《工程材料基础》知识点汇总

合集下载

工程材料知识点总结(全)

工程材料知识点总结(全)

*强度概念:材料在外力作用下对变形与断裂的抵抗能力。

主要指标:屈服强度R el:材料发生微量塑性变形时的应力值。

条件屈服强度R P0.2:残余变形量为0.2%时的应力值。

抗拉强度R m:材料断裂前所承受的最大应力值。

*塑性概念:材料受力破坏前可承受最大塑性变形的能力主要指标:伸长率 A、断面收缩率Z②用断面收缩率表示塑性比伸长率更接近真实变形。

② > 时,无颈缩,为脆性材料表征;< 时,有颈缩,为塑性材料表征。

*韧性材料在塑性变形和断裂的全过程中吸收能量的能力。

指标为:冲击韧度ak,冲击韧性是指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,反映材料内部的细微缺陷和抗冲击性能。

冲击韧度指标的实际意义在于揭示材料的变脆倾向,是反映金属材料对外来冲击负荷的抵抗能力,可通过冲击实验测得。

*疲劳概念:材料在交变应力作用经长时间工作而发生断裂的现象。

指标:材料在规定次数应力循环后仍不发生断裂时的最大应力称为疲劳极限,用表示。

通过改善材料形状结构、减少表面缺陷、提高表面光洁度、表面强化等方法可提高材料疲劳极限。

*硬度:材料抵抗表面局部塑性变形的能力。

布氏硬度的优点:测量误差小,数据稳定。

缺点:压痕大,不能用于太薄件、成品件及比压头还硬的材料。

适于测量退火钢、正火钢、调质钢、铸铁、有色金属的硬度(硬度少于450HB)。

压头为钢球时,布氏硬度用符号HBS表示,适用于布氏硬度值在450以下的材料。

压头为硬质合金球时,用符号HBW表示,适用于布氏硬度在650以下的材料。

符号HBS或HBW前的数字表示硬度值,之后的数字按顺序分别表示球体直径、载荷及载荷保持时间。

如 120HBS10/1000/30表示直径为 10mm 的钢球在1000kgf(9.807kN)载荷作用下保持30s测得的布氏硬度值为120。

根据压头类型和主载荷不同,分为九个标尺,常用的标尺为A、B、C。

HRA 用于测量高硬度材料, 如硬质合金、表淬层和渗碳层。

材料工程基础 总结

材料工程基础  总结

第一章材料的熔炼一、钢铁冶金(重点—看书/课件)1、炼铁主要是还原过程,炼钢主要是氧化过程2、高炉炼铁的原料(炉料)由矿石、溶剂和燃料组成。

3、直接还原:以气体、液体、煤为能源与还原剂,在铁矿石低于熔点温度时进行还原得到金属铁的炼铁工艺。

4、熔融还原:用铁矿石和普通煤作原料,在汽化炉流化床中将直接还原得到的海绵铁进一步加热融化,在熔融汽化炉底形成铁水与炉渣的熔池5、炉外精炼:将在转炉或电炉内初炼的钢液倒入钢包或专用容器内进行脱氧、脱硫、脱碳、去气、去除非金属夹杂物和调整钢液成分及温度的一种炼钢工艺6、常用的炉外精炼工艺:RH法-循环脱气法、LF法-钢包精炼法、VD法-真空脱气法7、炉外精炼的实施手段:一般炉外精炼方法都是渣洗、真空、搅拌、喷吹和加热等精炼手段的不同组合,采用一种或几种手段组成一种炉外精炼方法。

8、LF法的精炼过程将钢液、渣料及脱氧剂加入到LF炉,在还原性气氛下,通过电极埋弧造渣,炉底吹氩搅拌,完成钢液的脱硫、脱氧、合金化、温度及夹杂物的控制。

9、炼钢的方法:转炉炼钢法、平炉炼钢法、电炉炼钢法10、连铸连轧:把液态钢倒入连铸机中轧制出钢坯,然后不经冷却,在均热炉中保温一定时间后直接进入热连轧机组中轧制成型的钢铁轧制工艺。

