大学物理:3_2保守力与非保守力

合集下载

哈里德大学物理第三章

哈里德大学物理第三章

注意
Fi内 0 I i内 0
i i
W
i
i内
0
二、变力的功
微元分析法:
ds dr
P

P
a
F
r
F r
o
b
取微元过程
以直代曲
以不变代变
再求和
§3-1 功 功率
ds
P

dr
P
r
a
F
r
F
o
b
元功: dW F dr F dr cosθ Fcosθds
F
M
m
r
r
o
以上这些力的共同特点?
保守力
1)做功与路径无关,只与起、末点位置有关;
2)做功等于与相互作用物体的相对位置有关的 某函数在始末位置的值之差。
势能
§3-2 保守力与非保守力 势能
二、保守力与非保守力
势能
1. 保守力与非保守力
• 做功与路径无关,只与起点、终点位置有关
b m L1 a
§3-2 保守力与非保守力 势能
保守力在 x 轴的分力,等于其相关势 能对坐标 x 的导数的负值:
F
dW F dr
x
Fx dx dEp x
m

θ
Fx
Fx
dEp x dx
§3-2 保守力与非保守力 势能
练习3:
一质量为 m 的人造地球卫星沿一圆形轨道运动,
§3-4 功能原理
1. 动能定理与功能原理的区别与联系:
功能原理是从动能定理推出的,完全包含在 动能定理之中; 由于保守力的功已反映在势能的改变中,运 用功能原理时,只需要计算非保守力的功, 而动能定理,则需要计算所有力做的功 。 2. 功与能的联系与区别: 功与能的单位与量纲相同; 功是过程量,能量是状态量; 功是能量传递和转化的一种方式和量度。

大学物理 第三章 动量守恒定律和能量守恒定律 3-5 保守力与非保守力

大学物理 第三章 动量守恒定律和能量守恒定律 3-5 保守力与非保守力
①引力势能 引力势能
m' m m' m 引力的功 引力的功 WAB = −(−G r ) − (−G r ) B A
A点势能: 点势能: 且令E 设B点为无限远 即rB=∞ 且令 PB=0 点为无限远
m' m WAB = −G rA
= − ( E pB − E pA ) = E pA
功与路径无关,只决定于初末位置。 功与路径无关,只决定于初末位置。 第三章 动量守恒和能量守恒
4
} ⇒ dW
物理学
第五版
3-5 保守力与非保守力 势能 -
F
dW
O
x1
x2
dx
x2 x
W = ∫ Fdx = ∫
x1
x2
x1
1 2 1 2 − kxdx = −( kx2 − kx1 ) 2 2
5
第三章 动量守恒和能量守恒
W p → p0 = −( Ep0 − Ep ) = −∆Ep
E p ( x, y, z) =

E p0 = 0
( x, y,z )
F ⋅ dr
任意一点的势能等于在保守力作用下 从该点到势能零点保守力所作的功
第三章 动量守恒和能量守恒 10
物理学
第五版
3-5 保守力与非保守力 势能 -
W AB = − ( E pB − E pA ) = − ∆ E P
引力的功 引力的功
m' m m' m WAB = −(−G ) − (−G ) rB rA
引力势能 引力势能
m' m Ep = −G r
弹性势能 弹性势能
弹力的功 弹力的功
W AB 1 1 2 2 = − ( kx B − kx A ) 2 2

保守力与非保守力

保守力与非保守力

保守力与非保守力Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】非保守力:凡作功与路径有关的力称为非保守力。

