小波包变换及matlab程序编写
Matlab中的小波变换与小波包分析方法详解

Matlab中的小波变换与小波包分析方法详解引言近年来,小波变换在信号处理领域中得到了广泛的应用。
小波变换是一种能够捕捉信号时频特性的有效工具,可以用来分析、压缩和去噪各种类型的信号。
本文将详细介绍Matlab中的小波变换和小波包分析方法,以帮助读者更好地理解和应用这一强大的信号处理技术。
一、小波变换(Wavelet Transform)小波变换是一种将信号分解成不同尺度的基函数的技术。
与传统的傅里叶变换相比,小波变换具有更好的时频局部化特性。
Matlab中提供了丰富的小波分析工具箱,可以方便地进行小波变换的计算。
1.1 小波基函数小波基函数是小波变换的基础。
不同类型的小波基函数适用于不同类型的信号。
在Matlab中,我们可以使用多种小波基函数,如Daubechies小波、Haar小波和Morlet小波等。
1.2 小波分解小波分解是指将信号分解成多个尺度的小波系数。
通过小波分解,我们可以获取信号在不同尺度上的时频特性。
Matlab中提供了方便的小波分解函数,例如'dwt'和'wavedec'。
1.3 小波重构小波重构是指根据小波系数重新构建原始信号。
通过小波重构,我们可以恢复原始信号的时域特性。
在Matlab中,可以使用'idwt'和'waverec'函数进行小波重构。
二、小波包分析(Wavelet Packet Analysis)小波包分析是对小波变换的进一步扩展,它允许对信号进行更精细的分解和重构。
小波包分析提供了一种更灵活的信号分析方法,能够获得更详细的时频特性。
2.1 小波包分解小波包分解是指将信号分解成具有不同频带的小波包系数。
与小波分解相比,小波包分解提供了更高的分辨率和更详细的频谱信息。
在Matlab中,可以使用'wavedec'函数进行小波包分解。
2.2 小波包重构小波包重构是根据小波包系数重新构建原始信号。
小波包变换及matlab程序编写

1 小波变换的基本理论信号分析是为了获得时间和频率之间的相互关系。
小波变换(DWT )是现代谱分析工具,他既能考察局部时域过程的频域特征,又能考察局部频域过程的时域特征,因此即使对于非平稳过程,处理起来也得心应手。
傅立叶变换提供了有关频率域的信息,但有关时间的局部化信息却基本丢失。
与傅立叶变换不同,小波变换能将图像变换为一系列小波系数,这些系数可以被高效压缩和存储,此外,小波的粗略边缘可以更好地表现图像,因为他消除了DCT 压缩普遍具有的方块效应。
通过缩放母小波(Mother wavelet )的宽度来获得信号的频率特征, 通过平移母小波来获得信号的时间信息。
对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。
小波变换是当前应用数学中一个迅速发展的领域,是分析和处理非平稳信号的一种有力工具。
它是以局部化函数所形成的小波基作为基底展开的,具有许多特殊的性能和优点,小波分析是一种更合理的进频表示和子带多分辨分析。
2小波包变换的基本理论和原理概论:由于正交小波变换只对信号的低频部分做进一步分解,而对高频部分也即信号的细节部分不再继续分解,所以小波变换能够很好地表征一大类以低频信息为主要成分的信号,但它不能很好地分解和表示包含大量细节信息(细小边缘或纹理)的信号,如非平稳机械振动信号、遥感图象、地震信号和生物医学信号等。
与之不同的是,小波包变换可以对高频部分提供更精细的分解,而且这种分解既无冗余,也无疏漏,所以对包含大量中、高频信息的信号能够进行更好的时频局部化分析。
2.1小波包的定义:正交小波包的一般解释 仅考虑实系数滤波器.{}n n Z h ∈{}n n Zg ∈()11nn ng h -=-()()()()22k k Z kk Z t h t k t g t k φφψφ∈∈⎧=-⎪⎨=-⎪⎩为便于表示小波包函数,引入以下新的记号:通过,,h,g 在固定尺度下可定义一组成为小波包的函数。
小波变换的原理及matlab仿真程序讲解学习

