指纹传感器
指纹传感器的原理

指纹传感器的原理指纹传感器是一种用于采集人的指纹信息的装置。
每个人的指纹都是独一无二的,具有很高的唯一性和辨识性。
指纹传感器可以通过测量指纹的形状和纹路来获取指纹的特征,并将其转化为数字信号进行存储和分析。
指纹传感器的原理主要包括两个方面,即指纹采集和指纹比对。
首先,指纹采集是指指纹传感器通过物理接触或非接触方式,将指纹的纹线和纹谷转化为数字信号。
常见的指纹采集技术包括光学传感技术、电容传感技术和超声波传感技术。
光学传感技术是最常见也是最早应用的指纹采集技术。
它利用光学原理,通过指纹的反射和折射来捕捉指纹的图像。
当指纹放置在光学传感器的感光平面上时,指纹的纹线和纹谷会在感光元件上产生不同的光强反射。
然后,光学传感器采集这些光信号,并通过图像处理算法,将指纹图像转化为数字信号进行存储和处理。
电容传感技术是一种非接触式的指纹采集技术。
它利用人体指纹部位和传感电极之间的电容差异来获取指纹信息。
当指纹接近传感电极时,电容传感器会形成一个电磁场,在不同的纹线和纹谷位置上,电容差异会导致电磁场的变化。
然后,电容传感器通过检测这些电容差异,将指纹信息转化为数字信号。
超声波传感技术是一种比较新兴的指纹采集技术。
它利用超声波在指纹表面和指纹内部的传播速度差异,来获取指纹的物理特征。
当超声波通过指纹表面时,纹线和纹谷会导致超声波传播速度的变化。
然后,超声传感器通过测量传播速度的差异,将指纹信息转化为数字信号。
其次,指纹比对是指指纹传感器通过将采集到的指纹特征与已存储的指纹特征进行比对来验证身份。
指纹比对的原理主要包括特征提取和匹配算法。
特征提取是指从指纹图像中提取有效的指纹特征,并将其转化为数字信号。
常见的指纹特征有两种,一种是基于纹线的特征,如纹线的细节、方向和交叉点;另一种是基于纹谷的特征,如纹谷的细节和分叉点。
特征提取技术主要包括图像处理和模式识别算法,旨在提取稳定和可靠的指纹特征。
匹配算法是指将采集到的指纹特征与数据库中的指纹特征进行比对。
光学指纹传感器的图像采集方法

光学指纹传感器的图像采集方法光学指纹传感器是一种常用于指纹识别系统的传感器技术,其通过采集指纹图像来进行指纹识别和辨别。
在图像采集过程中,光学指纹传感器需要精确捕捉指纹的细节和纹理特征,以保证准确的识别结果。
本文将介绍几种常用的光学指纹传感器的图像采集方法及其优缺点。
一、接触式图像采集方法1. 接触面法接触面法是最早被采用的图像采集方法之一,通过让用户将手指直接按在传感器的接触面上,传感器通过成像设备记录指纹图像。
这种方法的优点是成本低、图像质量高,可以获取到细腻的指纹纹理特征。
但是,由于需要与传感器直接接触,容易受到指纹油脂、汗水等外界因素的干扰,因此需要定期清洁传感器,并增加使用者的不适感。
2. 橡胶套法橡胶套法是一种改进的接触式图像采集方法,通过在传感器表面覆盖一层橡胶套来减少对用户的不适感,并减少指纹污染对图像质量的影响。
橡胶套能够帮助稳定用户手指的位置,提高采集图像的稳定性和一致性。
然而,由于套子的使用,可能会增加系统的复杂性,并在长时间使用后产生磨损。
二、非接触式图像采集方法1. 光学透射法光学透射法是一种非接触式图像采集方法,它使用透明传感器和背景光源来捕获指纹图像。
用户将手指放在透明传感器的上方,透明传感器通过反射和透射光线来记录指纹图像。
这种方法的优点是无需与传感器直接接触,减少了传感器的磨损和污染,并提供了更好的使用体验。
然而,光学透射法在光照条件差的情况下可能导致图像质量下降。
2. 光学全息法光学全息法是一种利用全息成像技术进行指纹图像采集的方法。
传感器通过使用全息成像设备获得三维指纹信息,可以捕捉到更多的纹理特征和细节信息。
