运动生物力学的原理与应用
运动生物力学

人体处在腾空无支撑的状态中,满足动量矩守恒的条件.
W运动生物力学的分析方法?
(1)系统分析的观点
(2)发展变化的观点
(3)对立统一的观点
W运动生物力学学科特征:
(1)研究对象的复杂性
(2)研究方法的综合性
(3)测量技术的先进性
(4)研究内容的实践性
W疲劳骨折的机制
骨受到低重复载荷的作用时,可观察到疲劳性细微骨折.疲劳骨折的产生不仅与载荷的大小和循环次数有关,还与载荷的频率有关骨具有一定的修复能力,只有疲劳断裂过程超过了骨的重建过程时疲劳骨折才会发生.一般的,运动可先引起肌肉疲劳,肌肉疲劳后,肌肉的收缩力降低,改变了骨的应力分布,随着循环次数和载荷的增加,导致疲劳性骨折.
惯性力和相互作用力的区别:(1)惯性了不是物体间的相互作用,不存在惯性力的反作用力;(2)只有在惯性系中才可观察到惯性力.
.
W转动定律(M=Jβ):(转动力学中的牛顿第二定律)刚体绕定轴转动时,转动惯量与角加速度的乘积等于作用于刚体的合外力距.
W缓冲动作的生物力学原理:
(1)结束性动作稳定性好坏往往是运动员在重大比赛中取得优异成绩的关键
4.有限度的稳定平衡:人体在外力作用下,在一定限度内的偏离平衡位置时,当外力撤销时,人体回复平衡状态,但是当偏离平衡位置超过某一限度时,人体失去平衡.例如,站立时的左右摇晃.
W.影响人体平衡的力学因素:
答:人体平衡的稳定性是人体处于有限稳定平衡状态时,抵抗各种破坏的作用而保持平衡的能力.
因素:
1.支撑面:是由各支撑部位的表面及它们所包围的面积.支撑面越大,物体平衡的稳定性就越好.
W人体骨骼的受力形式分为拉伸、压缩、弯曲、剪切、扭转和复合载荷.
生物力学的基本概念及应用举例

生物力学的基本概念及应用举例一、生物力学定义生物力学是研究生物体运动、器官和组织功能及相互作用的力学行为的科学。
它涉及到物理学、生物学、医学、工程学等多个学科领域,是生物医学工程、康复工程、仿生学、体育运动、航空航天等领域的重要基础。
二、生物力学在医学领域应用1.人体生物力学:人体生物力学主要研究人体运动过程中的力学特性,如骨骼、肌肉、关节等组织的力学行为。
它有助于医生理解人体运动机制,为医学诊断和治疗提供依据。
2.生物材料力学:生物材料力学研究生物组织材料的力学性质,如弹性、韧性、强度等。
它为医学领域中的组织工程和器官移植提供了重要指导。
三、生物力学在康复工程领域应用康复工程是利用工程学方法为残疾人设计和制造辅助器具,以改善其生活质量。
生物力学在康复工程中扮演着重要角色,例如在设计和制造假肢、矫形器、轮椅等辅助器具时,需要考虑人体肌肉和骨骼的力学特性,以确保使用效果和安全性。
四、生物力学在生物医学工程领域应用1.生物芯片:生物芯片是一种用于快速检测和分析生物分子的微小芯片。
在生物芯片的制作过程中,需要利用生物力学的知识对芯片的结构和材料进行优化设计,以提高检测的准确性和灵敏度。
2.组织工程:组织工程是利用生物材料、细胞和生长因子等构建人体组织和器官的新兴技术。
在这个过程中,需要深入研究和应用生物力学的知识,以了解和控制细胞生长和分化的力学环境。
五、生物力学在体育运动领域应用1.运动生物力学:运动生物力学主要研究人体运动过程中的力学特性,为运动员提供科学训练方法和运动装备设计提供理论支持。
例如,通过对篮球投篮动作的生物力学分析,可以指导运动员优化投篮技巧和提高命中率。
2.肌肉疲劳与恢复:肌肉疲劳是由于长时间运动导致肌肉功能下降的现象。
通过应用生物力学方法研究肌肉疲劳的机制和恢复过程,可以帮助运动员更好地理解和预防肌肉疲劳,提高运动表现。
六、生物力学在仿生学领域应用仿生学是研究和模仿自然界生物的原理和技术的新兴学科。
运动生物力学的原理及应用

运动生物力学的原理及应用前言运动生物力学是研究生物体运动的机理和规律的学科,在运动科学、医学、体育等领域具有广泛的应用。
