山东省滨州市沾化县九年级(上)期末数学试卷
九年级上册滨州数学期末试卷试卷(word版含答案)

九年级上册滨州数学期末试卷试卷(word 版含答案)一、选择题1.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( )A .5B .4C .3D .22.方程 x 2=4的解是( )A .x 1=x 2=2B .x 1=x 2=-2C .x 1=2,x 2=-2D .x 1=4,x 2=-43.如图,点I 是△ABC 的内心,∠BIC =130°,则∠BAC =( )A .60°B .65°C .70°D .80°4.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( ) A .15B .25C .35D .455.已知二次函数y=-x 2+2mx+2,当x<-2时,y 的值随x 的增大而增大,则实数m ( ) A .m=-2B .m>-2C .m≥-2D .m≤-26.如图,△ABC 内接于⊙O ,连接OA 、OB ,若∠ABO =35°,则∠C 的度数为( )A .70°B .65°C .55°D .45° 7.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( )A .P 在圆内B .P 在圆上C .P 在圆外D .无法确定8.已知反比例函数ky x=的图象经过点(m ,3m ),则此反比例函数的图象在( ) A .第一、二象限 B .第一、三象限C .第二、四象限D .第三、四象限9.sin60°的值是( ) A .B .C .D .10.已知一组数据:2,5,2,8,3,2,6,这组数据的中位数和众数分别是( ) A .中位数是3,众数是2B .中位数是2,众数是3C .中位数是4,众数是2D .中位数是3,众数是411.如图,如果从半径为6cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .2cmB .4cmC .6cmD .8cm 12.抛物线y =(x ﹣2)2+3的顶点坐标是( )A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3)二、填空题13.平面直角坐标系内的三个点A (1,-3)、B (0,-3)、C (2,-3),___ 确定一个圆.(填“能”或“不能”)14.关于x 的一元二次方程20x a +=没有实数根,则实数a 的取值范围是 . 15.已知矩形ABCD ,AB=3,AD=5,以点A 为圆心,4为半径作圆,则点C 与圆A 的位置关系为 __________.16.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x ,则可列方程____.17.已知关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=-1,x 2=2 ,则二次函数y=x 2+mx+n 中,当y <0时,x 的取值范围是________;18.已知一个圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为_____cm 2.(结果保留π)19.如图,若一个半径为1的圆形纸片在边长为6的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为_____.20.在平面直角坐标系中,抛物线2yx 的图象如图所示.已知A 点坐标为()1,1,过点A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行下去,则点2019A 的坐标为_____.21.如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接 CP ,以 CP 为 边,在 PC 的右侧作等边△CPQ ,连接 AQ 交 BD 延长线于 E ,当△CPQ 面积最小时,QE=____________.22.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .23.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.24.如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM 的面积为1,则□ABCD 的面积为________.三、解答题25.某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元?26.如图,在平面直角坐标系中,抛物线()20y ax bx c a =++≠ 的顶点为()2,0A -,且经过点()5,9B -与y 轴交于点C ,连接AB ,AC ,BC .(1)求抛物线对应的函数表达式;(2)点P 为该抛物线上点C 与点B 之间的一动点.①若15PAB ABC S S ∆∆=,求点P 的坐标. ②如图②,过点B 作x 轴的垂线,垂足为D ,连接AP 并延长,交BD 于点M ,连接BP延长交AD 于点N .试说明()DN DM DB +为定值.27.定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.(1)如图①,在对角互余四边形ABCD 中,∠B =60°,且AC ⊥BC ,AC ⊥AD ,若BC =1,则四边形ABCD 的面积为 ;(2)如图②,在对角互余四边形ABCD 中,AB =BC ,BD =13,∠ABC+∠ADC =90°,AD =8,CD =6,求四边形ABCD 的面积;(3)如图③,在△ABC 中,BC =2AB ,∠ABC =60°,以AC 为边在△ABC 异侧作△ACD ,且∠ADC =30°,若BD =10,CD =6,求△ACD 的面积.28.