石墨烯复合材料

合集下载

石墨烯纳米复合材料

石墨烯纳米复合材料

石墨烯纳米复合材料
石墨烯是一种由碳原子构成的二维晶格结构材料,具有优异的导电性、热导性
和机械性能。

石墨烯的发现引起了科学界的广泛关注,人们开始探索如何将石墨烯与其他材料结合,以期望得到更多新颖的性能。

石墨烯纳米复合材料应运而生,成为了当前材料科学研究的热点之一。

石墨烯纳米复合材料是指将石墨烯与其他纳米材料进行复合,形成新的材料体系。

这种复合材料不仅继承了石墨烯的优异性能,还具有了其他纳米材料的特性,因此在电子器件、储能材料、传感器等领域具有广阔的应用前景。

首先,石墨烯与纳米金属复合材料在催化剂领域有着重要的应用。

石墨烯具有
大量的π共轭结构,能够提供丰富的活性位点,而纳米金属具有优异的催化性能,将两者复合能够有效提高催化剂的活性和稳定性,从而在化工领域有着广泛的应用。

其次,石墨烯与纳米陶瓷复合材料在耐磨材料领域有着重要的应用。

石墨烯具
有出色的机械性能和高强度,而纳米陶瓷具有硬度大、耐磨性好的特点,二者复合后能够有效提高材料的耐磨性能,因此在航空航天、汽车制造等领域有着广泛的应用。

此外,石墨烯与纳米聚合物复合材料在柔性电子领域也有着重要的应用。

石墨
烯具有优异的导电性和柔韧性,而纳米聚合物具有良好的柔韧性和成型性,二者复合后能够制备出柔性电子器件,如柔性传感器、柔性电池等,因此在可穿戴设备、医疗器械等领域有着广泛的应用前景。

综上所述,石墨烯纳米复合材料具有广泛的应用前景,在能源、材料、电子等
领域都有着重要的作用。

随着材料科学的不断发展,相信石墨烯纳米复合材料将会有更多的新突破,为人类社会的发展做出更大的贡献。

石墨烯复合材料

石墨烯复合材料

石墨烯复合材料石墨烯是单层碳原子通过sp2杂化形成的蜂窝点阵结构,属于二维原子晶体,此独特的空间结构,给石墨烯带来了优异的电学、力学、热学和比表面积大等性质。

但是二维石墨烯由于片层之间具有较强的π-π作用和范德华力,使得石墨烯容易聚集形成石墨,限制了石墨烯在各个领域中的应用。

因此,为了防止石墨烯的聚集和拓展石墨烯的应用,科研工作者将石墨烯与高分子或者无机纳米粒子进行复合,从而得到具有优异性能的复合材料。

石墨烯的复合材料具有化学稳定性高、比表面积大,易回收等特点,在环境治理方面受到了科学家的青睐。

一、石墨烯复合材料的分类和制备1、石墨烯-高分子复合材料石墨烯-高分子复合材料,石墨烯的独特的结构和性能,对于改善高分子的导电性、热性能和吸附能力等方面有非常大的应用价值。

制备石墨烯-高分复合材料最直接的方法是将高分子溶液与石墨烯的溶液混合,其中高分子和填充物在溶剂中的溶解能力是保证最佳分散度的重要因素。

因此,在溶液混合时,可以将石墨基质表面功能化来提高它在多种溶剂中的溶解度。

例如,异氰酸苯酯修饰的GO在在聚苯乙烯的DMF溶液中表现出了较好的溶解度。

2、石墨烯-无机纳米粒子复合材料无机纳米粒子存在着易于团簇的问题,并且选择合适的载体也是其广泛应用需要解决的问题。

石墨烯具有多种优异的性能,并且具有较大的比表面积,可以成为无机纳米材料的载体。

无机纳米粒子可以将易于团簇的石墨烯片层分开,防止团簇,从而两者形成石墨烯-无机纳米粒子新型的复合材料,这些材料广泛的应用于检测、催化和气体存储等方面。

目前已报道的有负载的金属纳米粒子Ag、Au、氧化物纳米粒子ZnO和Fe3O4等。

3、其它石墨烯复合材料石墨烯不仅仅可以和高分子、无机纳米材料复合,还可以同时结合高分子、纳米粒子和碳基材料中的一种或者两种,形成多元的含有石墨烯的复合材料。

这类材料具有多功能性,用于超级电容器或者传感器等。

二、石墨烯复合材料在水治理的应用1、吸附作用碳材料中活性碳和碳纳米管被广泛的应用于水净化领域,将石墨烯与其它化合物进行复合,这些复合材料在吸附污染物上有非常高的效率,可以应用于染料、多芳香环烃和汽油的吸附。