本文将介绍运动生物力学的原理和应用,并通过列举一些典型的应用案例,帮助读者更好地了解这一领域。
1. 运动生物力学的基本原理•人体运动的基本力学原理:人体运动是通过肌肉协调收缩,产生力以推动骨骼运动。
运动生物力学研究如何利用肌肉力和关节运动来实现高效的运动,包括力的大小、方向和作用点等。
•动力学和静力学:运动生物力学研究对象可以分为动力学和静力学。
动力学研究运动过程中的力学特性,如加速度、速度和力等;静力学研究运动静止状态下的平衡和稳定性。
•生物力测量技术:运动生物力学依靠生物力测量技术获取数据,如力板、压力传感器、运动捕捉系统等。
这些技术可以帮助研究人员获得运动过程中产生的力、压力分布、身体姿势等信息。
2. 运动生物力学在运动科学中的应用•运动机能评估:通过运动生物力学技术对运动员的运动机能进行评估,如力量、速度、灵敏度等指标。
这可以帮助教练员制定个性化的训练计划,提高运动员的竞技水平。
•运动伤害预防:研究运动生物力学可以帮助了解运动员的运动过程中可能发生的伤害因素,如过度使用某个肌肉或关节,以及不恰当的运动姿势等。
这些知识可以帮助制定预防伤害的训练和康复计划。
•运动技术改进:通过运动生物力学分析运动员的动作和姿势,可以发现改进的空间和方式。
例如,用运动生物力学技术研究高跳运动员的动作可以找到跳高技术方面的问题,并提出改进建议。
•运动装备设计:运动生物力学可以帮助运动装备制造商设计更符合人体工程学原理的装备。
例如,研究鞋类的缓震性能和稳定性,可以帮助设计更适合运动员需要的运动鞋。
3. 运动生物力学在医学中的应用•运动康复:运动生物力学研究可以为医学康复领域提供支持。
通过对运动姿势和肌肉力量的分析,医生可以制定个性化的康复计划,帮助患者重建运动能力。
•步态分析:运动生物力学技术可以帮助医生进行步态分析,了解患者行走过程中存在的问题,如不平衡、不稳定等。
运动生物力学原理在实践中的应用

运动生物力学原理在实践中的应用概述运动生物力学是一门结合了力学与生物学的学科,研究动物和人类运动的力学原理。
运动生物力学原理在实践中应用广泛,不仅可以用于诊断和治疗运动相关的损伤和疾病,还可以用于优化运动性能和改善姿势。
应用领域1. 运动损伤诊断与康复•通过运动生物力学原理可以分析运动损伤发生的原因和机制,有助于医生进行准确的诊断和治疗。
具体应用包括:–分析运动过程中的受力分布和扭力,确定运动损伤的发生位置和原因。
–使用运动损伤模型,预测运动损伤的风险,提供康复建议。
–基于运动生物力学原理,设计康复运动方案,帮助恢复运动功能。
2. 运动性能优化•运动生物力学原理可以帮助提高运动员的训练效果和竞技成绩。
具体应用包括:–通过分析运动员的运动技术和力学特点,制定个性化的训练计划。
–利用运动生物力学原理提供的数据,优化运动员的动作和姿势,减少不必要的消耗,提高运动效率。
–基于运动生物力学原理,开发新的运动装备和器材,改善运动员的体验和表现。
3. 姿势改善与人体工学设计•运动生物力学原理可以用于改善人们的姿势和减少工作、学习时的身体不适。
具体应用包括:–分析人体姿势在不同活动中的力学特点,发现潜在的健康问题。
–根据运动生物力学原理,设计符合人体工学的办公桌椅、床等生活用品,改善人们的工作和生活质量。
–在教育和培训中,运用运动生物力学原理进行正确姿势的教育和辅导,培养良好的运动习惯。
实践案例1. 运动损伤诊断和康复•运动损伤诊断案例:–运动员A在比赛中摔倒并受伤,经过运动生物力学测试发现右膝盖外侧受到了过量的扭力,并且心理因素也影响了转向动作。
通过这些分析结果,医生得以确诊为半月板损伤,并进行相应的治疗。
•康复案例:–运动员B扭伤了踝关节,经过运动生物力学测试发现踝关节稳定性较差。
康复师根据测试结果设计了一套运动方案,包括提高肌肉力量、平衡能力和关节稳定性的训练,帮助运动员B恢复运动功能。