九(3)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表: 甲789710109101010乙 10 8 7 9 8 10 10 9 10 9(1)计算乙队的平均成绩和方差;(2)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是哪个队?29.如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF=3m ,沿BD 方向到达点F 处再测得自己得影长FG=4m ,如果小明的身高为1.6m ,求路灯杆AB 的高度.30.如图,在10×10的网格中,有一格点△ABC(说明:顶点都在网格线交点处的三角形叫做格点三角形).(1)将△ABC 先向右平移5个单位,再向上平移2个单位,得到△A'B'C',请直接画出平移后的△A'B'C';(2)将△A'B'C'绕点C'顺时针旋转90°,得到△A''B''C',请直接画出旋转后的△A''B''C'; (3)在(2)的旋转过程中,求点A'所经过的路线长(结果保留π). 31.解方程:2670x x --=32.如图,已知△ABC 中,∠ACB =90°,AC =4,BC =3,点M 、N 分别是边AC 、AB 上的动点,连接MN ,将△AMN 沿MN 所在直线翻折,翻折后点A 的对应点为A ′.(1)如图1,若点A′恰好落在边AB上,且AN=12AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当35ANAB=且67AMAC=时,求CP的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.【详解】解:根据题意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故选:D.【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.2.C解析:C【解析】【分析】两边开方得到x=±2.【详解】解:∵x2=4,∴x=±2,∴x1=2,x2=-2.故选:C.【点睛】本题考查了解一元二次方程-直接开平方法:形如ax2+c=0(a≠0)的方程可变形为2=cxa-,当a、c异号时,可利用直接开平方法求解.3.D解析:D【解析】【分析】根据三角形的内接圆得到∠ABC=2∠IBC,∠ACB=2∠ICB,根据三角形的内角和定理求出∠IBC+∠ICB,求出∠ACB+∠ABC的度数即可;【详解】解:∵点I是△ABC的内心,∴∠ABC=2∠IBC,∠ACB=2∠ICB,∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣∠CIB=50°,∴∠ABC+∠ACB=2×50°=100°,∴∠BAC=180°﹣(∠ACB+∠ABC)=80°.故选D.【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.4.B解析:B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.5.C解析:C【解析】【分析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m值的范围.【详解】解:抛物线的对称轴为直线221mx m∵10a=-<,抛物线开口向下,∴当x m<时,y的值随x值的增大而增大,∵当2x<-时,y的值随x值的增大而增大,∴2m≥-,故选:C.【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.6.C解析:C【解析】【分析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O的度数,再进一步根据圆周角定理求解.【详解】解:∵OA=OB,∠ABO=35°,∴∠BAO=∠ABO=35°,∴∠O=180°-35°×2=110°,∴∠C=12∠O=55°.故选:C.【点睛】本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.7.C解析:C【解析】【分析】点到圆心的距离大于半径,得到点在圆外.【详解】∵点P到圆心O的距离为4.5,⊙O的半径为4,∴点P在圆外.故选:C.【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d的距离与半径r的大小确定点与圆的位置关系.8.B解析:B【解析】【分析】【详解】解:将点(m,3m)代入反比例函数kyx得,k=m•3m=3m2>0;故函数在第一、三象限,故选B.9.C解析:C【解析】【分析】根据特殊角的三角函数值解答即可.【详解】sin60°=,故选C.【点睛】本题考查特殊角的三角函数值,熟记几个特殊角的三角函数值是解题关键.10.A解析:A【解析】【分析】先将这组数据从小到大排列,找出最中间的数,就是中位数,出现次数最多的数就是众数.【详解】解:将这组数据从小到大排列为:2,2,2,3,5,6,8,最中间的数是3,则这组数据的中位数是3;2出现了三次,出现的次数最多,则这组数据的众数是2;故选:A.【点睛】此题考查了众数、中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.11.B解析:B【解析】【分析】因为圆锥的高,底面半径,母线构成直角三角形,首先求得留下的扇形的弧长,利用勾股定理求圆锥的高即可. 