这种方法的优点是可以提高指纹识别的准确性和可靠性,并且对于一些常见的指纹伪装和攻击具有较高的鲁棒性。
然而,光学全息法相比其他方法而言,需要更高的成本和专业技术支持。
总结:光学指纹传感器的图像采集方法包括接触式图像采集方法和非接触式图像采集方法。
接触式方法包括接触面法和橡胶套法,虽然成本低且图像质量高,但容易受到指纹污染和不适感的影响。
指纹光学传感器原理

指纹光学传感器原理
光学指纹传感器是一种通过采集和分析指纹信息来识别个体身份的技术。
它的原理基于光学成像和图像处理的技术。
光学指纹传感器通常由一个光源、一个光学元件和一个图像传感器组成。
当指纹被放置在传感器上时,光源会发射一束光线,照射到指纹上。
指纹的皮肤纹路会对光线产生扭曲和折射,形成一个唯一的光学图像。
这个图像会通过光学元件被放大,并投射到图像传感器上。
图像传感器会将光学图像转化为数字信号,并将其传输到计算机或其他设备进行处理。
在处理过程中,算法会分析指纹图像的特征,如细纹的形状、方向和间距等。
通过比对已存储在系统中的指纹数据库,系统可以确定是否存在匹配的指纹。
如果存在匹配,系统会确认个体的身份。
光学指纹传感器的优点在于成本相对较低,可靠性高,且易于集成到不同的设备中。
然而,它的缺点是对指纹的清晰度和质量有一定要求,且容易受到外部环境的影响,如指纹的干燥程度和灰尘等。
总的来说,光学指纹传感器是一种常用的身份识别技术,其原理是通过光学成像和图像处理来识别指纹信息。
通过准确采集和分析指纹特征,可以实现高精度的个体识别。
指纹传感器

指纹传感器指纹传感器是一种生物识别技术,用于检测和识别人类指纹的物理特征。
它是一种常见的安全工具,可以用于许多应用程序,如智能手机、笔记本电脑、门禁系统和电子支付系统等。
它可以提供更高的安全性,因为每个人的指纹都是独一无二的。
本文将介绍指纹传感器的原理和应用场景。
指纹传感器的原理指纹传感器工作的原理是采用光学或电容感应来获得指纹图像。
其中,光学指纹传感器通过反射或透射的方式,将指纹图像转化为数字信号;电容指纹传感器将指纹铺在极尖细微的电极上,并通过采集指纹的电容强度来获取指纹图像。
无论是哪种方式,指纹图像都会被传输到处理器进行分析,进而进行识别身份验证。
指纹传感器的应用智能手机智能手机是使用指纹传感器最广泛的设备之一。
许多智能手机现在都配备了指纹传感器,用户可以使用指纹解锁手机,或者进行应用程序、购物等身份验证,提高了安全性和便利性。
门禁系统指纹传感器也被广泛应用于门禁系统。
工作人员和访客可以通过指纹识别解锁门禁系统,以进入办公室、公寓大楼、学校等区域,以保证进入者的身份安全。
指纹传感器还可以与摄像头和人脸识别系统等其他安全设备结合使用,以提高安全性。
金融支付指纹传感器也在金融支付领域众多应用场景中得到了广泛使用。
利用指纹识别技术完成支付过程,许多移动支付应用在交易时配备了指纹传感器,在验证用户指纹后进行购买或转账等操作。
医疗服务在医疗领域,指纹传感器也有广阔的应用前景。
其可以用于快速的身份验证,为患者推荐更合适的医疗方案。
在医疗保险申请和健康都市建设等领域,指纹识别技术也具有广阔的应用前景。
充分运用指纹传感器技术,可以极大地提高医疗安全性和便捷性。
结论指纹传感器是一种安全可靠的生物识别技术,广泛应用于各个领域,比如智能手机、门禁系统、金融支付、医疗和保险等。
各种应用场景,使得指纹传感器的市场需求越来越大。
作为一个安全技术,指纹传感器落地的越来越多,对于我们个人信息的管控将更加科学化和便利化。
半导体指纹传感器原理

半导体指纹传感器原理
半导体指纹传感器是一种用于识别人类指纹的技术,其原理基
于半导体材料的特性和指纹的独特性。
半导体指纹传感器通常由一
系列微小的传感器组成,这些传感器可以感知指纹的细微纹理和特征。