小波变换的原理及m a t l a b仿真程序基于小波变换的信号降噪研究2 小波分析基本理论设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。
当Ψ(t)满足条件[4,7]:2()R t dw w C ψψ=<∞⎰ (1)时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列:,()()a b t b t aψ-= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。
对于任意的函数f(t)∈L 2( R)的连续小波变换为:,(,),()()f a b R t b W a b f f t dt aψψ-=<>=⎰(3) 其逆变换为:211()(,)()f R R t b f t W a b dadb C a aψψ+-=⎰⎰ (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。
小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。
使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。
3 小波降噪的原理和方法3.1 小波降噪原理从信号学的角度看 ,小波去噪是一个信号滤波的问题。
尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。
由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]:小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式:(k)()()S f k e k ε=+* k=0.1…….n-1 其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。
MATLAB小波变换指令及其功能介绍(超级有用)

MATLAB小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1) dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname'对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。
2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换----------------------------------------------------------- (1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的 Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
小波包变换matlab程序

小波包变换matlab程序小波包变换是一种信号分析的方法,可以对信号进行多尺度的分解与重构。
在Matlab中,我们可以使用Wavelet Toolbox来实现小波包变换。
本文将介绍小波包变换的原理以及如何在Matlab中进行实现。
我们来了解一下小波包变换的原理。
小波包变换是基于小波变换的一种扩展方法,它在小波变换的基础上进一步增加了尺度的变化。
小波包变换通过不断地分解和重构信号,可以得到信号的不同频率成分。
在小波包变换中,我们可以选择不同的小波基函数和分解层数,以得到适合信号特征的频率分解结果。
在Matlab中,我们可以使用Wavelet Toolbox中的函数实现小波包变换。
首先,我们需要通过调用`wavedec`函数对信号进行小波分解。
该函数的输入参数包括信号、小波基函数、分解层数等。
通过调用该函数,我们可以得到信号在不同频率尺度上的系数。
接下来,我们可以选择一些感兴趣的频率尺度,对系数进行进一步的分解。
在Matlab中,我们可以使用`wprcoef`函数对系数进行小波包分解。
该函数的输入参数包括小波包分析对象、系数所在的频率尺度等。
通过调用该函数,我们可以得到信号在指定频率尺度上的小波包系数。
除了分解,小波包变换还可以进行重构。
在Matlab中,我们可以使用`waverec`函数对系数进行小波重构。
该函数的输入参数包括小波包系数、小波基函数等。
通过调用该函数,我们可以得到信号的重构结果。
在实际应用中,小波包变换可以用于信号的特征提取、信号去噪等。
通过分解信号,我们可以得到不同频率尺度上的信号成分,从而对信号进行分析和处理。
在Matlab中,我们可以通过可视化小波包系数的方法,对信号进行频谱分析。
通过观察小波包系数的幅值和相位信息,我们可以了解信号的频率成分及其变化规律。
总结一下,在Matlab中实现小波包变换的步骤如下:1. 调用`wavedec`函数对信号进行小波分解,得到信号在不同频率尺度上的系数。
一个小波变换实例及Matlab实现