石墨烯复合材料

石墨烯复合材料

石墨烯复合材料复合材料,即是将两种或两种以上不同品质的材料,通过专门的成型工艺和制造方法复合而成的一种高性能材料,其中连续相为基体,其他相组分为增强体。

依据金属材料、无机非金属材料和有机高分子材料等的不同组合,可构成不同的复合材料体系。

在复合材料中,各种组成材料的互相作用在性能上产生协同效应,从而使材料的综合性能或某些特性优于原来的组成材料,因此可以满足各种不同的需求。

复合材料应用扩张的趋势十分迅猛,《中国制造2025》提出的重点发展的十大领域中,复合材料可在其中八个领域内发挥重要作用。

随着新的复合材料增强体和基体的不断涌现,纳米复合材料、智能复合材料和结构功能一体化复合材料等将成为复合材料发展的新方向。

石墨烯是在2004年成功制备出的一种新型材料,其中碳原子互相以共价键形成平面结构。

石墨烯具有许多优异的物理化学特性,近年来受到学术和产业界的高度重视,成为一种明星材料。

将石墨烯作为复合材料的组分之一,利用其高性能的特点提升现有复合材料的性能,或设计各种新型的复合材料,已成为科学与工程领域中的一个热点问题。

1.1 石墨烯的结构、性质与制备方法1.1.1 石墨烯的结构与性质石墨烯,是2004年由Andre Geim和Kanstantin Novoselov两位科学家制备出的一种全新的二维材料。