优点:巧妙地把铸造和轧制两种工艺结合起来,相比于传统的先铸造出钢坯后经加热炉加热再进行轧制的工艺具有简化工艺、改善劳动条件、增加金属收得率、节约能源、提高连铸坯质量、便于实现机械化和自动化的优点。

应用:连铸连轧工艺现今只在轧制板材、带材中得到应用。

11、典型的薄板连铸连轧工艺流程:由炼铁(高炉或电炉)—炼钢(电炉或转炉)—炉外精炼—薄板坯连铸—连铸坯加热—热连轧六个单元工序组成。

二、Al冶金(重点—看书/课件)1、从铝土矿中制取铝常用碱法。

碱法分为拜耳法、烧结法、联合法等。

拜耳法又称湿碱法,典型湿法冶金的一种2、铝冶金特点:从铝矿石中提出纯净的化合物,再通过熔盐电解的方法得到纯铝。

工程材料知识点

工程材料知识点

工程材料知识点1. 工程材料分类1.1 金属材料1.1.1 铁碳合金1.1.2 非铁金属1.1.2.1 铜合金1.1.2.2 铝合金1.2 非金属材料1.2.1 塑料1.2.2 陶瓷1.2.3 复合材料1.3 特种材料1.3.1 纳米材料1.3.2 生物材料2. 材料性能2.1 力学性能2.1.1 强度2.1.2 硬度2.1.3 韧性2.1.4 疲劳性能2.2 物理性能2.2.1 密度2.2.2 热膨胀系数2.2.3 导热性能2.3 化学性能2.3.1 耐腐蚀性2.3.2 化学稳定性3. 材料选择原则3.1 满足工程设计要求 3.1.1 功能需求 3.1.2 经济性3.1.3 可加工性 3.2 考虑环境因素3.2.1 温度3.2.2 湿度3.2.3 化学介质 3.3 考虑可持续性3.3.1 材料回收 3.3.2 环保性4. 材料加工工艺4.1 铸造4.2 锻造4.3 焊接4.4 热处理4.5 机械加工4.5.1 切削加工 4.5.2 非传统加工5. 材料测试与评估5.1 力学性能测试5.1.1 拉伸试验 5.1.2 冲击试验 5.2 物理性能测试5.2.1 热导率测试 5.2.2 密度测定 5.3 化学性能测试5.3.1 耐腐蚀测试5.3.2 化学成分分析6. 材料应用案例6.1 建筑行业6.1.1 结构材料6.1.2 装饰材料6.2 汽车工业6.2.1 车身材料6.2.2 发动机材料6.3 航空航天6.3.1 轻质高强度材料6.3.2 耐高温材料7. 材料发展趋势7.1 智能材料7.2 绿色材料7.3 3D打印材料8. 结语工程材料是现代工业和建筑的基础,了解不同材料的特性、性能和应用对于工程设计和产品开发至关重要。