其工作原理可以分为以下几个方面:
1. 表面接触,当手指放置在传感器表面时,指纹的细微纹理和
特征与传感器表面接触。
这种接触会导致微小的电荷变化或者电容
变化。
2. 电容变化,半导体指纹传感器通常利用电容变化来检测指纹
的细节。
当指纹接触传感器表面时,由于指纹的凹凸不平,会导致
电容的微小变化。
这些变化可以被传感器检测到并转化为数字信号。
3. 图像采集,传感器会采集指纹的图像,通常是通过记录电荷
变化或者光学方法来实现。
这些图像可以包含指纹的细节,例如脊线、汗孔和分叉点等。
4. 数据处理,采集到的指纹图像会被传感器转化为数字信号,
并通过内置的算法进行处理和分析。
这些算法可以识别指纹的特征
点,并将其转化为一个唯一的数学模型。
5. 比对识别,最后,传感器会将处理后的指纹数据与已存储的
指纹模型进行比对,以验证指纹的身份信息。
总的来说,半导体指纹传感器利用半导体材料的特性和指纹的
独特性,通过电容变化和图像采集等方式来获取指纹信息,并通过
数据处理和比对识别来实现指纹识别的功能。
这种技术因其高精度、快速响应和安全性而被广泛应用于手机解锁、门禁系统和身份验证
等领域。
指纹识别传感器原理

指纹识别传感器原理
指纹识别传感器是一种用于获取和比对指纹特征的设备。
它基于指纹的独一无二性,通过对指纹图案进行扫描和分析,实现个人身份的认证和验证。
指纹识别传感器的工作原理基于光学、电容、超声波、热红外或电阻等不同的技术。
其中最常见的原理是光学技术。
在光学原理中,指纹传感器由一个光源和一个感光器件组成。
当手指触摸传感器时,光源照射在手指上,并通过指纹的透射、散射和反射等过程,形成一个光学图像。
然后感光器件将这个图像转化成电信号,并传递给图像处理器进行分析。
图像处理器会将电信号转换为数字图像,并对指纹图案进行增强和提取。
它会检测图像中的细节、纹理、弯曲等特征,并生成一个唯一的指纹特征模板。
这个特征模板会和事先存储好的指纹数据进行比对,以确定是否匹配。
指纹识别传感器还需要考虑到多种因素来确保精确的识别结果。
例如,传感器上的阵列可以提供更高的图像分辨率和更准确的细节捕捉。
另外,传感器的表面材质、形状和大小也会影响指纹采集的质量。
总之,指纹识别传感器通过光学、电容、超声波、热红外或电阻等技术,将手指的指纹图案转化为电信号,并通过图像处理和比对算法进行认证和验证。
这种技术在安全领域、移动设备、金融机构等领域得到了广泛应用。
指纹识别传感器的原理及应用
指纹识别传感器的原理及应用指纹识别技术是一种使用指纹图像进行身份验证的技术。
近年来,随着生物识别技术的快速发展,指纹识别已经成为最常见和广泛应用的一种生物识别技术。
指纹识别传感器作为指纹识别系统的核心组成部分,起着至关重要的作用。
本文将介绍指纹识别传感器的原理以及其在各个领域中的应用。
一、指纹识别传感器的原理指纹识别传感器的原理基于人体指纹的独特性和不可复制性。
人体的每个指纹都有无数个细小的纹路,包括弓型、环型和弯曲型等形状,这些纹路的组合成为了指纹图案。
指纹识别传感器通过接触或非接触方式获取指纹图像,并通过图像处理和特征提取技术对指纹进行分析和比对,以实现身份验证和识别的功能。
指纹识别传感器一般采用光学、电容、热电等不同的原理来实现指纹图像的获取和识别。
光学指纹传感器使用光学透镜和光电模组获取指纹图像,并通过光学传感器将指纹图像转化为电信号。
电容指纹传感器则通过感应人体与传感器表面的微小电容差异来获取指纹图像。
热电指纹传感器则通过感应指纹与传感器表面的热量差异来获取指纹图像。
这些不同的原理都有各自的优势和适用场景。
二、指纹识别传感器的应用指纹识别传感器广泛应用于各个领域,包括个人手机、电脑、金融机构、公安系统等。
以下将分别介绍指纹识别传感器在这些领域中的应用。