常见的摩擦力,物体间相互作非弹性碰撞时的冲击力都属于非保守力。

非保守力具有沿任意闭合路径作功不等于零的特点。

非保守力包括耗散力和非耗散力两类。

在力学范围内接触的非保守力大多数是耗散力,所以长期以来耗散力就成了非保守力的同义词。

严格说来两者是有区别的,一个系统的总机械能减少,并转变为系统的热能或内能。

通常人们把这个过程叫耗散过程,而把导致耗散的力成为耗散力。

摩擦力是耗散力,但非保守力(如爆炸力)不一定都是耗散力。

⑴定义:做功多少只由始末位置所决定,而跟路径无关的力叫做保守力。

做功多少和物体运动路径有关的力叫耗散力。

⑵说明①保守力对物体做功的多少取决于物体始末位置,如果在该力作用下,物体的运动沿闭合路线绕行一周回到了起始位置,则所做功为零。

重力、弹力等属于保守力。

耗散力做功就不能由物体的始末位置决定,而和物体的运动路径有关,在其他条件相同的情况下,物体运动路径越长,所做的功也越多。

摩擦力、粘滞力等属于耗散力②保守力和耗散力所做功的情况不同,是和这两种力的本身的特点有关。

物体系确定后保守力和物体的运动状况无关,其大小由相互作用物体的相对位置所确定,它的方向总在两个相互作用物体的连线上。

例如,物体确定后,重力的大小决定于它离开地面的高度,方向竖直向下,而和物体以什么样的速度运动无关,和物体运动速度的大小和方向如何变化无关。

耗散力的大小和方向都随着物体运动速度的大小、方向的改变而发生变化。

例如,空气对运动物体的阻力,其方向随着物体运动的方向改变而变化,它的大小随物体运动速度增大而增加。

③保守力和物体系的势能有着极为密切的联系。

保守力做正功,则物体系的势能减少;反之,则物体系的势能增加。

而且相对两个位置之间,功量一定,能量差一定。

所以物体间存在保守力是物体系具有势能的条件。

保守力与非保守力及势能

保守力与非保守力及势能

§3.6 保守力与非保守力、势能
3. 三种势能函数:
(1) 重力势能:
y y
E p ( y ) F重 d r
(0)
( mg ) ˆ j dy ˆ j
y
( y) 0
o
Ep( y )
mg
E p ( y ) mgy
即:势能零点正上方重力 势能为正,下方为负。
E p ( y ) mgy
m?????epr?f引?drf引mrrorep?0??mm????g2er?drerrreprmmepr?gorrmmepr?gr即
Chapter 3. 守恒定律
§3.6 保守力与非保守力、势能
§3.6 保守力与非保守力、势能
·1 ·
Chapter 3.力,其势能函数为何不同?它们
有何内在关系? 3. 若选地表为万有引力势能零点,则 引力势能表达式如何?
?
( The end ) ·7 ·
Chapter 3. 守恒定律
§3.6 保守力与非保守力、势能
归纳:
1.重力势能: E p ( y ) mgy
1 2 2. 弹性势能: E p ( x ) kx 2
Ep( y )
1 E p ( x ) kx 2 2
o
x
·5 ·
Chapter 3. 守恒定律
§3.6 保守力与非保守力、势能
(3) 万有引力势能:
M
F引 m
E p ( r ) F引 d r
(r )
( )
o
r
Ep( ) 0
Mm ˆ r dr e ˆr ( G 2 )e r r
2. 势能函数选取应遵从的原则:

大学物理第2章-质点动力学基本定律

大学物理第2章-质点动力学基本定律
②保守力作功。
势能的绝对值没有意义,只关心势能的相对值。 势能是属于具有保守力相互作用的系统 计算势能时必须规定零势能参考点。但是势能差是一定的,与零点的选择无关。 如果把石头放在楼顶,并摇摇欲坠,你就不会不关心它。 一块石头放在地面你对它并不关心。
重力势能:以地面为势能零点
01
万有引力势能:以无限远处为势能零点
m
o
θ
设:t 时刻质点的位矢
质点的动量
运动质点相对于参考原点O的角动量定义为:
大小:
方向:右手螺旋定则判定
若质点作圆周运动,则对圆心的角动量:
质点对轴的角动量:
质点系的角动量:
设各质点对O点的位矢分别为
动量分别为
二.角动量定理
对质点:
---外力对参考点O 的力矩
力矩的大小:
力矩的方向:由右手螺旋关系确定
为质点系的动能,