石墨烯是由碳原子之间互相以sp2杂化轨道键合形成蜂窝状结构的原子单层,厚度仅为0.34nm。

相邻的原子层则是以范德瓦尔斯力相互结合在一起。

在其原子层的内部,各个碳原子以p z轨道形成离域π键,赋予石墨烯特有的电子性能。

相对于层内的共价键,石墨烯层间的范德瓦尔斯作用力在强度上要弱一些,这使得石墨烯具有易于剥离的特性。

通过机械剥离法可以从石墨原料制备出一层或少层的石墨烯,也是基于这一原理。

作为一种二维材料,石墨烯和体相的石墨材料具有显著的差别。

在层数由多层降为少层之后,碳原子所处的晶格势场发生了改变,形成了特殊的电子结构。

石墨烯复合材料的制备及应用研究进展

石墨烯复合材料的制备及应用研究进展

石墨烯复合材料的制备及应用研究进展一、本文概述石墨烯,作为一种新兴的二维纳米材料,因其独特的电子结构、优异的物理和化学性能,在复合材料领域引起了广泛的关注。

石墨烯复合材料结合了石墨烯和其他材料的优点,使得这种新型复合材料在力学、电学、热学等方面表现出色,因此具有广阔的应用前景。

本文旨在综述石墨烯复合材料的制备方法、性能特点以及在不同领域的应用研究进展,以期为石墨烯复合材料的进一步研究和实际应用提供理论支持和参考。

本文将首先介绍石墨烯及其复合材料的基本概念和特性,然后重点综述石墨烯复合材料的制备方法,包括溶液混合法、原位合成法、熔融共混法等。

接着,文章将探讨石墨烯复合材料在能源、电子、生物医学、航空航天等领域的应用研究进展,分析其在提高材料性能、降低成本、推动相关产业发展等方面的重要作用。

本文还将对石墨烯复合材料未来的研究方向和应用前景进行展望,以期推动这一领域的持续发展和创新。

二、石墨烯复合材料的制备方法石墨烯复合材料的制备方法多种多样,每一种方法都有其独特的优点和适用范围。

以下是几种主要的制备方法:溶液混合法:这是最简单且最常用的方法之一。

首先将石墨烯分散在适当的溶剂中,然后通过搅拌或超声处理使其均匀分散。

接着,将所需的基体材料(如金属氧化物、聚合物等)加入溶液中,通过搅拌或热处理使石墨烯与基体材料充分混合。

通过过滤、干燥等步骤得到石墨烯复合材料。

这种方法操作简便,但石墨烯在溶剂中的分散性和稳定性是关键因素。

原位生长法:这种方法通常在高温或特定气氛下进行,利用石墨烯与基体材料之间的化学反应,使石墨烯在基体材料表面或内部原位生长。

例如,通过化学气相沉积(CVD)或热解等方法,在金属氧化物或聚合物表面生长石墨烯。

这种方法可以得到石墨烯与基体材料结合紧密、性能优异的复合材料,但操作过程较复杂,且需要特殊的设备。

熔融共混法:对于高温稳定的基体材料,如金属或某些聚合物,可以采用熔融共混法制备石墨烯复合材料。

稀土材料的石墨烯复合材料研究

稀土材料的石墨烯复合材料研究

稀土材料的石墨烯复合材料研究引言稀土材料是一类非常重要且具有广泛应用的功能材料,具有优异的物理和化学性质,被广泛用于电子器件、储能材料、催化剂等领域。

然而,稀土材料在某些方面存在一些限制和挑战,如自然资源有限、价格昂贵等。

为了克服这些限制并提高稀土材料的性能,石墨烯作为一种具有特殊结构和优异性能的二维材料,被广泛研究并用于稀土材料的复合材料中。

本文将介绍稀土材料的石墨烯复合材料的研究进展。

石墨烯的特性和应用石墨烯是由碳原子构成的二维晶格结构,具有很高的导电性、热传导性和机械强度。

它还具有非常高的比表面积和化学稳定性,被广泛应用于电子器件、能源存储和转换、催化剂等领域。

石墨烯与稀土材料的复合可以充分发挥两者的优势,提高材料性能。

稀土材料与石墨烯的复合方法稀土材料与石墨烯的复合通常采用物理混合、化学还原、电化学沉积等方法。

物理混合是将石墨烯与稀土材料一起机械混合,制备成复合材料。

化学还原是通过还原剂使稀土离子还原成稳定的金属氧化物,并与石墨烯发生化学反应,形成复合材料。

电化学沉积是利用电化学原理,在石墨烯表面通过电化学反应将稀土材料沉积上去。

稀土材料的石墨烯复合材料的性能改善稀土材料与石墨烯的复合可以显著改善稀土材料的性能。

首先,石墨烯具有很高的导电性和热传导性,可以提高稀土材料的导电性和热传导性能。

其次,石墨烯具有很高的比表面积,能够增加稀土材料与其他材料的接触面积,提高界面相互作用。

此外,稀土材料与石墨烯的复合还能够改善稀土材料的机械性能,提高复合材料的力学强度。

稀土材料的石墨烯复合材料的应用稀土材料与石墨烯的复合材料在各个领域具有广泛的应用。

在电子器件领域,稀土材料的石墨烯复合材料可以用于制备高性能的场效应晶体管和光电器件。

在能源存储和转换领域,稀土材料的石墨烯复合材料可以用于制备高性能的锂离子电池、超级电容器和光电催化剂。

此外,稀土材料的石墨烯复合材料还可以用于制备高效的催化剂、生物传感器等。

石墨烯基复合材料的制备与性能研究

石墨烯基复合材料的制备与性能研究

石墨烯基复合材料的制备与性能研究石墨烯是一种单层碳原子排列成的二维晶体,具有极高的强度、导电性和导热性。

在过去的几年里,石墨烯在材料科学领域引起了广泛的关注。

为了进一步发展石墨烯的应用,研究人员开始将石墨烯与其他材料相结合,形成石墨烯基复合材料。

这些复合材料具有优异的性能和多样化的应用前景。