1. 个人手机和电脑:随着智能手机和电脑的普及,指纹识别传感器成为了手机和电脑的标配功能之一。
用户可以通过指纹识别传感器完成手机和电脑的解锁,保护个人信息的安全。
指纹识别传感器的高速响应和可靠性,使得用户的设备更加安全和便捷。
2. 金融机构:指纹识别传感器在金融机构中扮演着重要的角色。
通过指纹识别传感器,用户可以完成账户的验证和交易的确认,提高了金融交易的安全性和便利性。
指纹识别传感器的应用也有效降低了金融机构面临的风险,防止了身份欺诈和冒名行为。
3. 公安系统:公安系统是指纹识别传感器应用最为广泛的领域之一。
指纹识别技术在刑侦鉴定、人员管理、边境管理等方面都起着重要作用。
指纹传感器原理
指纹传感器原理
指纹传感器原理是通过感知和记录人体指纹的特征信息来实现身份认证和安全验证的技术。
指纹传感器通常由感光器件和信号处理电路组成。
感光器件负责接收和转化指纹特征信息。
常见的感光器件有光电导传感器、图像传感器和超声波传感器等。
光电导传感器是最常见的一种,它利用物理特性将指纹图案转化为电信号,从而实现对指纹进行解读和提取。
信号处理电路对感光器件输出的信号进行采集和处理。
首先,信号处理电路将感光器件输出的模拟信号转化为数字信号,以便后续处理。
然后,利用图像处理算法对指纹图像进行特征提取和分析。
这些特征包括纹线、纹谷和细节点等,它们是指纹的唯一标识符。
最后,通过比对已存储的指纹数据库中的特征信息,判断当前指纹与已录入指纹是否匹配。
指纹传感器的特征在于其高精度和高安全性。
指纹纹线的复杂性和多样性使得人体的每个指纹都是独一无二的,因此指纹识别具有很高的准确性。
此外,指纹传感器无需额外的密码或卡片,因此避免了密码泄露和卡片遗失的风险。
总之,指纹传感器通过感知和记录指纹特征信息,利用图像处理算法进行特征提取和分析,以实现身份认证和安全验证。
由于指纹的唯一性和稳定性,指纹传感器成为目前最常用和可靠的生物识别技术之一。
指纹传感器工作原理
指纹传感器工作原理指纹传感器是一种用于身份验证和安全访问控制的生物识别技术。
它通过采集人类指纹的图像,并将其转化为数字信号进行识别和比对。
指纹传感器的工作原理可以分为图像采集、特征提取和模式匹配三个步骤。
指纹传感器需要采集指纹的图像。
当我们将手指放在指纹传感器上时,其表面的感应器会感知到指纹的接触,并产生一个电信号。
这个信号被称为容积电容信号,它反映了指纹的形状和纹理。
指纹传感器会通过一系列的电子元件将容积电容信号转换为电压信号,并将其传输到指纹识别系统进行处理。
接下来,指纹传感器会对采集到的图像进行特征提取。
指纹的特征是指指纹图案中的一些独特的细节,如弯曲的脊线、汗孔和分岔点等。
特征提取算法会对指纹图像进行处理,找到这些独特的特征,并将其转化为数字数据。
这些数字数据被称为特征向量,它们可以用来表示指纹的唯一性。
指纹传感器会将特征向量与已注册的指纹模板进行比对,以确定是否匹配。
指纹模板是指预先存储在数据库中的指纹特征向量集合。
比对算法会计算待验证指纹的特征向量与每个已注册指纹模板之间的相似度,然后根据相似度的大小判断是否匹配。
如果相似度超过了设定的阈值,那么就认为指纹匹配成功,否则认为指纹匹配失败。
指纹传感器的工作原理基于人类指纹的独特性和稳定性。
每个人的指纹都是独一无二的,即使是同卵双胞胎也有不同的指纹。
而且,指纹的纹路和细节几乎不会发生变化,因此可以长期使用指纹作为身份识别的凭证。
指纹传感器在安全领域有着广泛的应用。
它可以用于手机解锁、电脑登录、门禁系统等多种场景。
相比于其他的生物识别技术,如人脸识别和虹膜识别,指纹识别更加方便快捷,且成本更低。
此外,指纹传感器还具有较高的准确性和可靠性,极大地提高了安全性。
总结一下,指纹传感器是一种利用指纹图像进行身份验证和安全访问控制的技术。