随着科技的进步,新材料的研发和应用将不断推动各行各业的发展,提高产品性能,降低成本,同时更加注重环保和可持续性。

因此,工程师和设计师需要不断更新材料知识,掌握最新的材料技术和应用趋势。

工程材料学知识点总结

工程材料学知识点总结

工程材料学知识点总结一、材料的基本性质1. 密度:材料的密度是指单位体积内的质量。

密度越大,材料的质量就越大,密度越小,材料的质量就越小。

2. 弹性模量:材料的弹性模量是指材料在受力时产生弹性变形的能力。

弹性模量越大,材料的刚度就越大,抗压抗弯能力就越强。

3. 强度:材料的强度是指材料在受力时承受拉伸、压缩、剪切等力的能力。

强度越大,材料的抗拉强度、抗压强度、抗剪强度就越大。

4. 韧性:材料的韧性是指材料在受外力作用下能够吸收能量的能力。

韧性越大,材料的抗冲击性就越好。

5. 硬度:材料的硬度是指材料的抗划伤、抗刮伤能力。

硬度越大,材料就越难被划伤或刮伤。

6. 热膨胀系数:材料的热膨胀系数是指材料在温度变化时产生体积膨胀或收缩的程度。

热膨胀系数越大,材料在温度变化时的变形就越大。

二、金属材料1. 铁素体和奥氏体:铁素体是铁碳合金中的烤饼组织,具有较低的强度和硬度;奥氏体是铁碳合金中的馒头组织,具有较高的强度和硬度。

2. 钢的分类:钢可以按照成分分为碳钢、合金钢和特种钢;按照用途分为结构钢、工具钢和耐磨钢。

3. 铸铁的分类:铸铁可以按照形态分为白口铸铁和灰口铸铁;按照成分分为白口铸铁、灰口铸铁和球墨铸铁。

4. 不锈钢的特性:不锈钢具有耐腐蚀、耐高温、抗氧化等特性,适用于化工、食品加工、医疗器械等领域。

5. 铝合金的应用:铝合金具有轻质、耐腐蚀、导热性好的特性,广泛应用于航空航天、汽车、建筑等领域。

三、非金属材料1. 水泥混凝土:水泥混凝土应用广泛,常见于建筑、桥梁、水利工程等领域。

它具有强度高、耐久性好、施工方便等特点。

2. 砖瓦:砖瓦是建筑材料的重要组成部分,主要用于墙体、地面、屋面的施工。

它们具有隔热、隔音、防潮等特性。

3. 玻璃:玻璃具有透明、坚硬、抗腐蚀等特点,广泛应用于建筑、家具、日用品等领域。

4. 塑料:塑料具有轻质、耐腐蚀、可塑性好的特性,广泛应用于包装、日用品、建筑材料等领域。

5. 纤维素材料:纤维素材料主要包括木材、纸张、纺织品等,具有可再生、易加工、环保等特点。

大一工程材料知识点笔记

大一工程材料知识点笔记

大一工程材料知识点笔记一、材料分类1. 金属材料金属材料是指由金属元素组成的材料,常见的有铁、铜、铝等。

金属材料具有良好的导电导热性能和机械性能,广泛应用于工程领域。

2. 无机非金属材料无机非金属材料主要包括水泥、玻璃、陶瓷等。

它们具有高温稳定性和耐腐蚀性,在建筑、医疗等领域有广泛应用。

3. 有机高分子材料有机高分子材料是以碳元素为主要组成元素的聚合物材料,例如塑料、橡胶和纤维等。

它们轻巧且易加工,应用广泛。

4. 复合材料复合材料是由两种或更多种材料组成的材料,具有优异的综合性能。

常见的复合材料有纤维增强复合材料和层状复合材料等。

二、材料的性能和特点1. 机械性能机械性能是指材料在外力作用下的响应能力。

常见的机械性能指标有强度、韧性、硬度等。

不同的工程应用对材料的机械性能有不同的要求。

2. 导电性能和导热性能导电性能指材料传导电流的能力,导热性能指材料传导热量的能力。

金属材料通常具有良好的导电导热性能,而绝缘材料则具有较低的导电导热性能。

3. 耐腐蚀性能耐腐蚀性能是指材料在腐蚀介质中长期使用时不发生明显的腐蚀损失。