2. 运动性能优化•运动员C的长跑成绩一直无法突破,经过运动生物力学分析发现他的步频较低且姿势不够优化。
运动生物力学11

运动生物力学
生物力学是研究生物体在运动过程中受力、运动学和运动动力学等方面的科学。
运动生物力学是在生物力学的基础上研究生物体运动的一门学科。
运动生物力学结合了生物学、物理学和数学等多学科知识,旨在深入了解生物体的运动规律和优化运动表现。
运动生物力学的基本概念
运动生物力学研究范围广泛,涉及到骨骼、肌肉、关节和神经等系统在运动中
的作用机制。
通过运动生物力学的研究,可以揭示生物体在运动时受到的作用力,理解肌肉和关节在运动中的协调配合以及运动过程中所消耗的能量等重要信息。
运动生物力学在运动训练中的应用
运动生物力学在运动训练中有着重要的应用价值。
通过运动生物力学分析运动
员的运动技术,可以找出技术中存在的问题,并为运动员提供改进建议,帮助其提高运动表现。
此外,运动生物力学也可用于设计运动装备,优化运动装备的性能,提高运动效率和安全性。
运动生物力学的未来发展
随着科学技术的不断发展,运动生物力学领域也在不断创新和完善。
未来,人
们可以通过虚拟现实和模拟技术等手段更准确地模拟生物体在运动中的各种参数,并利用大数据和人工智能等技术分析和优化运动过程。
运动生物力学将在运动科学和运动医学等领域继续发挥重要作用,为运动员提供更科学、更准确的训练和指导。
结语
运动生物力学作为一门交叉学科,为我们深入了解生物体运动规律和提高运动
表现提供了重要的理论和实践支持。
在未来的发展中,我们可以期待运动生物力学的进一步深化和广泛应用,为促进运动健康和提高人们的生活质量做出更大的贡献。
生物力学的原理与应用

生物力学的原理与应用1. 介绍生物力学是研究生物体在力的作用下的运动和力学特性的科学。
通过运用力学原理和方法,生物力学帮助我们理解和解释生物体的运动、力的产生和分布、力的传递以及生物体的结构和功能之间的关系。
本文将介绍生物力学的基本原理和其在不同领域的应用。
2. 生物力学的基本原理生物力学的研究基于以下几个基本原理:2.1 牛顿运动定律牛顿运动定律是描述物体运动的基本定律。
生物力学研究中常用到的是牛顿第二定律,即力等于质量乘以加速度。
根据这个定律,我们可以分析和预测生物体在外力作用下的运动情况。
2.2 材料力学材料力学研究材料的力学性能。
生物体是由各种组织和细胞构成的,这些组织和细胞也具有特定的材料力学性能。
通过研究材料的弹性、塑性和黏弹性等特性,可以理解生物体的结构和功能。
2.3 生物力学模型生物力学模型是生物力学研究中常用的工具,用于模拟和分析生物体的运动和力学特性。
常见的模型包括刚体模型和连续介质模型。
通过建立合适的模型,可以更好地理解和解释生物体的运动和力学特性。
3. 生物力学的应用生物力学在多个领域有着广泛的应用,下面将分别介绍其在运动生理学、人体工程学和运动训练等领域的应用。
3.1 运动生理学运动生理学研究人体在运动过程中的生理变化和适应机制。
生物力学在运动生理学中的应用包括分析运动过程中的力的产生和传递,研究肌肉的力学特性,以及评估和优化运动技术等。
通过生物力学的研究,可以更好地理解人体在运动中的运动学和力学特性,为运动员的训练和康复提供科学依据。
3.2 人体工程学人体工程学主要研究人体与工作、生活环境之间的适应关系。
生物力学在人体工程学中的应用包括评估和优化人体姿势和动作,研究人体对工作和生活环境的力的响应以及设计人体工学产品和设备等。
通过生物力学的分析和研究,可以改善工作和生活环境,提高人体的健康和舒适度。
3.3 运动训练运动训练是指通过科学的方法和手段来改善运动员的运动能力和表现。
运动生物力学

人體重心(二)
平衡的種類
◎穩定平衡 無論物體如何移動,其重心一定上升,如單槓懸 垂.雙槓槓上支撐。 ◎不穩定平衡 物體原來姿勢,不增加位移,位置稍有傾斜,重 心會下降,如起跑姿勢,手倒立。 ◎隨遇平衡 如物體移動,仍為平衡者,物體位置變動時,重 心既不升高,也不降低,如不倒翁。