它通过图像采集、特征提取和模式匹配三个步骤实现指纹识别。
指纹传感器的工作原理基于指纹的独特性和稳定性,具有准确性、可靠性和便利性等优点。
指纹传感器
光学指纹传感器的优点主要表现为:抗静电能力强,系统稳定性好, 使用寿命长,提供的分辨力(单位面积内像素的多少)高,能提供较 大区域的指纹图像采集,但指纹图像采集区域较大时所需要的焦距就 会长,相应的设备体积就会增大。 光学指纹传感器的局限性体现于潜在指印方面(潜在指印是指手指在 台板上按完后留下的)不但会降低指纹图像的质量,严重时还会导致 两个指纹重叠此外,台板图层会随随着时间的推移而产生损耗,可能 会导致采集的指纹图像质量下降。几乎不受湿手 状态下的影响。
面对各方压力,指纹传感器该如何应对? 当前的技术日臻成熟,并 受到新技术的威胁。新技术需要通过“更低的成本”来获得发展动力。
目前,电容技术正在不断发展演进,以期克服其它技术的威胁。虽 然超声波感测技术正在兴起,但是其高成本却着实限制了市场拓展。此 外,另一种基于光学感测的指纹识别技术使用薄膜晶体管也正在出现, 这使得指纹传感器可以在大型面板上批量生产,进而降低整体的生产成 本。 总体而言,指纹识别市场对传感器制造商来说具有较高弹性,虽然今后 5年的市场规模非常可观,但如何在激烈的市场竞争中脱颖而出,仍然 是考验相关厂商的一道难题。不过,随着科学技术的飞速发展,这一系 列难题终将迎刃而解。
射频指纹模块有无线电波探测和超声波探测两种,原理即靠特定频率的信号 反射来探知指纹的具体形态。这种技术是通过传感器本身发射出微量射频信 号,穿透手指的表层,探测里层的纹路。其优点是手指不需要和识别模块接 触。
超声波式指纹传感器
工作原理是向手指表面发射超声波,然后接受反射回来的回波。由于手 指嵴和沟会产生不同的超声波信号回波,将回波信号进行数据处理就可 以获得指纹图像数据。
这种传感器的扫描速率非常快,必须在很短时间(一般应小于0.1s)内获 取指纹图像。因为时间一长,手指和芯片就处于相同的温度了。 所以说这是温差感应式指纹传感器的致命缺点,因为手指与设备一旦接触 的时间长了,手指与设备的温度就相同了,就无法录取指纹了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指纹传感器的工作原理和使用方法
指纹已在人的身份识别和身份确定等领域得到广泛应用。
如,指纹数字签名、指纹考勤、指纹U盘、指纹移动硬盘、指纹门锁、指纹鼠标等,通过指纹来识别身份;在医院里,可通过使用指纹进行病历档案等的管理;指纹IC卡、指纹ID系统等[1]。
其中,实时指纹传感器是指纹应用技术的核心技术之一,它直接决定着指纹识别技术的水平以及相关产品性能的高低。
目前,国内相关产品的核心部件几乎都来自国外,因此,研制出高质量、低成本的实时指纹传感器具有十分重要意义。
指纹传感器技术目前主要有三种:光学全反射指纹传感器技术、超声波扫描指纹传感器技术和晶体电容指纹传感器技术。
其中,基于光学全反射指纹传感器技术虽然成像能力一般,但因其具有耐用性好、成本低、可靠性高和性能稳定等优点,就国外指纹识别技术所使用的现状而言光学全反射指纹传感器器技术仍是指纹取像系统的首选技术。
目前,在面向生物体认证(人体认证)的指纹传感器中,传统型光学传感器仍占有优势;基于超声波扫描技术的超声波扫描指纹传感器,成像能力好,但成本极高,不适应普通使用;基于晶体传感器指纹取像技术的晶体电容指纹取像系统,由于容易损坏且易受静电影响、成像可靠性不高,甚至对汗多或稍脏的手指不能成像,使用范围受到局限。
核心部件是电荷耦合设备(CCD),这与数码相机和摄像机中使用的光传感器系统是相同的。
CCD 只不过是一组光敏二极管(称为光敏器件),这种器件在光子的作用下可以产生电信号。