【详解】解:∵从半径为6cm 的圆形纸片剪去13圆周的一个扇形, ∴剩下的扇形的角度=360°×23=240°, ∴留下的扇形的弧长=24061880ππ⨯=, ∴圆锥的底面半径248r ππ==cm ; 故选:B. 【点睛】此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.12.A解析:A 【解析】 【分析】根据抛物线的顶点式可直接得到顶点坐标. 【详解】解:y =(x ﹣2)2+3是抛物线的顶点式方程, 根据顶点式的坐标特点可知,顶点坐标为(2,3). 故选:A . 【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h )2+k ,顶点坐标为(h ,k ),对称轴为直线x=h ,难度不大.二、填空题13.不能 【解析】 【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆. 【详解】解:∵B (0,-3)、C (2,-3), ∴BC ∥x 轴, 而点A (1,-3)与C 、解析:不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.14.a>0.【解析】试题分析:∵方程没有实数根,∴△=﹣4a<0,解得:a>0,故答案为a>0.考点:根的判别式.解析:a>0.【解析】试题分析:∵方程20+=没有实数根,∴△=﹣4a<0,解得:a>0,故答案为a>0.x a考点:根的判别式.15.点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=厘米,∵半径为4厘米,∴点C在圆A外【点解析:点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=22+=厘米,3534∵半径为4厘米,∴点C在圆A外【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.16.720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019解析:720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019年全年收入845万元,即可得出方程.【详解】解:设该企业全年收入的年平均增长率为x,则2018的全年收入为:720×(1+x)2019的全年收入为:720×(1+x)2.那么可得方程:720(1+x)2=845.故答案为:720(1+x)2=845.【点睛】本题考查了一元二次方程的运用,解此类题的关键是掌握等量关系式:增长后的量=增长前的量×(1+增长率).17.-1<x<2【解析】【分析】根据方程的解确定抛物线与x轴的交点坐标,即可确定y<0时,x的取值范围. 【详解】由题意得:二次函数y=x2+mx+n与x轴的交点坐标为(-1,0),(2,0),解析:-1<x<2【解析】【分析】根据方程的解确定抛物线与x轴的交点坐标,即可确定y<0时,x的取值范围.【详解】由题意得:二次函数y=x2+mx+n与x轴的交点坐标为(-1,0),(2,0), ,开口向上,∵a=10∴y<0时,x的取值范围是-1<x<2.【点睛】此题考查二次函数与一元二次方程的关系,函数图象与x轴的交点横坐标即为一元二次方程的解,掌握两者的关系是解此题的关键.18.60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧解析:60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线. 19.6+π.【解析】【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】解:如图,当圆形纸片运动到与∠A的两解析:63+π.【解析】【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】解:如图,当圆形纸片运动到与∠A 的两边相切的位置时,过圆形纸片的圆心O 作两边的垂线,垂足分别为D ,E , 连接AO ,则Rt △ADO 中,∠OAD =30°,OD =1,AD 3∴S △ADO =12OD •AD =32, ∴S 四边形ADOE =2S △ADO 3∵∠DOE =120°,∴S 扇形DOE =3π, ∴纸片不能接触到的部分面积为:333π)=3﹣π ∵S △ABC =1233∴纸片能接触到的最大面积为:33=3+π.故答案为3.【点睛】此题主要考查圆的综合运用,解题的关键是熟知等边三角形的性质、扇形面积公式.20.【解析】【分析】根据二次函数性质可得出点的坐标,求得直线为,联立方程求得的坐标,即可求得的坐标,同理求得的坐标,即可求得的坐标,根据坐标的变化找出变化规律,即可找出点的坐标.【详解】解:∵解析:2(1010,1010)-【解析】【分析】根据二次函数性质可得出点1A 的坐标,求得直线12A A 为2y x =+,联立方程求得2A 的坐标,即可求得3A 的坐标,同理求得4A 的坐标,即可求得5A 的坐标,根据坐标的变化找出变化规律,即可找出点2019A 的坐标.【详解】解:∵A 点坐标为()1,1,∴直线OA 为y x =,()11,1A -,∵12A A OA ∕∕,∴直线12A A 为2y x =+,解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴()22,4A ,∴()32,4A -,∵34A A OA ∕∕,∴直线34A A 为6y x =+,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴()43,9A ,∴()53,9A -…,∴()220191010,1010A -,故答案为()21010,1010-. 