对于工作环境存在腐蚀物的工程,需要选择具有良好耐腐蚀性能的材料。

4. 热膨胀性能热膨胀性能是指材料在温度变化时的体积变化能力。

温度变化引起的热膨胀和收缩对工程结构的稳定性和使用寿命有较大影响,因此需要对此进行考虑。

三、常见材料及其应用领域1. 钢铁材料钢铁材料是一种常见的金属材料,广泛应用于建筑、桥梁、汽车制造等领域。

钢铁具有高强度和较好的可塑性,适合承受大力和形状复杂的结构。

2. 水泥混凝土水泥混凝土是一种无机非金属材料,常用于建筑、道路建设等领域。

它具有高强度和较好的耐久性,能够承受较大的压力和外部荷载。

3. 塑料材料塑料材料是一种常见的有机高分子材料,广泛应用于日常生活中的包装、家居用品等。

塑料具有轻质、耐用和成型性好的特点,易于加工和制作。

4. 纤维增强复合材料纤维增强复合材料是一种结构性材料,常用于航空航天、汽车制造等领域。

工程材料知识点总结

工程材料知识点总结

1、晶格:描述原子在晶体中排列规律的三维空间几何点阵。

2、晶胞:晶格中能够代表晶格特征的最小几何单元致密度=原子所占的总体积÷晶胞的体积属于面心立方晶格的常用金属:γ铁、铝、铜、镍等。

属于体心立方晶格的常用金属:α铬、钨、钼、钒、α铁、β钛、铌等。

属于密排六方晶格的常用金属:镁、锌、铍、α钛、镉等。

晶面:晶体中由物质质点所组成的平面。

晶向:由物质质点所决定的直线。

每一组平行的晶面和晶向都可用一组数字来标定其位向。

这组数字分别称为晶面指数和晶向指数。

晶面指数的确定:晶面与三个坐标轴截距的倒数取最小整数,用圆括号表示。

如(111)、(112)。

晶向指数的确定:通过坐标原点直线上某一点的坐标,用方括号表示。

如[111]晶面族:晶面指数中各个数字相同但是符号不同或排列顺序不同的所有晶面。

这些晶面上的原子排列规律相同,具有相同的原子密度和性质。

如{110}=(110)+(101)+(011)+(101)+(110)+(011)晶向族:原子排列密度完全相同的晶向。

如<111>=[111]+[111]+[111]+[111]由于各个晶面和晶向上原子排列密度不同,使原子间的相互作用力也不相同。

因此在同一单晶体内不同晶面和晶向上的性能也是不同的。

这种现象称为晶体的各向异性。

晶粒——金属晶体中,晶格位向基本一致,并有边界与邻区分开的区域。

亚晶粒——晶粒内部晶格位向差小于2°、3°的更小的晶块。

实际金属晶粒大小除取决于金属种类外,主要取决于结晶条件和热处理工艺。

晶界——晶粒之间原子排列不规则的区域。

亚晶界——亚晶粒间的过渡区。

晶体缺陷:是指晶体中原子排列不规则的区域。

1、点缺陷2、线缺陷3、面缺陷点缺陷类型主要有三种:(1)间隙原子(2)晶格空位(3)置换原子间隙原子:在晶格的间隙处出现多余原子的晶体缺陷。

☆晶格空位:在晶格的结点处出现缺少原子的晶体缺陷线缺陷·位错:指晶体中若干列原子发生有规律的错排现象。

材料工程基础知识点总结

材料工程基础知识点总结

材料工程基础知识点总结
第一章、材料的性能及应用
1、常用的力学性能,如:σS,σb,σe,σP 等所表示的含义,弹性模量E及其主要影响因素、塑性指标的意义。

不同材料所适用的硬度(HB、HR、HV)测量方法。

第二章、原子结构和结合键
1、结合键的类型(主要为金属键、离子键、共价键)及其主要特点,它们对材料性能的主要影响
第三章、晶体结构
1、晶面与晶向的标注和识别
2、BCC、FCC、HCP三种常见金属晶体结构中所含的原子数、它们的致密度。