本文将探讨石墨烯基复合材料的制备方法以及其性能研究。

一、石墨烯基复合材料的制备方法1. 化学气相沉积法(CVD)化学气相沉积法是一种常用的制备大面积石墨烯的方法。

该方法通过在金属衬底上加热挥发的碳源,使其在高温下与金属表面反应生成石墨烯。

石墨烯的生长在具有合适结晶特性的金属表面上进行,如铜、镍等。

CVD法制备的石墨烯可以获得高质量、大尺寸的单层石墨烯。

2. 液相剥离法液相剥离法是一种以石墨为原料制备石墨烯的方法。

通过在石墨表面涂覆一层粘性聚合物,然后利用粘性聚合物与石墨之间的相互作用力,将石墨从衬底上剥离,最终得到石墨烯。

这种方法能够制备出大面积的石墨烯,并且使用简便、成本较低。

3. 氧化石墨烯还原法氧化石墨烯还原法是一种制备石墨烯的简单方法。

首先将石墨烯氧化生成氧化石墨烯,然后通过还原处理,还原为石墨烯。

该方法可以在实验室条件下进行,操作简单方便。

然而,由于氧化石墨烯的导电性较差,所得石墨烯的质量较低。

二、石墨烯基复合材料的性能研究1. 机械性能石墨烯具有出色的机械性能,其强度和刚度超过大多数材料。

石墨烯基复合材料的机械性能主要取决于基体材料和石墨烯的界面相互作用。

研究表明,合适添加石墨烯可以显著提升材料的强度和硬度。

2. 电学性能石墨烯具有优异的电学性能,可以用作电极材料、导电填料等。

石墨烯基复合材料在导电性能方面表现出色,可以用于制备柔性电子器件、传感器等。

3. 热学性能由于石墨烯的热导率高达3000-5000 W/(m·K),石墨烯基复合材料在热学性能方面具有巨大的潜力。

石墨烯能够显著提高基体材料的热导率,因此可以应用于散热材料、热界面材料等领域。

石墨烯复合材料

石墨烯复合材料

石墨烯复合材料
石墨烯是一种由碳原子构成的二维晶格结构材料,具有极强的机械强度、导电性和热导性,因此被广泛应用于复合材料领域。

石墨烯复合材料是指将石墨烯与其他材料进行复合,以提高材料的性能和功能。

目前,石墨烯复合材料已经在航空航天、汽车制造、电子设备等领域得到了广泛的应用。

首先,石墨烯复合材料具有优异的机械强度。

石墨烯本身具有非常高的强度和韧性,能够有效增强复合材料的整体强度和硬度。

与传统材料相比,石墨烯复合材料更轻更薄,但却具有更高的强度和耐磨性,因此在航空航天领域得到了广泛的应用。

其次,石墨烯复合材料具有优异的导电性能。

石墨烯是一种优良的导电材料,能够有效提高复合材料的导电性能。

在电子设备制造领域,石墨烯复合材料可以用于制造柔性电路板、导电薄膜等产品,大大提高了电子设备的性能和可靠性。

另外,石墨烯复合材料还具有优异的热导性能。

石墨烯具有非常高的热导率,可以有效地将热量传导出去,因此在汽车制造领域得到了广泛的应用。

石墨烯复合材料可以用于制造散热片、发动机零部件等产品,提高了汽车的燃烧效率和安全性能。

总的来说,石墨烯复合材料具有优异的机械强度、导电性和热导性能,已经在航空航天、汽车制造、电子设备等领域得到了广泛的应用。

随着石墨烯制备技术的不断进步,相信石墨烯复合材料在未来会有更广阔的发展空间,为各个领域带来更多的创新和突破。

石墨烯复合材料

石墨烯复合材料
可以单独的实用其导热/电制热/吸波/耐化功能, 也可以组合使用其功能。
谢谢!
路线总结对比
项目目 颜色色 电阻率 导热 抗氧化 抗UV 热负荷形变
石石墨墨烯+热塑性链状
石石墨墨烯+热固性网网状
Min:10-1Ω⋅m
黑黑色色
Min:10-4Ω⋅m
Max:2.5W/M⋅K 差 差
Max:150℃
Max:15W/M⋅K 极强 极强
Max:250℃
泰启力力力⻜飞所选择的路路线是石石墨墨烯+热固性网网状高高分子子材料料
单位 g/cm3
J/g·K W/m·K W/m·K
W/m2·K4
L M·Pa
°C μm/(m·°C)
Ω·m Change rate of mass % Change rate of mass %
---
---
TK-PB07-SR TK-PB07
1.75
1.7
1.882
1.880
50
45
14
12
0.94
泰启力飞通过不懈的努力,搭建了完整的工业体系,建立了对石墨烯的品相进行精 确的鉴定、筛选和后道处理的方法和标准,这是泰启力飞石墨烯产业化的核心能力
石石墨墨烯复合
材料复合的基本认知
•复合只是物理的结合,不存在石墨烯和高分子基材产生化学反应而导致
石墨烯分子结构的变化
•复合后目标物性的提升与两个方面有关
加热Leabharlann 结泰启力飞的石墨烯复合材料具备有以下多个优良特性
• 介于导热塑料和金属之间的导热率,密度远低于金属, • 远高于金属的耐化学特性和远高普通塑料的抗氧化耐UV性能 • 10-4∼10-3Ω⋅m的体电阻率,具备最佳低电压焦耳效应条件 • 较高介质损耗和较金属低的电阻率,良好的吸收电磁波和抑制电磁波辐射性能 • 环保低能耗,每公斤产品碳排放小于2Kg。而铝至少需要10kg.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一石墨烯/ Fe3O4 复合材料的制备及电磁波吸收性能摘要:为扩展石墨烯的应用领域, 对磁性功能化石墨烯的电磁波吸收性能进行研究。