---质点系的动能定理
讨论
内力和为零,内力功的和是否为零?
不一定为零
A
B
A
B
S
L
例:炸弹爆炸,过程内力和为零,但内力所做的功转化为弹片的动能。
内力做功可以改变系统的总动能
例 用铁锤将一只铁钉击入木板内,设木板对铁钉的阻力与铁钉进入木板之深度成正比,如果在击第一次时,能将钉击入木板内 1 cm, 再击第二次时(锤仍以第一次同样的速度击钉),能击入多深? 第一次的功 第二次的功 解:
(1)重力的功
重力做功仅取决于质点的始、末位置za和zb,与质点经过的具体路径无关。
(2) 万有引力的功
*
设质量M的质点固定,另一质量m的质点在M 的引力场中从a运动到b。
M
a
b

保守力与非保守力

保守力与非保守力

一、 万有引力、重力、弹性力作功的特点1 万有引力作功如上图所示,有两个质量为m m ' 和的质点,其中质点m ' 固定不动。

取m ' 的位置为坐标原点,A 、B 两点对m ' 的距离分别为m r r B A , 和经任一路径由点A 运动到点B ,万有引力作的功为)11(A B r r m m G W -'= (3-10)上式表明,当质点的质量m m ' 和均给定时,万有引力作的功只取决于质点m 的起始和终了的位置,而与所经过的路径无关。

这是万有引力作功的一个重要特点。

扩充内容:计算万有引力作的功设在某一时刻质点m 距质点m '的距离为r ,其位矢为r ,这时质点m 受到质点m '的万有引力为r 2e F r m m G '-=r e 为沿位矢r 的单位矢量,当m 沿路径移动位移元r d 时,万有引力作的功为r e r F d d d r 2⋅'-=⋅=r m m G W从图可以看出r d cos d cos d d r r ===⋅θθr r e r e于是,上式为r r m m G W d d 2'-=所以,质点m 从点A 沿任一路径到达点B 的过程中,万有引力作的功为⎰⎰'-==B A r r B A r r m m G W W 2d 1d即2 重力作功如右图所示,一个质量为m 的质点,在重力作用下从点A 沿ACB 路径至点B ,点A 和点B 距地面的高度分别为21 y y 和,计算重力作功为()12mgy mgy W --= (3-11)上式表明,重力作功只与质点的起始和终了位置有关,而与所经过的路径无关,这是重力作功的一个重要特点。

扩充内容: 计算重力作的功因为质点运动的路径为一曲线,所以重力和质点运动方向之间的夹角是不断变化的。

我们把路径ACB 分成许多位移元,在位移元r d 中,重力P 所作的功为r P d d ⋅=W若质点在平面内运动,按图所选坐标,并取地面上某一点为坐标原点O ,有j i r y x d d d +=且j P mg -=。

保守力与非保守力课件

保守力与非保守力课件

03
常见保守力
常见的保守力包括重力、弹性力、万有引力等。
保守力做功与路径无关
做功定义
保守力做功是指力在空间上的累 积效应,等于力的大小与位移的
乘积。
路径无关性
由于保守力的做功只与始末位置 有关,而与路径无关,因此物体 在保守力作用下沿任意路径从同 一位置移动到同一位置所做的功
都是相同的。
计算方法
计算保守力做功时,可以通过始 末位置的势能差值来计算,即做 功等于末位置势能减去初位置势
电场力是非保守力的一种,它是由电 场对电荷的作用所产生的。电场力在 做功时与物体经过的路径和所处的位 置有关。
磁场力
磁场力是非保守力的一种,它是由磁 场对带电粒子或电流的作用所产生的。 磁场力在做功时与物体经过的路径和 所处的位置有关。
04 保守力与非保守力的应用
保守力在物理学的应用
机械能守恒
保守力在机械能守恒中起着关键作用, 重力、弹力等保守力在只有保守力做 功的情况下,系统的机械能保持不变。
保守力与非保守力课 件
目录
CONTENTS
• 保守力与非保守力的定义 • 保守力的特性
01 保守力与非保守力的定义
保守力的定 义
01
02
03
保守力
在物理系统中,保守力是 指做功与路径无关,只与 初末位置有关的力。
常见保守力
重力、弹性力、万有引力 等。
特点
保守力做功不会改变系统 内能,只改变系统的动。
非保守力的定 义
非保守力
与保守力相反,非保守力 做功与路径有关,且做功 会导致系统内能变化。
常见非保守力
摩擦力、空气阻力、电磁 力等。
特点
非保守力做功会改变系统 内能,同时也会改变系统 的动能。