1、 选择()t ϕ或ˆ()ϕω,使{}()k Z t k ϕ∈-为一组正交归一基; 2、 求n h 。
1,(),()n n h t t ϕϕ-=或ˆˆ()(2)/()H ωϕωϕω= 3、 由n h 求n g 。
1(1)n n n g h -=- 或()()i G e H t ωωωπ-=4、 由n g ,()t ϕ构成正交小波基函数()t φ1,()()n n t g t φϕ-=∑或ˆˆ()(/2)(/2)G φωωϕω= Haar 小波的构造1)、选择尺度函数。
101()0t t ϕ ≤≤⎧=⎨ ⎩其他 易知(n)t ϕ-关于n 为一正交归一基。
2)、求n h1,(),()n n h t t ϕϕ-=()2t-n)t dt ϕϕ(其中11(2)220n n t t n ϕ+⎧ ≤≤⎪-=⎨⎪ ⎩其他当n=0时,11(2)20t t ϕ⎧ 0≤≤⎪=⎨⎪ ⎩其他当n=1时,111(21)20t t ϕ⎧ ≤≤⎪-=⎨⎪ ⎩其他故,当n=0,n=1时1()(2)0n n t t n ϕϕ =0,=1⎧•-=⎨⎩其他当n=0时, ()(2)t t n ϕϕ•-1120t ⎧ 0≤≤⎪=⎨⎪ ⎩其他当n=1时,()(2)t t n ϕϕ•-11120t ⎧ ≤≤⎪=⎨⎪ ⎩其他故nh ()2t-n)t dt ϕϕ(1/0n n ⎧=0,=1⎪=⎨ ⎪⎩其他3)、求n g 。
11/0(1)1/10n n n n g h n -⎧=⎪⎪=-=-=⎨⎪ ⎪⎩其他4)、求()t φ。
1,()()n n t g t φϕ-=∑=0-1,011,1()()g t g t ϕϕ-+=(2)(21)t t -=110211120t t ⎧ ≤≤⎪⎪⎪- ≤≤⎨⎪ ⎪⎪⎩其他其图形如下:1、 Haar 尺度函数101()0t t ϕ ≤≤⎧=⎨ ⎩其他 Haar 尺度函数空间:}{,(22),(21),(2),(21),(21),j j j j j x x x x x ϕϕϕϕϕ++-- j 为非负的整数,该空间又称为j 级阶梯函数空间j V 。
小波变换(内附奇异值分析matlab程序)

2、算法及其应用实例
小波在信号的奇异性检测中的应用举例 信号的突变点和奇异点等不规则部分通常包含重要信息,一般信号 的奇异性分为两种情况: (1)信号在某一时刻其幅值发生突变,引起信号的非连续,这种类 型的突变称为第一类型的间断点; (2)信号在外观上很光滑,幅值没有发生突变,但是信号的一阶微 分有突变发生且一阶微分不连续,这种类型的突变称为第二类型的间 断点。 应用小波分析可以检测出信号中的突变点的位置、类型以及变 化的幅度。
程序代码
load nearbrk; x=nearbrk; %使用db4对信号进行2层分解 [c,l]=wavedec(x,2,‘db4’); subplot(411); subplot(4,1,i+2); plot(x); plot(d); ylabel('x'); ylabel(['d',num2str(3-i)]); %对分解的第六层低频系数进行重构 end a=wrcoef('a',c,l,'db4',2); subplot(412); plot(a); ylabel('a2'); for i=1:2 %对分解的第2层到第1层的高频系数 进行重构 a=wrcoef('a',c,l,'db4',3-i);
3、小波分析的优缺点
小波变换与Fourier变换相比,是一个时间和频域的局域变换因而能 有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进 行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能 解决的许多困难问题。 小波变换存在以下几个优点: 小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不 同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分 辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分 析窗口) 。 (4)小波变换实现上有快速算法(Mallat小波分解算法)。
MATLAB小波变换指令及其功能介绍(超级有用)