在氧化石墨与 Fe3O4 粒子的悬浮液中添加还原剂水合肼, 微波辐照反应制备石墨烯/Fe3O4 复合物。

采用 X 射线衍射、透射电镜等手段对材料的结构和 Fe3O4 的分布状态进行了测试表征。

采用矢量网络分析仪测定了材料在 0 1 1~ 18 10 GHz 频率范围内的复介电常数和复磁导率。

利用 Cole -Cole 图解释了复合材料的介电特性。

利用计算机模拟出不同厚度材料的电磁波衰减性能。

结果表明, 当石墨烯和 Fe3O4 粒子以质量比 10B 1复合得到的吸波剂材料的匹配厚度在 2 1 0~ 2 1 5 mm 变化时, 反射损耗小于- 20 dB 的频率覆盖 6 1 5~ 817 GHz。

调节 Fe3O4 粒子的相对含量, 复合材料的反射损耗最小可以达到- 4917 dB。

复合材料的强吸收特性预示了其作为电磁波吸收材料的潜在应用前景。

石墨烯自出现以来, 其独特的力学、电学、光学及磁学性能便引起了广泛关注。

石墨烯具有的特殊二维片状结构有利于对电磁波的吸收, 以此为基体负载铁氧体形成石墨烯/ 铁氧体复合材料, 可以发挥以下优势: 首先, 石墨烯的电导率和热导率高, 比表面积大, 质量轻, 这些性能有利于电磁波的吸收和衰减; 其次, 铁氧体粒子的引入可以增强石墨烯的铁磁性, 使复合材料兼具磁损耗与电损耗, 有利于实现电磁匹配; 最后,铁氧体的反射率损耗一般发生在较低频率范围( < 10 GHz) , 而石墨材料的反射率损耗通常位于高频区, 因此, 两种材料的复合还有利于吸收频带的拓宽结论通过在微波还原 GO 的过程中添加Fe3O4 粒子, 制备出了石墨烯/ Fe3O4 复合材料。

(1) Cole-Cole 图显示, Fe3O4 粒子与石墨烯复合后, 粒子与石墨烯形成界面使得复合材料具有多重介电弛豫。

(2) 反射损耗的计算结果表明, 单一的 Fe3O4粒子在匹配厚度为 2 10~ 4 10 mm 时不能实现有效吸收, 与一定量的石墨烯复合后, 反射损耗能够降低到- 20 dB以下。

其中以 GR-Fe3O4-10 B1 为吸收剂的材料在匹配厚度在 2 10~ 2 15 mm 变化时,有效吸收频带可以覆盖 6 15~ 8 17 GHz; 以 GR-Fe3O4-10B2为吸收剂的材料在厚度为3 15 mm、频率为 417 GHz 时的最小反射损耗可以达到- 4917 dB。

石墨烯/ Fe3O4 复合材料强吸收的特性以及石墨烯作为基底的广泛适用性为研究新型吸波材料提供了新的思路。

二石墨烯/Pd 复合材料的制备及其形成机制研究近年来,越来越多的科学家致力于以氧化石墨为前驱体合成石墨烯 / 纳米金属或纳米金属氧化物,并研究其物理与化学性质[5-7]。

金属钯具有良好的亲氢性,在氢气储存、加氢反应催化剂、燃料电池及化学传感器等方面有着广泛的应用前景,而且纳米金属颗粒与炭材料之间存在溢出效应,故这两者的复合有望提高材料的储氢能力3结论1)以氧化石墨和具有良好插层性质的Pd(en)2Cl2为前驱体,能通过化学还原法成功制备出石墨烯 /Pd复合材料。