第 03章 2 次课 -- 动能定理 保守力和非保守力 功能原理

第 03章 2 次课 -- 动能定理 保守力和非保守力 功能原理

上海师范大学
3 /17
§3. 4 三、质点的动能定理
动能定理
外力F作用在质点上, 对质点做功, 质点的速率发生变化, 因此能量发生变化.
外力所做的功W与质点的能量有什么定量 关系吗?
dv 由 W F dr F cos dr Ft dr Ft ds 和 Ft m
A
dW F dr
W F r
A
W
B
B F dr F cosdr
r
是在力的作用下产生的位移.
W Fi dr Fi dr Wi
合力的功 = 各分力的功的代数和
i
W W1 W2 W3 Wi
5. .直角坐标系中的功
F Fx i Fy j Fz k; dr dxi dyj dzk
W Fx dx Fy dy Fz dz
6. 功的单位
Wx Wy Wz
1 /17
1J 1N m
上海师范大学
§3. 4 二、功率
12 /17
§3.5 四、势能曲线
保守力与非保守力 势 能
势能是空间位置的函数, 将这种函数用图形表示就称为势能曲线.
Ep mgz
1 E p kx 2 2
m'm Ep G r
Ep
Ep
O
Ep
x
O
重力势能曲线
z
x
O
弹性势能曲线
引力势能曲线
z 0, Ep 0
x 0, Ep 0
v v0 e
t 0
x
dt
W b (0 e
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3.5 保守力 势能
2.3 能量守恒定律
万有引力场中,以两物体相距无穷远时的引力势能 为零,则相距为r时的引力势能为
Mm
Mm
Ep
G
r
r2
G
r
以弹簧原长处的势能为零,则弹簧伸长为x时的势能