MATLAB小波变换指令及其功能介绍(超级有用)MATLAB小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1) dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT 说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数'wname'对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,'wname',L) 和X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。
2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换----------------------------------------------------------- (1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的 Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 小波变换的基本理论
信号分析是为了获得时间和频率之间的相互关系。
小波变换(DWT )是现代谱分析工具,他既能考察局部时域过程的频域特征,又能考察局部频域过程的时域特征,因此即使对于非平稳过程,处理起来也得心应手。
傅立叶变换提供了有关频率域的信息,但有关时间的局部化信息却基本丢失。
与傅立叶变换不同,小波变换能将图像变换为一系列小波系数,这些系数可以被高效压缩和存储,此外,小波的粗略边缘可以更好地表现图像,因为他消除了DCT 压缩普遍具有的方块效应。
通过缩放母小波(Mother wavelet )的宽度来获得信号的频率特征, 通过平移母小波来获得信号的时间信息。
对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。
小波变换是当前应用数学中一个迅速发展的领域,是分析和处理非平稳信号的一种有力工具。
它是以局部化函数所形成的小波基作为基底展开的,具有许多特殊的性能和优点,小波分析是一种更合理的进频表示和子带多分辨分析。
2小波包变换的基本理论和原理
概论:由于正交小波变换只对信号的低频部分做进一步分解,而对高频部分也即信号的细节部分不再继续分解,所以小波变换能够很好地表征一大类以低频信息为主要成分的信号,但它不能很好地分解和表示包含大量细节信息(细小边缘或纹理)的信号,如非平稳机械振动信号、遥感图象、地震信号和生物医学信号等。
与之不同的是,小波包变换可以对高频部分提供更精细的分解,而且这种分解既无冗余,也无疏漏,所以对包含大量中、高频信息的信号能够进行更好的时频局部化分析。
2.1小波包的定义:
正交小波包的一般解释 仅考虑实系数滤波器.
{}n n Z h ∈{}n n Z
g ∈()11n
n n
g h -=-(
)()(
)()22k k Z k
k Z t h t k t g t k φφψφ∈∈⎧=-⎪⎨
=-⎪⎩
为便于表示小波包函数,引入以下新的记号:
通过,,h,g 在固定尺度下可定义一组成为小波包的函数。
由 递归定义的函数,n=0,1,2,…称为由正交尺度函数=确定的小波包。
2.2 小波分解及小波包分解
()()()()
01::t t t t μφμψ=⎧⎪⎨=⎪⎩(
)()(
)()
001022k k Z k k Z
t h t k t g t k μμμμ∈∈⎧=-⎪⎨=-⎪⎩
(
)()221()2()2n k n k
n k n k t h t k t g t k μμμμ+⎧=-⎪⎨
=-⎪⎩0
μ
1
μ
μ
2
μ
μ
1
μ
3
μ
h
h
h
g
g
g
h
g
0L L
V U =3
L =
2.3小波包变换的原理和公式
由于正交小波变换只对信号的低频部门做进一步的分析,而对高频部分以及信号的细节部分不再继续分解,所以小波包变换能够很好的表征以低频信息为主要成分的信号,但它不能很好地结合表示包含大量细节信息(细小细节或纹理)的信号,如非平稳机械振动信号、遥感图像、地震信号和生物医学信号灯。
与之不同的是,小波包变换可以对高频部分提供更精细的分解,而且这种分解既无冗余,也无疏漏,所以对包含大量中频、高频信息的信号能后进行更好的时频局部化分析。
小波包分解算法:
小波包重购:
[][][]221
122n n n j k l j k l j
l Z
l Z
d k h d l g d l ++--∈∈=+∑∑
信号小波包分析的基本实现步骤:
1)选择适当的小波录波器,对给定的采样信号进行小波包变换,获得树形结构的小波包系数。
2)选择信息代价函数,利用最佳小波包基选取算法选取最佳基。
3)对最佳正交小波包基对应的小波包系数进行处理。
4)对处理后的小波包系数采用小波包重构算法得到重构信号。
3 小波包变换的matlab 实现
x=imread('girl.jpg'); imshow(x);
t=wpdec2(x,2,'db1'); plot(t); %划出四叉树结构 %对分解结构进行重建 rective=wprec2(t);
subplot(1,2,1),imshow(x),title('原始图像')
subplot(1,2,2),imshow(wprec2(t)),title('重构后的图像')
4小波包变换的仿真图
[][][][]2212121n n j l k j l Z
n n j l k j l Z d k h d l d k g d l -+∈+-+∈⎧=⎪⎨=⎪
⎩∑∑
四叉树结构图
小波包变换图。