2)石墨烯/Pd复合材料具有中孔性质,其BET比表面积达230 m2/g,钯纳米颗粒的粒径为2~6 nm,弥散地分布在石墨烯的层间及层的边缘。

3)纳米钯颗粒能阻止石墨烯重新堆积形成石墨结构,其支撑石墨烯层的作用是形成石墨烯复合材料的关键。

已有研究表明,石墨烯 /Pd 复合材料在氢气贮存、加氢加成及传感器等方面有广泛的用途[14]。

三石墨烯/SnO2/聚苯胺纳米复合材料石墨烯具有独特的纳米结构和一系列极具吸引力的特性,成为新型纳米复合材料的理想载体,如纳米复合材料分散的基体.提出了一种以石墨,苯胺,四氯化锡为原料制备石墨烯/二氧化锡/聚苯胺的新方法.通过X-射线衍射,红外光谱,透射电子显微镜,扫描电子显微镜以及紫外-可见光谱对合成的材料进行表征.结果表明:二氧化锡纳米粒子原位吸附在石墨烯的表面,有效地避免了石墨烯片的堆叠,聚苯胺加入后可大大提高二氧化锡的电化学性质。

石墨烯,具有一个原子层厚度的二维结构,因其化学稳定性、高电导率、大比表面积而成为电化学储能材料的理想碳材料.石墨烯纳米片还被作为锂离子电池的储能材料进行研究.如果锂可以黏附在石墨烯的两面,那它的储能容量为774mAh/g.但是,石墨烯片很容易堆叠成多层,从而减小表面积使其物理化学性能大大降低.近年来,人们通过将纳米粒子附着在石墨烯表面来降低石墨烯片的堆叠.纳米粒子可以是金属纳米粒子(如Au,Pt等),也可以是金属氧化物(如TiO2,SnO2等).石墨烯基材料的完美性,有望应用到传感器、超级电容器、锂电池、催化剂等领域.但是这些复合材料都是通过纳米粒子和石墨烯的简单混合得到的,限制了纳米粒子的均匀分散和石墨烯片的有效分离过渡金属氧化物(SnO2,Co3O4,Fe2O3,NiO,CuO等)因其高容量而被研究作为锂离子电池负极材料.其中,SnO2最为引人瞩目,在这个可逆反应中,二氧化锡的理论比容量是782mAh/g[13].但是在锂离子的嵌入和迁出过程中,二氧化锡纳米粒子很容易发生体积膨胀,从而降低电池的循环寿命.因此采用石墨烯表面负载SnO2的方法制备纳米复合材料,这样不仅降低石墨烯片的堆叠度,也提高了SnO2的储能能力.为了提高电解质离子的转移,通过在石墨烯表面附着导电聚合物,不仅可以进一步拉大石墨烯片的层间距,而且聚合物链的运动使电解质离子更好地迁移.层间距拉大的石墨烯更好地作为锂离子电池电极材料[14].在此,提出了一种简便合成石墨烯/SnO2/聚苯胺的高性能锂电池负极材料的方法.成功地合成了石墨烯/SnO2/聚苯胺纳米复合材料.结果表明,二氧化锡,聚苯胺很好地附着在石墨烯上形成三明治状的复合结构.聚苯胺和二氧化锡的附着可以有效地解决石墨烯的堆叠问题,石墨烯和聚苯胺的介入又可以很好地抑制二氧化锡的体积膨胀问题,从而可以进一步提高电极材料的电学性质,使得这种材料成为一种理想的锂离子电池负极材料.可以期望将此方法应用到石墨烯基其他金属氧化物中,从而得到广泛的应用.四石墨烯 /TiO2复合材料的制备及其光催化性能的研究TiO2颗粒由于具有较高的化学稳定性、热稳定性以及优良的光学、力学和电学特性,被应用于诸多工业领域。

其中锐钛型 TiO2具有良好的光催化活性,尤其是当颗粒尺寸降到纳米级别时,催化能力更好,在催化降解环境有机污染物方面具有广泛的应用。

碳材料在催化中有着极为重要的应用,被广泛用做催化剂的载体,也可以直接作为许多反应的催化剂[5 ]。

由于石墨烯是构建众多碳材料包括石墨、碳纳米管、碳纳米纤维和类富勒烯材料的基本单元[6 ],具有独特的二维表面结构、良好的导电导热性质以及很高的比表面积,可将某些具有催化活性的材料负载在石墨烯表面使其成为新一类石墨烯功能复合材料。