3、相、固溶体、中间相、固溶强化的概念、固溶体的分类、中间相的分类以及固溶体和中间相的主要区别。

第四章、晶体缺陷
1、晶体缺陷的分类、位错的含义和分类及特点。

位错(及点缺陷)密度的变化对材料性能(主要是力学性能)的影响。

2、晶界原子排列?的特点及其分类,晶界的特性;相界的分类、润湿
第五章、固体材料中原子的扩散
1、Fick第一定律的含义、非稳态扩散的误差函数解的应用计算
2、扩散的机制及影响扩散的主要因素以及在工业上的应用(如:工业渗碳为何在奥氏体状态下进行)
第六章、相平衡与相图原理
1、Gibbs相律含义,二元匀晶、共晶相图分析,杠杆定律的应用计算;相图与合金使用性(强度、硬度)和工艺性(铸造)的关系
2、铁碳相图(简化版)及其标注上面主要的成分点和温度及相;不同含碳量的合金从高温到室温下组织的变化,利用杠杆定律计算组织或相组成物的含量(主要针对C%<2.11%的合金,即钢)第七章、材料的凝固
1、液态合金结构的特点,过冷度及其与冷却速率的关系?。

工程材料基础知识-课后习题及答案.docx

工程材料基础知识-课后习题及答案.docx

第一章工程材料基础知识参考答案1.金属材料的力学性能指标有哪些?各用什么符号表示?它们的物理意义是什么?答:常用的力学性能包括:强度、塑性、硬度、冲击韧性、疲劳强度等。

强度是指金属材料在静荷作用下抵抗破坏(过量塑性变形或断裂)的性能。

强度常用材料单位面积所能承受载荷的最大能力(即应力。

,单位为Mpa)表示。

塑性是指金属材料在载荷作用下,产生塑性变形(永久变形)而不被破坏的能力。

金属塑性常用伸长率5和断面收缩率出来表示:硬度是指材料抵抗局部变形,特别是塑性变形、压痕或划痕的能力,是衡量材料软硬程度的指标,是一个综合的物理量。

常用的硬度指标有布氏硬度(HBS、HBW)、洛氏硬度(HRA、HRB、HRC等)和维氏硬度(HV)。

以很大速度作用于机件上的载荷称为冲击载荷,金属在冲击载荷作用下抵抗破坏的能力叫做冲击韧性。

冲击韧性的常用指标为冲击韧度,用符号a k表示。

疲劳强度是指金属材料在无限多次交变载荷作用下而不破坏的最大应力称为疲劳强度或疲劳极限。

疲劳强度用。

-1表示,单位为MPa。

2.对某零件有力学性能要求时,一般可在其设计图上提出硬度技术要求而不是强度或塑性要求,这是为什么?答:这是由它们的定义、性质和测量方法决定的。

硬度是一个表征材料性能的综合性指标,表示材料表面局部区域内抵抗变形和破坏的能力,同时硬度的测量操作简单,不破坏零件,而强度和塑性的测量操作复杂且破坏零件,所以实际生产中,在零件设计图或工艺卡上一般提出硬度技术要求而不提强度或塑性值。

3.比较布氏、洛氏、维氏硬度的测量原理及应用范围。

答:(1)布氏硬度测量原理:采用直径为D的球形压头,以相应的试验力F压入材料的表面,经规定保持时间后卸除试验力,用读数显微镜测量残余压痕平均直径d,用球冠形压痕单位表面积上所受的压力表示硬度值。

实际测量可通过测出d值后查表获得硬度值。

布氏硬度测量范围:用于原材料与半成品硬度测量,可用于测量铸铁;非铁金属(有色金属)、硬度较低的钢(如退火、正火、调质处理的钢)(2)洛氏硬度测量原理:用金刚石圆锥或淬火钢球压头,在试验压力F的作用下,将压头压入材料表面,保持规定时间后,去除主试验力,保持初始试验力,用残余压痕深度增量计算硬度值,实际测量时,可通过试验机的表盘直接读出洛氏硬度的数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.工程材料按属性分为:金属材料、陶瓷材料、碳材料、高分子材料、复合材料、半导体材料、生物材料。

2.零维材料:是指亚微米级和纳米级(1 —100nm)的金属或陶瓷粉末材料,如原子团簇和纳米微粒材料;一维材料:线性纤维材料,如光导纤维;二维材料:就是二维薄膜状材料,如金刚石薄膜、高分子分离膜;三维材料:常见材料绝大多数都是三位材料,如一般的金属材料、陶瓷材料等;3.工程材料的使用性能就是在服役条件下表现出的性能,包括:强度、塑性、韧性、耐磨性、耐疲劳性等力学性能,耐蚀性、耐热性等化学性能,及声、光、电、磁等功能性能;工程材料按使用性能分为:结构材料和功能材料。