影響平衡的因素
◎重心在支撐基底面內 • 支撑基底:身體和支撐表面之間所圍 成的面積。 • 物體重心在基底面內,亦即重心線 在基底面內,此物體就穩定平衡, 重心線愈靠近基底邊線,愈不穩定。 ◎基底面大小 ◎重量 ◎重心高度 : 重心愈靠近基底,愈穩 定。 ◎迴旋 : 向前迴旋運動,增加物體穩 定性。
運動生物力學的原理與應用
美和技術學院
廖逢錦 博士
97.05.25
何謂運動生物力學?
◎運動生物力學(Biomechanics): 是運動學(Kinematics)和生物力學 (Kinesiology)整合而成的一門科學。 ◎運動生物力學:是描寫、分析與評估人體運 動時,身體之內在與外在力量,以及這些 力量所造成影響的一門科學(Hay,1993)
動力學(Kinetics)
•討探力與運動之間關係的研究 •牛頓第二運動定律 F = ma •衝量動量等式定律 F∆ t = m∆ V
平衡與穩定原理 (Principles of balance and stability) • • • • 重心 平衡的種類 影響平衡的因素 力矩
人體重心(一)
◎重心(Center of gravity , COG) •身體各部位受到地球引力的作用,把各個部 位的引力加起來,這些引力合力的作用點 就是COG。 ◎重心受年齡、性別、身體結構的影響 •COG是身體最大肌力所在,是產生大力量的 原點。 •人體站立時重心在第二薦椎前方一吋處。
运动生物力学(第三版)精品PPT课件

第三节 动力学(kinetics)参数
一、动力学参数 (一)力 * 力的三要素:大小、方向、作用点
α
1. 人体内力与外力 内力:人体内部各部分相互作用的力 例如:肌肉力,关节约束反作用力 外力:来自外界作用于人体的力
内力和外力是相对的(可以相互转化) 2. 人体受力特点
集中力(集中在一点上) 正心力(穿过质心) 分布力(分布在一个面上) 偏心力(离质心有一段距离)
1396408574086186762xhshanjnyahoocomcnxhshansdnueducn绪论一运动生物力学概念运动广义自然界各种物质存在的形式固有属性狭义物质的机械运动运动生物力学中的运动运动动作或体育动作第一章第一节生物学研究物体生命现象规律的科学1生物体形态结构功能及其统一2生物体内部之间的相互作用局部和整体的统一3生物体与外界环境之间的相互作用本课程中的生物一般指活的人体也有动物第一章第一节力学物体机械运动规律的科学时空生物力学力学与生物学交叉渗透融合而形成的一门边缘学科运动生物力学研究人体运动力学规律的科学它是体育科学的重要组成部分第一章第一节特点1应用性力学原理应用于生物体2交叉性人体解剖生理学等交叉3新兴性历史短但快速发展分类1人类工程学人枪
1)惯性参照系:相对于地球静止或匀速直线运 动
2)非惯性参照系:相对于地球做变速运动
2 坐标系:设置在参照系上的数轴
1)一维——百米;50米游泳
2)二维——跳远
0
3)三维——跳高;铁饼等
y
P(x,y)
z
P(x) x
P(x,y,z)
0
0
x
y
x
(三)运动学参数的瞬时性特征
1. 瞬时速度与平均速度 (1) 平均速度 V=s/ t,例如100米跑12秒 (2)瞬时速度 V=lim (s/ t)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鞋.標槍) •研究方法的發展 : 同步分析、資料修勻的方法 •生物力學儀器的發展 : 儀器不斷更新、資料處理
時間縮短
運動學(Kinematics)
◎只描述物體運動,不考慮引起運動之原因 -「力」之研究。
◎運動學之參數( Kinematic parameter) •時間(Time) •位移(Displacement) •速度(Velocity) V=∆x /∆t •加速度(Acceleration) a=∆V /∆t