结论采用溶胶- 凝胶法成功制备出石墨烯/ TiO2光催化复合材料。

在紫外光照射下,以甲基橙光催化降解体系为研究对象,石墨烯/ TiO2复合材料用量为2 g/L、紫外光照为3. 5 h、目标降解物初始 pH 为5 时具有最好的催化活性。

在同等条件下,石墨烯/ TiO2复合材料光催化降解效果比单一锐钛矿型 TiO2的效果好。

五石墨烯/铂复合材料的制备及电化学性能研究采用 Hummers 法制备氧化石墨,再超声分散于去离子水中形成稳定的氧化石墨分散液。

分散液与氯铂酸溶液混合后,氧化石墨烯还原氯铂酸产生大量铂纳米粒子,铂粒子被牢固地锚在氧化石墨烯片上,最后将所得到的氧化石墨烯/铂复合物置于管式炉中在 Ar/H2气氛中于 800 ℃下热裂解制备出石墨烯/铂复合材料。

形貌与纳米结构分析表明,氧化石墨已被彻底还原成石墨烯,铂纳米粒子均匀分散在褶皱的石墨烯纳米片间。

电化学阻抗研究进一步揭示复合材料的电子转移阻抗明显小于石墨烯,呈示铂纳米粒子掺入石墨烯片层大大改善了导电性。

石墨烯/铂复合材料应用于对苯二酚的电化学检测,检出限达 1.6×10-7mol · L-1,这说明该材料具有优异的电催化性能。

结论利用氧化石墨烯和氯铂酸的原位氧化还原反应不仅实现了氯铂酸的彻底还原,而且所形成的铂纳米粒子被均匀地锚在氧化石墨烯片层上。

结合高温固相还原,成功开发出高性能的石墨烯/铂复合材料。

新的方法具有简便、绿色和高效等显著特点,可广泛应用于以满足催化剂和电化学传感器需要为目的的铂、金、钯等贵金属的石墨烯复合材料的合成。

六石墨烯 /TiO2复合材料的制备及其光催化性能的研究摘要:本实验以细鳞片石墨为原料,采用 Hummers 法制备氧化石墨,经超声波振荡得到氧化石墨烯,加入水合肼回流制得石墨烯材料。

采用溶胶- 凝胶法制备锐钛矿型TiO2及石墨烯/TiO2复合材料。

在紫外光照射下,分别以石墨烯/TiO2复合材料及锐钛矿型 TiO2为催化剂,在甲基橙溶液中进行光催化降解,结果显示,石墨烯/TiO2光催化性能明显高于相同条件下的锐钛矿型 TiO2. TiO2颗粒由于具有较高的化学稳定性、热稳定性以及优良的光学、力学和电学特性,被应用于诸多工业领域。

其中锐钛型 TiO2具有良好的光催化活性,尤其是当颗粒尺寸降到纳米级别时,催化能力更好,在催化降解环境有机污染物方面具有广泛的应用[1, 2 ]。

碳材料在催化中有着极为重要的应用,被广泛用做催化剂的载体[3, 4 ],也可以直接作为许多反应的催化剂[5 ]。

由于石墨烯是构建众多碳材料包括石墨、碳纳米管、碳纳米纤维和类富勒烯材料的基本单元[6 ],具有独特的二维表面结构、良好的导电导热性质以及很高的比表面积,可将某些具有催化活性的材料负载在石墨烯表面使其成为新一类石墨烯功能复合材料。

本课题以石墨烯为载体,利用溶胶- 凝胶法制备石墨烯/TiO2光催化复合材料。

同时,以甲基橙光催化降结论采用溶胶- 凝胶法成功制备出石墨烯/ TiO2光催化复合材料。

在紫外光照射下,以甲基橙光催化降解体系为研究对象,石墨烯/ TiO2复合材料用量为2 g/L、紫外光照为3. 5 h、目标降解物初始 pH 为5 时具有最好的催化活性。

在同等条件下,石墨烯/ TiO2复合材料光催化降解效果比单一锐钛矿型 TiO2的效果好。

七石墨烯/环氧树脂复合材料的介电性能研究摘要:通过Staudenmaier法制备了完全氧化的氧化石墨(GO),并通过高温热膨胀制备了单层石墨烯(graphene)。

用FT-IR和TG对GO的氧化程度、含氧官能团进行了表征,用SEM和TEM对天然石墨(NG)、GO和graphene的微观结构进行了分析。

相关文档
最新文档