4.金属材料中原子之间主要是金属键,其特点是无方向性、无饱和性;陶瓷材料中的结合键主要是离子键和共价键,大多数是离子键,离子键赋予陶瓷材料相当高的稳定性;高分子材料的结合键是共价键、氢键和分子键,其中,组成分子的结合键是共价键和氢键,而分子间的结合键是范德瓦尔斯键。

尽管范德瓦尔斯键较弱,但由于高分子材料的分子很大,所以分子间的作用力也相应较大,这使得高分子材料具有很好的力学性能;半导体材料中主要是共价键和离子键,其中,离子键是无方向性的,而共价键则具有高度的方向性。

5.晶胞:是指从晶格中取出的具有整个晶体全部几何特征的最小几何单元;在三维空间中,用晶胞的三条棱边长a、b、c (晶格常数)和三条棱边的夹角a、B、Y 这六个参数来描述晶胞的几何形状和大小。

6.晶体结构主要分为7个晶系、14种晶格;7.晶向是指晶格中各种原子列的位向,用晶向指数来表示,形式为[uvw];晶面是指晶格中不同方位上的原子面,用晶面指数来表示,形式为(hkl)8.实际晶体的缺陷包括点缺陷、线缺陷、面缺陷、体缺陷,其中体缺陷有气孔、裂纹、杂质和其他相。

9.实际金属结晶温度Tn总要偏低理论结晶温度TO —定的温度,结晶方可进行,该温差厶T=T(—Tn即称为过冷度;过冷度越大,形核速度越快,形成的晶粒就越细。

10.通过向液态金属中添加某些符合非自发成核条件的元素或它们的化合物作为变质剂来细化晶粒,就叫变质处理;如钢水中常添加Ti、V、Al等来细化晶粒。

11.加工硬化是指随着塑性变形增加,金属晶格的位错密度不断增加,位错间的相互作用增强,提高了金属的塑性变形抗力,使金属的强度和硬度明显提高,塑性和韧性明显降低,也即形变强化;加工硬化是一种重要的强化手段,可以提高金属的强度并使金属在冷加工中均匀变形;但金属强度的提高往往给进一步的冷加工带来困难,必须进行退火处理,增加了成本。

12.金属学以再结晶温度区分冷加工和热加工:在再结晶温度以下进行的塑性变形加工是冷加工,在再结晶温度以上进行的塑性变形加工即热加工;热加工可以使金属中的气孔、裂纹、疏松焊合,使金属更加致密,减轻偏析,改善杂质分布,明显提高金属的力学性能。

13.再结晶是指随加热温度的提高,加工硬化现象逐渐消除的阶段;再结晶的晶粒度受加热温度和变形度的影响。

14.相:是指合金中具有相同化学成分、相同晶体结构并由界面与其他部分隔开的均匀组成部分;合金相图是用图解的方法表示合金在极其缓慢的冷却速度下,合金状态随温度和化学成分的变化关系;固溶体:是指在固态下,合金组元相互溶解而形成的均匀固相;金属间化合物:是指俩组元组成合金时,产生的晶格类型和特性完全不同于任一组元的新固相。

15.固溶强化:是指固溶体的晶格畸变增加了位错运动的阻力,使金属的塑性和韧性略有下降,强度和硬度随溶质原子浓度增加而略有提高的现象;弥散强化:是指以固溶体为主的合金辅以金属间化合物弥散分布,以提高合金整体的强度、硬度和耐磨性的强化方式。