動力學(Kinetics)
•討探力與運動之間關係的研究 •牛頓第二運動定律 F = ma •衝量動量等式定律 F∆ t = m∆ V
平衡與穩定原理 (Principles of balance and stability)
• 重心 • 平衡的種類 • 影響平衡的因素 • 力矩
人體重心(一)
◎重心(Center of gravity , COG) •身體各部位受到地球引力的作用,把各個部
一個運動中的物體之直線動量,等於物體質量與其速度的乘積。 直線動量(P)=m(質量)×V(速度)。
影響直線動量的因素包括物體的質量與物體的速度
要改變一個物體的動量,就必需給予一個動量,一個正的(加速) 力量可使動量增加,一個負的(減速)力量會使物體的動量減少, 如果淨力量為零,則物體的動量不會改變。
Power Position
◎使用“power position”的 動作要點 •膝微彎 •上身前傾 •背打直 •胸和頭保持正直
謝謝聆聽 敬請指教
習題
1.跑步和走路的差異何在? 2.何謂牛頓運動定律?請分述之。 3.第一類型的槓桿, 是支點、力點、重點其中
那一點在中央? 4.第二類型的槓桿,支點、力點、重點三點槓
當甲物以一作用力撞擊乙物時,乙物也會以 相等大小,方向相反之作用力,回作用在甲 物上。
槓桿(Levers)的運作模式
◎ Lever:是一種「簡單的機械」, 其設計是為了提供一個力量時, 可用來改變力量大小及方向。
•目的:省力而不利於速度,費力 而利於速度
◎第一型槓桿(First class lever) ◎第二型槓桿(Second class
◎衝量(Impulse)
– 衝量 J= F ∆t 表示作用力 (F) 持續作用一段時間∆t的累 積效應。
– 力量與力量作用時間的乘積稱為衝量。
◎衝量-動量定理
– F∆ t = m∆ V – 一個力量的衝量等於其所產生之動量變化。在相同動
量條件下,力量與力量的作用時間成反比。 – 因此,只要衝量保持不變,可以用時間來換取力量。
◎Swing phase (擺動周期) • Initial swing(加速) → Mid swing → Terminal swing(減速)
跑步和走路的差異
◎跑需要較大的平衡 • 無雙支撐期 • 飛程期
◎跑需要較大的肌力 • 肌肉必須快速而有力的收縮
◎跑需要較大的動作範圍(旋轉) • 跨步與跑步動作幅度大且快
◎跑時軀幹較前傾
走路與跑步GRF比較圖
游泳的生物力學
◎浮力 (Buoyancy) 即身體浸入水中時,使身體飄浮的力量。 浮力大小需視骨骼與肌肉佔總重量的比例而定。 根據阿基米德原理(Archimedes’ principle),作用 於沈入液體中物體的浮力大小等於其所排出液體等體 積的重量。
◎推進力 (Propelling force) ◎阻力 (Resistive forces)
lever) ◎第三型槓桿(Third class lever)
第一型槓桿
◎支點可以移動位置, 以達不同目的
◎機械效益小,利於速 度而不利於力量;反 之,利於力量而不利 於速度。
•機械效益:力臂/阻力 臂
◎阻力矩=阻力×阻力臂 力矩=力×力臂
第二型槓桿
◎重點位於支點與力點 之間,力臂永遠大於 阻力臂。
在單一步行周期內,每一腳都會經歷兩階段。 •Stance phase (站立周期)
•Single support phase •Double support phase •Swing phase (擺動周期)
走路的生物力學(二)
◎Stance phase (站立周期) • Heel strike → Foot flat → Mid stance → Heel off → Toe off
運動生物力學的原理與應用
美和技術學院
廖逢錦 博士
97.05.25
何謂Байду номын сангаас動生物力學?