每个光敏器件记录一个像素,即一个代表射中该点的光束的微小圆点。
明暗像素共同构成了扫描场景(例如一个手指)的图像。
通常,在扫描仪系统中有一个模数转换器,用来处理模拟电子信号以产生该图像的数字表现形式。
扫描仪配有光源,通常为一组发光二极管,用来照亮手指的嵴纹。
当你将手指放在玻璃板上时,扫描过程就开始了,CCD相机便将指纹照片拍摄下来。
实际上CCD系统产生的是手指的倒像,较暗的区域代表较多反射光线(手指的嵴纹),较亮的区域代表较少的反射光线。
在比较指纹与存储数据之前,处理器要确保CCD拍摄到了清晰的图像。
它会检查像素暗度的平均值或者一个小样本的整体值,如果图像整体太暗或太亮,该次扫描便会被放弃。
于是扫描仪调整曝光时间以允许更多或者更少的光线进入,再扫描一次。
如果暗度合适,扫描仪系统会继续检查图像的清晰度(指纹扫描的锐度)。
处理器将查看在图像上沿垂直和水平方向移动的若干直线。
如果与嵴纹垂直的线由非常暗的像素和非常亮的像素交互组成,那么
就意味着指纹图像有很好的清晰度。
在处理器发现图像清晰并且曝光正确的情况下,它会继续将捕获的指纹与文件上的指纹进行比较。
光学指纹采集技术是最古老也是目前应用最广泛的指纹采集技术,光学指纹采集设备始于1971年,目前,传统的方法是利用棱镜的全反射来获得指纹像,利用该方法存在严重的像差,且像在某个方向上被压缩1/ 2。
在1996年,美国的Bahuguna R D等人把全息和全反射技术相结合研究出了一种新型的棱镜指纹传感器[3],很好地解决了传统光学指纹取像的严重问题,从而避免使用复杂的精密光学校正系统和校正处理软件,但其制作不便,且要求极高。
本文作者在此基础上,充分利用激光全息技术从根本上改善光学指纹取像的光路和方法,研制出新型全息光栅实时指纹传感器,以满足国内外市场的需求。
传统光学指纹传感器的典型光路图如图1所示。
其原理[2]是利用光的全反射增强对比度,以获取高清晰度指纹像。
具体过程为:当光线照到压有指纹的玻璃表面时,其反射光的量依赖于压在玻璃表面指纹的脊和谷的深度以及皮肤与玻璃间的油脂和水分。
若光线经玻璃照射到谷的地方,则在玻璃与空气的界面发生全反射,光线被反射到CCD;若射到脊的的地方光线不发生全反射,而是被脊与玻璃的接触面吸收或者漫反射到别的地方,这样,就在CCD上形成了指纹的图像。
显然,利用该原理主要的存在2个缺点: 1)指纹图像存在着严重的像差和失真(畸变)。
主要是因为指纹图像与主光轴成45°的角度,通过成像系统后指纹像被压缩45°,即有一个投影系数cos 45°=1/ 2; 2)指纹图像模糊,其成像能力有限。
由于照在手指表面的漫射光入射角不同,致使同一点发出的反射光线到达CCD的光程有微小的光程差,从而造成图像的成像模糊,如图1所示,由于经反射后的像与透镜在光轴成45°,因此,其像平面与CCD的轴线不垂直,CCD所获得的指纹像的清晰度受到很大影响,成像能力受到极大限制。
全息棱镜指纹传感,1996年,美国的Bahuguna R D等人研究出了一种新型的棱镜指纹传感器[3]。
研究者很好地解决了传统光学全反射指纹传感器技术中的像差等问题,避免了使用复杂的精密光学校正系统和校正处理软件,使成像能力得到了很大提高,甚至可以看清指
纹脊腺孔的水平。
其原理如图2所示,利用全息光栅将使得指纹像的法线与透镜、CCD摄像机的光轴重合,从而消除指纹像的失真。
但是,利用该原理其光栅的制作环境和技巧要求很高,在三棱镜和全息光栅之间在制作和使用时均需要耦合剂。
其制作全息光栅的原理如图3所示,将全息干版和三棱镜贴在一起,并在其间使用异丙醇作为耦合剂。
通过两相干光如图3所示方向入射,在全息干版上就会形成干涉,从而制成所需的全息光栅。