16.匀晶反应:是指两组元在液态和固态都能无限互溶,随温度的变化,形成成分均匀的液相、固相或满足杠杆定律的中间相的固溶体的反应;共晶反应:是指由一种液态在恒温下同时结晶析出两种固相的反应;包晶反应:是指在结晶过程先析出相进行到一定温度后,新产生的固相大多包围在已有的固相周围生成的的反应;共析反应:一定温度下,由一定成分的固相同时结晶出一定成分的另外两种固相的反应。

17.铁素体(F):碳溶于a -Fe中形成的体心立方晶格的间隙固溶体;金相在显微镜下为多边形晶粒;铁素体强度和硬度低、塑性好,力学性能与纯铁相似,770C以下有磁性;奥氏体(A):碳溶于Y -Fe中形成的面心立方晶格的间隙固溶体;金相显微镜下为规则的多边形晶粒;奥氏体强度和硬度不高,塑性好,容易压力加工,没有磁性;渗碳体(Fe3C:含碳量为6.69%的复杂铁碳间隙化合物;渗碳体硬度很高、强度极低、脆性非常大;珠光体(P):铁素体和渗碳体的共析混合物;珠光体强度较高,韧性和塑性在渗碳体和铁素体之间;莱氏体(Ld):奥氏体和渗碳体的共晶混合物;莱氏体中渗碳体较多,脆性大、硬度高、塑性很差。

18.包晶反应:1495C时发生,有3 -Fe (C=0.10%、Y -Fe (C=0.17%或0.18%,图中J 点)、液相(C=0.53%或0.51%,图中B 点)三相共存;3 -Fe (固体)+L (液体)=Y -Fe (固体)共晶反应:1148 C时发生,有A (C=2.11%)、Fe3C( C=6.69%、液相L (C=4.3% 三相共存;Lc H Ae+Fe3C f (恒温1148C)共析反应:727C时发生,有A (C=0.77%、F (C=0.0218%、Fe3C(C=6.69%)三相共存;As-Fp+Fe3Ck恒温727C )19. 碳钢是指含碳量在0.02% — 2.11%的铁碳合金;生铁是指含碳量大于2%的铁碳合金;铸铁是指含碳量大于2.11%的铁碳合金,其中碳多以石墨形式存在。

20. 刚的热处理:就是将固态金属以一定的升温速度加热到既定的温度,保温一定时间,在以一定的降温速度冷却的工艺方法;基本类型及其目的:①退火、正火:消除内应力,改善组织,提高性能,为下道工序做准备;②淬火:获得马氏体组织以提高刚的强度和硬度;③回火:稳定组 织,减少内应力,降低脆性,调整淬火工件的硬度。

21. 铁碳合金相图如右:C:共晶点 S:共析点E 碳在Y -Fe 中溶解度最大的点 P:碳在铁素体中溶解度最大的点 N :8 -Fe 与Y -Fe 的同素异构转变点 G :Y -Fe 与a -Fe 的同素异构转变点 SE 线:奥氏体对碳的溶解度曲线PSK 线:共析线,冷却到该线温度是开始发生共析反应生成珠光体。

GS 线:铁素体开始析出线PQ 线:铁素体析出渗碳体的开始线 22. Fe-Fe3C 加热时相应相点变化如右图:完全退火:图中Ac3以上30C 左右;原理是通过完全重结晶获得细化晶粒,并降低硬度,改善切削性能消除内应力; 等温退火:图中Ac3以上;原理是加热保温后很快冷却到珠光体区的某温度,保持等温以使奥氏体转变为珠光体; 球化退火:图中Ac1以上30C 左右;原理是通过加热保温后随炉冷却到600C 后出炉冷却,是二次渗碳体和珠光体中的渗碳体球状化;去应力退火:图中低于 Ac1处500-650C ;原理是使钢发生应力松弛,部分弹性变形变为塑性变形,使内应力消除; 扩散退火:图中Ac3以上200C ;原理是通过长时间保温,使碳和合金元素充分扩散,消除偏析,减少组织成分的不均匀;正火:图中Ac3以上30-50C (亚共析钢)或 Accm 以上30-50C (过共析钢);原理是通过得到索氏体组织改善钢的组织结构性能。