◎運動生物力學(Biomechanics): 是運動學(Kinematics)和生物力學
(Kinesiology)整合而成的一門科學。 ◎運動生物力學:是描寫、分析與評估人體運
動時,身體之內在與外在力量,以及這些 力量所造成影響的一門科學(Hay,1993)
皮膚阻力(表面摩擦力)。 身體在水面上下移動時產生的水波阻力(波浪阻力)。 漩渦產生的阻力(亂流阻力)。
蛙泳窄蹬腿為何較快?
有效的人體力學之基本原則
◎物體靠近身體重心 ◎較寬的支撐基底 ◎足部的位置隨著運動方向而調整 ◎舉起物體時應避免扭轉 ◎儘可能以推、拉、旋轉、滑等方式來代替
抬起物體。 ◎使用 Power position
力矩原理之應用
◎推門: ◎擲鐵餅: ◎翹翹板: ◎單槓大迴環 •下降時,身體充份伸展,使重心
遠離握點,加大力臂 •上升時,身體稍微彎曲,使重心
接近握點,縮小力臂 •向下力矩大於向上力矩,故能旋
轉不停
運動 (Motion)
◎平移運動(translatory motion) • 當外力施加於物體質心時,該物體沿直線移動。 • 不管外力作用於物體的何處,該物體僅能做線性運動。
運動生物力學架構圖
力學
運動學
動力 學
時間 位移 速度 加速度
慣性 力
摩擦
牛頓第一運動 定律
平衡
動量-衝量 牛頓第二運動定律
牛頓第三運動定律
碰撞
動量守恆 定律
力矩
功、能、 功率
機械效率
運動生物力學的發展方向
•找尋各種運動的最佳技術:定性分析與定量分析 •探究肌肉骨骼系統的最佳用力方式 : 槓桿原理、
桿中的那一點在中央?又那種運動是運用這 型的槓桿? 5.第三類型的槓桿,支點、力點、重點三點槓 桿中的那一點在中央?又那種運動是運用這 型的槓桿?
如物體移動,仍為平衡者,物體位置變動時,重 心既不升高,也不降低,如不倒翁。
影響平衡的因素
◎重心在支撐基底面內 • 支撑基底:身體和支撐表面之間所圍
成的面積。 • 物體重心在基底面內,亦即重心線
在基底面內,此物體就穩定平衡, 重心線愈靠近基底邊線,愈不穩定。 ◎基底面大小 ◎重量 ◎重心高度 : 重心愈靠近基底,愈穩 定。 ◎迴旋 : 向前迴旋運動,增加物體穩 定性。
◎牛頓運動定律(Newton’s Laws)
牛頓的運動定律 (Laws of Motion)
◎慣性定律 (the law of inertia) •說明「動者恆動,靜者恆靜」的物理概念。 ◎加速度定律(the law of acceleration) •F=ma,作用力為質量與加速度的乘積。 ◎反作用力定律(the law of counterforce)
◎利於力量而不利於速 度與運動範圍。
◎角力、柔道之大小外 刈動作、摔動作。
臀摔的槓桿原理
第三型槓桿
◎力點在重點和支點之 間,力臂小於阻力臂。
◎利於速度、運動範圍, 不利於力量。
◎持拍、棒、棍擊球的 動作;划船、撐竿動 作;踢球動作。
走路的生物力學(一)
◎Stride length:同一腳兩次接處地面間的距離。 ◎Stride frequency:時間內的步數。 ◎Gait cycle:步行周期
位的引力加起來,這些引力合力的作用點 就是COG。 ◎重心受年齡、性別、身體結構的影響 •COG是身體最大肌力所在,是產生大力量的 原點。 •人體站立時重心在第二薦椎前方一吋處。
人體重心(二)
平衡的種類
◎穩定平衡 無論物體如何移動,其重心一定上升,如單槓懸
垂.雙槓槓上支撐。 ◎不穩定平衡
物體原來姿勢,不增加位移,位置稍有傾斜,重 心會下降,如起跑姿勢,手倒立。 ◎隨遇平衡
◎轉動運動 (rotary motion) • 發生於當外力施加於物體偏離重心的位置時。 • 不管外力作用於物體何處,物體只能做轉動性移動。
◎速度 (velocity) • 表示單位時間內移動的距離。 • 加速度指單位時間內速度的增加量。 • 減速度指單位時間內速度的減少量。
◎動量 (Momentum)