在实际操作时,既要保证二者之间无气泡,又要保证二者之间的耦合剂均匀,同时,感光时间不能太长(由于在全息干版和三棱镜之间使用的异丙醇与酒精一样具有很强的挥发性),因此,在制作时,比较难于做出满足要求的、较为理想的全息光栅。
另外,在使用时还必须用一种与异丙醇折射率相同的粘合剂,且全息干版和三棱镜之间必须吻合得很好。
因此,要到达理想的效果,要求实验条件和技巧甚高,在实际中,要制作出满足
要求的全息光栅有相当的难度。
在上述新型棱镜指纹取像系统的基础上,通过大量的理论和实验论证,本文作者设计出一种新型全息光栅指纹传感器,其光路原理如图4所示。
用单色平行光以45°夹角照射到全息光栅上压有指纹的全息光栅背后的玻璃表面时,其反射光的量依赖于压在玻璃表面指纹的脊和谷的深度以及皮肤与玻璃间的油脂和水分,反射光线再次通过光栅后,从垂直于光栅的平面射出,射出的光携带着指纹信息即指纹像,且指纹像的法线与透镜、CCD摄像机的光轴重
合,从而消除指纹像的失真。
利用该方法不但解决了传统光学全反射指纹传感器技术中的像差、图像压缩等问题,其成像对比度高,且像面与光轴垂直,因此,具有很好的成像能力,通过凸透镜放大后完全可以看清指纹脊上的腺孔,如图5所示,利用钠光灯所获得的图(未经任何处理)可以非常清楚地观察到指纹脊上的腺孔,这完全达到科研预期效果。
另外,在全息光栅的制作上,也比新型棱镜指纹取像系统中的光栅简单、方便,成本大大降低,同时,也无需使用三棱镜。
新型全息光栅指纹传感器去掉了棱镜,在光栅的制作上也更简单、方便,无需耦合剂等,直接用两互成一定角度的两相干光就可制成。
在实验中,使用的是氦氖激光制成的全息光栅,本文作者正在利用不同波长的激光制作不同角度的全息光栅以及利用不同种类的全息干版进行对比实验,期望利用高亮度的发光二极管(如1, 2W的红光、绿光等)和小功率的半导体激光二极管以及低强度的光源能达到较好的效果
附:
电容指纹传感器技术
该传感器由一个或多个包含一组微小单元的半导体芯片组成。
每个单元包括两个覆盖有绝缘层的导体板。
这些单元很小——比手指上一个嵴纹的宽度还要小。
传感器和积分器相连,积分器是在倒相运算放大器附近的一个电路。
倒相放大器是一个复杂的半导体设备,由许多晶体管、电阻器和电容器组成。
像任何一种放大器一样,倒相放大器也是根据一个电流的起伏来改变另一个电流的。
具体来说,倒相放大器改变供给电压。
这些改变基于两个输入端(即倒相输入端和非倒相输入
端)的相对电压。
非倒相输入端接地,倒相输入端与基准电压源和反馈回路相连。
同样,与放大器输出端相连的反馈回路也有两个导体板。
您可能已经意识到,这两个导体板形成一个基本电容器,即一个可以存储电荷的电子元件。
手指的表面充当第三个电容板,这个电容板被细胞单元结构中的绝缘层所分离;而在指纹波谷的情况下,则充当一袋空气。
改变电容板之间的距离(通过手指远离或靠近导体板实现)会改变电容器的总容量(存储电荷的能力)。
由于这种特性,在嵴纹的情况下,单元中的电容器要比在波谷时有更大的容量。
要扫描手指,处理器首先关闭每个单元的复位开关,复位开关短接每个放大器的输入和输出以“平衡”积分电路。
当开关再次打开时,处理器将给积分电路一个固定的电输出,电容器就会充电。
反馈回路的电容器容量会影响放大器输入的电压,从而影响放大器的输出。
因为手指的距离会改变容量,所以手指嵴纹与手指波谷将产生不同的电压。
扫描仪处理器读取此输出电压并确定其是嵴纹还是波谷的特征。
通过读传感器阵列中的每一个单元,处理器可以整理出指纹的整体图像,这与光学扫描仪捕获的图像相似。
电容扫描仪的主要优点是,它需要真实的指纹类型形状,而不是组成指纹视觉印象的明暗模式。
这使得这个系统更难被骗。
此外,由于它们使用半导体芯片而不是CCD元件,因此电容扫描仪往往比光学扫描仪体积更小。