23. 如右图,共析钢等温转变曲线(图中实线)和连续转变曲线(图中虚线)及转变产物;24. 表面淬火的目的是为了在钢件表面得到马氏体组织;常用方法:感应加热淬火、火焰加热淬火。

25. 常用的化学热处理方法:渗碳、氮化、碳氮共渗及多元共渗、渗铬、渗硼等。

26. 非碳化物元素有Si 、Ni 、Cu 、Al 、Co,它们可以增大碳在奥氏体中的扩散速度,加快奥氏体的形成; 27. 强碳化物形成元素Ti 、Zr 、Nb 、V 都显著阻止晶粒长大,对合金起到细化晶粒作用。

28. 中等碳化物形成元素 W 、Mo 、Cr 具有中等阻止晶粒长大作用。

29. 弱碳化物形成元素 Mn 、Fe 少部分溶于渗碳体中,大部分溶于铁素体和奥氏体。

30. 渗碳体、合金渗碳体、合金碳化物、特殊碳化物稳定性和硬度依次增高。

31. 合金元素Si 、Mn 对铁素体固溶强化效果最为显著;合金元素 Ni 可以减少钢的冷脆性,并增加塑性和韧性。

32. 奥氏体稳定化元素有Mn 、Ni 、Co 、C 、N 、Cu,其中Ni 、Mn 被称为完全扩大Y 相区元素。

33. 铁素体稳定化元素有Cr 、Mo 、V 、W 、Ti 、Si 、Al 、B 、Nb ,其中Cr 、Ti 、Si 被称为完全圭寸闭Y 相区元素。

34.根据钢的化学成分可借助 Schaeffler 图来近似判别钢的组织类别,可以根据镍当量和铬当量质量分数来查图得出,其中镍当量计算来源于元素的贡献,铬当量计算来源于元素 Cr 、S i 、Mo 、Nb 和Ti 的贡献35. 除Co 外,几乎所有合金元素都会增大过冷奥氏体的稳定性,使 C 曲线右移,提高了钢的淬透性。

36. 除Co Si 、Al 之外,大多数合金元素会降低Ms 和Mf 点,使钢中残余奥氏体增加,从而降低了钢的硬度、抗疲劳性和耐磨性。

解决的方法是冷处理或多次回火。

37. 合金元素会提高回火稳定性,即在同一温度下回火,合金钢的硬度和强度比碳钢高。

合金在 冷却或加入元素W 、Mo 避免或消除这类脆性。

38. 钢中的杂质主要有Mn 、Si 、S P,其中杂质S 使钢材产生热脆,杂质 P 使钢材产生冷脆。

39. 碳钢的分类表、40.合金钢的分类表碳钢分类方法 类别合金钢的分类方法 类别含碳量 低碳钢、中碳钢、高碳钢合金元素含量 低合金钢中合金钢、高合金钢 钢的质量 普通碳素钢、优质碳素钢、高级优质碳素钢 冈啲主要合金元素 铬钢、铬锰钢、锰钢、硅锰刚、硅钢 刚的用途 碳素结构钢、碳素工具钢 钢的用途 结构钢、工具钢、特俗性能刚冶炼方法平炉钢、转炉钢刚的组织珠光体钢、马氏体钢、奥氏体钢、铁素体刚、莱氏体刚41. 硬度值类:布氏硬度(HBS HBW )、洛氏硬度(HRA 、HRB HRC 、维氏硬度(HV )42. 弹性模量:在弹性变形范围内,当应力低于比例极限时,应力与应变呈线性关系,即a = E £,上式称为虎克定律,式中E 被称为弹性模量。

材料处于弹必状态下, 其应力与应变成正比;这部Ni 、C N 、Mn 和 Cu450°〜650°温度范围内容易出现高温回火脆性,可以通过回火快速lie : imi分应力-应变曲线通常呈直线,E是曲线的斜率。

相关文档
最新文档