器件。

无铅压电陶瓷实验报告

无铅压电陶瓷实验报告

一、实验目的本实验旨在探究无铅压电陶瓷的制备工艺、性能测试及其在压电应用中的潜在价值。

通过实验,了解无铅压电陶瓷的物理化学性质,掌握其制备过程,并评估其在压电性能方面的表现。

二、实验材料与设备1. 实验材料:- 钛酸铋钠(Na0.5Bi0.5TiO3,简称NBT)- 钛酸锶钡(BaxSr1-xTiO3,简称BST)- 氧化铋(Bi2O3)- 氧化钡(BaO)- 氧化钠(Na2O)- 氧化钾(K2O)- 氧化锂(Li2O)2. 实验设备:- 搅拌机- 烧结炉- 压电测试仪- 扫描电子显微镜(SEM)- X射线衍射仪(XRD)- 能量色散谱仪(EDS)三、实验步骤1. 粉体合成:将上述原料按一定比例混合,在搅拌机中充分混合均匀,制备成粉末。

2. 烧结:将混合好的粉末装入模具,在烧结炉中加热至一定温度,保温一段时间后冷却。

3. 性能测试:利用压电测试仪测试样品的压电性能,包括介电常数、介电损耗、压电系数等。

利用SEM、XRD和EDS分析样品的微观结构和物相组成。

四、实验结果与分析1. 介电性能:实验结果表明,NBT基无铅压电陶瓷具有较高的介电常数(εr=1000-3000),介电损耗较低(tanδ=0.001-0.02),表现出良好的介电性能。

2. 压电性能:实验结果表明,NBT基无铅压电陶瓷具有较高的压电系数(d33=300-500pC/N),在压电应用中具有较高的潜力。

3. 微观结构:SEM结果表明,样品具有良好的晶粒结构,晶粒尺寸约为1-2 μm。

XRD结果表明,样品主要由NBT相组成,并伴有少量其他相。

EDS结果表明,样品中元素分布均匀。

4. 性能优化:通过调整原料比例、烧结温度等参数,可以进一步优化无铅压电陶瓷的性能。

例如,增加氧化铋的含量可以提高材料的压电系数,降低烧结温度可以缩短烧结时间。

五、结论本实验成功制备了NBT基无铅压电陶瓷,并对其性能进行了测试。

结果表明,NBT基无铅压电陶瓷具有较高的介电常数、压电系数和良好的微观结构,具有在压电应用中的潜力。

压电陶瓷片压电特性的测试与分析

压电陶瓷片压电特性的测试与分析

1 概述振动在周围环境中无处不在,振动机械能不仅是一种较普遍的能源形式,而且该能源是一种清洁的能源,如果可以将这些振动形式的能量转换为电能加以收集存储供随后使用,就可以将这种取之不尽的能源用于实际的工程当中,解决一些能源问题[1]。

目前微机电技术、材料科学、微电子技术、计算机技术等各领域科技最近几年得到快速发展,使得研究对象和产品结构和部件的尺寸变得越来越小,同时需求量变得越来越大,使得精密仪器对特殊形状的压电陶瓷片需求越来越多,压电陶瓷的应用形式也越来越广[2]。

本文将在不同外界压力作用下,对压电陶瓷元件的电气参数进行测试与分析。

2 压电陶瓷性能简介目前国内外已有对压电陶瓷压电特性进行的研究,并取得了一定成果。

1880年Pierre Curie 和Jacques Curie 在实验中发现了压电效应(在机械外力作用下,介质内部正负电荷中心发生相对位移而引起极化,由机械效应转化为电效应),1881年他们又通过实验验证了逆压电效应(加反向电场,陶瓷片沿极化方向缩短。

这种由于电效应转变成机械效应的现象是逆压电效应)的存在[3]。

压电陶瓷的力输出特性和其位移输出特性是分不开的,针对电陶瓷的位移输出特性,1998年,哈工大张涛等在论文中提出陶瓷是具有有限刚度的弹性体,在受到外力后要被压缩。

压电陶瓷位移输出和电压之间的关系是:随电压增大,位移输出也增大,力输出和位移输出的关系是;随位移输出的增大,力输出减小[4,5]。

压陶瓷的输出力和位移的关系曲线表明在空载的情况下压电陶瓷的输出位移为最大输出位移,在最大输出力的作用下,压电陶瓷的位移输出将为零[6]。

由于迟滞、蠕变等因素的影响,难以用一种统一的数学模型来准确的描述它[7]常见的描述有Preisach 模型[8-9]Prandtle-Ishlinskii 模型[10-11],Maxwell 模型[12] 。

是从现象的角度描述其位移输出特性。

因此受到位移输出复杂性的影响,其力输出特性的描述也变的相当的复杂。

[2017年整理]实验十一压电陶瓷介电性能测定--4-13日修改

[2017年整理]实验十一压电陶瓷介电性能测定--4-13日修改

实验十一 压电陶瓷介电性能测定实验名称:压电陶瓷介电性能测定 实验项目性质:普通实验 所涉及课程:电子材料 计划学时:2学时 一 、实验目的1. 通过实验了解电介质介电常数与介质损耗角正切tgδ 的概念和物理意义;2. 熟悉用LCR 型电桥测量电容器的电容量及介质损耗角正切的方法;3. 通过实验了解不同类型的介质材料其tgδ随频率的变化特性。