Ep
0
kxdx
x
1 kx2 2
2.3.5 保守力 势能
2.3 能量守恒定律
一 质点系的功能原理 质点系动能定理
O
B
2.3.5 保守力 势能
2.3 能量守恒定律
B Mm
W F dr A G r 3 r dr
r dr r dr cos rdr
W rB G Mm dr
rA
r2
W
(G
Mm ) (G rB
Mm rA
)
m
A
r (t)
dr
m'
r(t
dr
dt)
O
B
r (t)
dr
r(t dt)
G
m'm r
Ep
Ep
Ep
x
O
z
O
重力势能曲线
z 0, Ep 0
x
O
弹性势能曲线
x 0, Ep 0
引力势能曲线
r , Ep 0
2.3.5 保守力 势能
一维势能曲线 1、保守力作功等于势能的 减少 fdx dU(x) f - dU(x)
dx
大小:正比于曲线斜率
2.3 能量守恒定律
2、物体运动区域 :E低于势能曲线的区间,质点 不能到达
A C
D
物体沿闭合路径运动 一周时,
B
保守力对它所作的功等于零 .
非保守力: 力所作的功与路径有关 .(例如摩擦力)
2.3.5 保守力 势能
2.3 能量守恒定律
三 势能 势能
重力功
与物体间相互作用及相对位置有关的能量 . 重力势能
W (mgzB mgzA )
引力功
W
(G
m' m ) rB
(G
mr'Am)
弹力功
W
(
1 2
kxB2
1 2
kx
2 A
)
Ep mgz
引力势能
Ep
G
m' m r
弹性势能
Ep
1 2
k x2
保守力的功 W ( Epb Epa ) EP
2.3.5 保守力 势能
讨论
2.3 能量守恒定律
势能是状态函数
Ep Ep (x, y, z)
势能具有相对性,势能大小与势能零点的选取有关 .
F kxi
x
o xA xB
W xB Fdx xB kxdx
xA
xA
W
(
1 2
kxB2
1 2
kx
2 A
)
W kxdx 0
2.3.5 保守力 势能
2.3 能量守恒定律
二 保守力和非保守力
保守力: 力所作的功与路径无关,仅决定于相 互作用质点的始末相对位置 .
引力功
W
(G
m' m ) rB
质点系的功能原理 质点系机械能的增量等于 外力和非保守内力作功之和 .
2.3.5 保守力 势能
2.3 能量守恒定律
二 机械能守恒定律
功能原理 A外 A非 保 内 E
当 A外 A非 保内 0 时,有 E1 E2
机械能守恒定律 只有保守内力作功的情况 下,质点系的机械能保持不变 .
2.3.5 保守力 势能
A Ek Ek0 Ek
A A外 A内 A外 A非 保 内 A保 内
保守内力的功和势能的关系
A保 内 E p 则有 A外 A非保内 ( E p) Ek
2.3.5 保守力 势能
2.3 能量守恒定律
A外 A非保内 ( E p Ek )
机械能 E Ek Ep
则有 A外 A非 保 内 E
3、平衡点
dU 0 , 即 : f(x) 0 dx
物体 A 和 C, B 和 D 之间摩擦因数均不为零,首 先用外力沿水平方向相向推压 A 和 B, 使弹簧压 缩,后拆除外力, 则 A 和 B 弹开过程中, 对 A、 B、C、D 组成的系统
(A)动量守恒,机械能守恒 . (B)动量不守恒,机械能守恒 . (C)动量不守恒,机械能不守恒 . (D)动量守恒,机械能不一定守恒 .
(G
mr'Am)
重力功 弹力功
W (mgzB mgz A )
W
(
1 2
kxB2
1 2
kxA2
)
A
D
C
F dr F dr
ACB
ADB
B
2.3.5 保守力 势能
2.3 能量守恒定律
F dr F dr
ACB
ADB
A
C
F dr F dr F dr
l
ACB
BDA
D B
l F dr 0
势能是属于系统的 .
势能计算 W (Ep Ep0 ) Ep
2.3.5 保守力 势能
2.3 能量守恒定律
若要求a点的势能,则可选择b点为参考点
令 Epb 0
势 能 零 点
Epa a
F dr
重力场中,以地面为势能零点,离地面高为h的 物体的重力势能为
0
Ep
mgdz
za
mgza
mgh
C
D
C
D
A
B
A
B
2.3.5 保守力 势能
2.3 能量守恒定律
四、保守力与势能的关系:
保守力所做的功等于势能的减少
A保 EP
对一个微小的过程 F dr dEp (x, y, z)
dE p
EP x
dx
EP y
dy
EP z
dz
F dr Fxdx Fydy Fzdz
2.3.5 保守力 势能
2.3.5 保守力 势能
2.3 能量守恒定律
2)
重力作功
P mgk
dr dxi dyj dzk
W
B P dr
zB mgdz
A
zA
z
zA
zB
A
mg
B
(mgzB mgz A )
o
x
y
W mgdz 0
2.3.5 保守力 势能
2.3 能量守恒定律
3 ) 弹性力作功
F
2.3.5 保守力 势能
2.3 能量守恒定律
一 万有引力、重力、弹性力作功的特点
1) 万有引力作功
以M 为参考系,m的位置矢量为 r .
M 对 m 的万有引力为
F
G
Mm r3
r
m由 A点移动到 B点时 F 作功为
W
F dr
B
G
A
Mm r3
r
dr
m
A
r (t)
dr
M r(t dt)
2.3 能量守恒定律
Fx
E p x
Fy
E p y
Fz
E p z
保守力等于势能的负梯度
F保
EP x
i EP y
j EP z
k EP
对一维的保守力F(x)而言 F ( x) dEP ( x) dx
2.3.5 保守力 势能
2.3 能量守恒定律
四 势能曲线
Ep mgz
Ep
1 2
k x2
Ep
2.3 能量守恒定律
注意:
1、机械能守恒是有条件的。Fra bibliotek初态到末态的每一 个微元过程中,外力和非保守内力所做的元功的 代数和均为零,则机械能守恒。
2、机械能守恒定律是指系统总的机械能不变,但 其动能和势能仍然可以相互转化
2.3.5 保守力 势能
2.3 能量守恒定律
讨论 如图的系统,物体 A,B 置于光滑的桌面上,
相关文档
最新文档