二、实验内容1. 实验老师介绍使用TH2810B 系列LCR 型电桥;2. 测试压电陶瓷的介电常数。

三、实验(设计)仪器设备和材料清单TH2810B 系列LCR 型电桥、压电陶瓷晶片、千分尺等。

四、实验原理根据电介质理论,各种电介质在电场作用下都要发生极化过程,其宏观表现可以用电介质的介电系数来表征。

不同类型的介质材料,由于发生极化的微观机制不同,不仅数值有明显差别,而且与频率的关系也有很大不同。

同样地,由于产生介质损耗的来源不同,各类电介质的tg δ数值及其与频率的关系都表现出各不相同的特点。

实验时,选用要测定的电介质制成电容器作为测量样品,利用LCR 电桥直接测定电容量和损耗角正切值的大小以及与频率的关系,研究介质的极化特性。

在已知样品直径(d )和电介质厚度(t )的条件下,由公式204/r Ct d επε=--C -电容(F ),t 样品厚度(m ),d -样品直径(m ),ε0-真空介电常数8.85×10-12(F/m )。

就能计算出相应的介电系数 。

测试不同频率下电介质的介电系数和损耗角正切tgδ,常用电桥法,其工作原理如图11-1所示。

将试样等效成电容C X 和电阻R X 并联,调节R 4和C N ,使电桥平衡,根据平衡条件可求得:改变测试频率,可获得不同频率下的介电系数和损耗角正切。

其中C N 、R 3为已知标准平衡元件。

图11-1 电桥法测试原理五、实验步骤利用TH2810B系列LCR型电桥测试。

1.用游标卡尺测量样品的厚度t和直径d。

压电陶瓷特性实验报告

压电陶瓷特性实验报告

压电陶瓷特性实验报告压电陶瓷特性实验报告引言压电陶瓷是一种能够在外力作用下产生电荷的材料,具有广泛的应用领域。

本实验旨在研究压电陶瓷的特性,包括压电效应、介电特性和机械特性等方面。

通过实验,我们可以更深入地了解压电陶瓷的性能和应用潜力。

实验一:压电效应在这个实验中,我们使用了一块压电陶瓷片和一台压电仪器。

首先,我们将压电陶瓷片固定在仪器上,并施加一定的压力。

随后,我们观察到仪器上显示的电压值随着施加的压力而变化。

这说明压电陶瓷具有压电效应,即在外力作用下会产生电荷。

实验二:介电特性为了研究压电陶瓷的介电特性,我们使用了一台电容测试仪。

首先,我们将压电陶瓷片固定在测试仪上,并连接电源。

随后,我们通过改变电源的电压,观察到测试仪上显示的电容值的变化。

这表明压电陶瓷在电场作用下会发生介电极化,导致电容值的变化。

实验三:机械特性在这个实验中,我们使用了一台拉伸试验机。

我们将压电陶瓷片固定在试验机上,并施加一定的拉伸力。

通过改变施加的力大小,我们观察到压电陶瓷片的形变情况。

同时,我们还测量了形变量与施加力的关系。

结果显示,压电陶瓷具有良好的机械特性,能够在外力作用下发生可逆的形变。

实验四:应用潜力通过以上实验的结果,我们可以看出压电陶瓷具有多种特性,具备广泛的应用潜力。

例如,在传感器领域,压电陶瓷可以用于测量压力、温度和加速度等参数。

此外,在声学领域,压电陶瓷可以用于扬声器和麦克风等设备。

还有一些其他领域,如医疗、能源和通信等,也可以应用压电陶瓷技术。

结论通过本次实验,我们深入了解了压电陶瓷的特性。

压电效应、介电特性和机械特性是压电陶瓷的重要特性,为其在多个领域的应用提供了基础。

压电陶瓷的应用潜力巨大,可以为现代科技的发展做出重要贡献。

我们相信,在进一步研究和技术创新的推动下,压电陶瓷将在未来得到更广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东工业大学实验报告
学院电子科学与技术(电子信息材料及元器件)专业班成绩评定
学号姓名(号)教师签名
十二题目:压电陶瓷压电性能测定第周星期
一、实验目的
iv. 了解压电常数的概念和意义;
v. 掌握压电陶瓷压电常数的测定方法。

vi. 学会操作ZJ-3AN 型准静态d33 测量仪。

二、实验内容
1. 实验老师介绍使用压电常数测量仪测试d33 的原理与步骤;
2. 测试压电陶瓷的压电常数。

三、实验(设计)仪器设备和材料清单
ZJ-3AN 型准静态d33 测量仪、压电陶瓷晶片等。

四、实验原理
压电陶瓷,一种能够将机械能和电能互相转换的功能陶瓷材料,是一种具有
压电效应的材料。

当在某一特定方向对晶体施加应力时,在与应力垂直方向两端表面能出现数
量相等、符号相反的束缚电荷,这一现象被称为“正压电效应”。

逆压电效应:当一块具有压电效应的晶体置于外电场中,由于晶体的电极化
造成的正负电荷中心位移,导致晶体形变,形变量与电场强度成正比。

压电常数是反映力学量(应力或应变)与电学量(电位移或电场)间相互耦
合的线性响应系数。

通常用d ij 表示,下标中第一个数字代表电场方向或电极面的垂直方向,第二个数字代表应力或应变方向。

五、实验步骤
1. 用两根多芯电缆把测量头和仪器本体连接好,接通电源;
2. 把Φ20 尼龙片插入测量头的上下探头之间,调节手轮,使尼龙片刚好压住为
止;
3. 把仪器后面板上的“显示选择” 开关置于“d33” 一侧,此时面板右上方绿灯
亮;
4. 把仪器后面板上的“量程选择” 开关置于“×1” 档;
5. 按下“快速模式”,仪器通电预热10 分钟后,调节“调零” 旋钮使面板表指
电子科学与技术专业实验指导书
126
示在“0” 与“-0” 之间跳动。

调零即完成,撤掉尼龙片开始测量。

6. 依次接入待测元件,表头显示d33 结果及正负极性,记录于表12-1。

7. 取三次测量的平均值。

六、实验数据测试与记录。

相关文档
最新文档