【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.21.【解析】【分析】如图,过点D 作DF⊥BC 于F ,由“SAS”可证△ACQ≌△BCP,可得AQ =BP ,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD 的长,由锐角三角函数可求BP 的长,由相解析:677【解析】【分析】如图,过点D 作DF ⊥BC 于F ,由“SAS ”可证△ACQ ≌△BCP ,可得AQ =BP ,∠CAQ =∠CBP ,由直角三角形的性质和勾股定理可求BD 的长,由锐角三角函数可求BP 的长,由相似三角形的性质可求AE 的长,即可求解.【详解】如图,过点D 作DF ⊥BC 于F ,∵△ABC ,△PQC 是等边三角形,∴BC =AC ,PC =CQ ,∠BCA =∠PCQ =60°,∴∠BCP =∠ACQ ,且AC =BC ,CQ =PC ,∴△ACQ ≌△BCP (SAS )∴AQ =BP ,∠CAQ =∠CBP , ∵AC =6,AD =2,∴CD =4,∵∠ACB =60°,DF ⊥BC ,∴∠CDF =30°,∴CF =12CD =2,DF =CF ÷tan30°3=3 ∴BF =4,∴BD 22DF BF +1612+7,∵△CPQ 是等边三角形,∴S △CPQ =34CP 2, ∴当CP ⊥BD 时,△CPQ 面积最小,∴cos ∠CBD =BP BF BC BD =, ∴627BP =, ∴BP 127,∴AQ =BP =7, ∵∠CAQ =∠CBP ,∠ADE =∠BDC ,∴△ADE ∽△BDC , ∴AE AD BC BD=, ∴6AE =,∴AE =7,∴QE =AQ−AE =7.. 【点睛】 本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP 的长是本题的关键.22.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 23.10【解析】【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x 的值即可.【详解】解:当时,,解得,(舍去),.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自解析:10【解析】【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,212501233y x x =-++=, 解得,2x =-(舍去),10x =.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.24.16【解析】【分析】【详解】延长EF 交BC 的延长线与H,在平行四边形ABCD 中,∵AD=BC,AD∥BC∴△DEF∽△CHF, △DEM∽△BHM∴ ,∵F是CD的中点∴DF解析:16【解析】【分析】【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF, △DEM∽△BHM ∴DE DFCH CF= ,2()DEMBMHS DES BH∆∆=∵F是CD的中点∴DF=CF∴DE=CH∵E是AD中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵1DEMS∆=∴211()3BMHS∆=∴9BMHS∆=∴9CFHBCFMS S∆+=四边形∴9DEFBCFMS S∆+=四边形∴9DME DFMBCFMS S S∆∆++=四边形∴19BCDS∆+=∴8BCDS∆=∵四边形ABCD是平行四边形∴2816ABCDS=⨯=四边形故答案为:16.三、解答题25.(1)20%;(2)8640万元.【解析】【分析】(1)设平均增长率为x,根据题意可得2018年投入的资金是5000(1+x)万元,2019年投入的资金是5000(1+x) (1+x)万元,由2019年投入的资金是7200万元即可列出方程.,求解即可.(2)相当于数字7200增长了20%,列式计算.【详解】解:(1)设两年间每年投入资金的平均增长率为x ,根据题意得,5000(1+x)2=7200解得,x 1=0.2=20%,x 2= -2.2(不符合题意,舍去)答:该市对市区绿化工程投入资金的年平均增长率为20%;(2)根据题意得,7200(1+20%)=8640万元.答:在2020年预计需投入8640万元.【点睛】本题考查一元二次方程的实际应用,增长率问题,根据a(1+x)2=b (a 、b 、x 、n 分别表示增长前量、增长后量、增长率和增长次数)列方程是解答增长率问题的关键.26.(1)244y x x =++;(2)①点P 的坐标为()13,1P -,()24,4P -;②()27DN DM DB +=,是定值.【解析】【分析】(1)设函数为()()220y a x a =+≠,把()5,9B -代入即可求解;(2)①先求出直线AB 解析式,求出C’点,得到ABC S ∆,再求出PAB S ∆,设点()2,44P x x x ++,过P 作y 轴的平行线交AB 于点P',得到()',36P x x --,根据三角形面积公式得()()213644332x x x ⎡⎤⨯---++⨯=⎣⎦,解出x 即可求解; ②过P 作x 轴的垂线,垂足为点E ,设AE t =,表示出()22,P t t --,故2PE t =,根据//PE BD ,得APE AMD ∆∆,故PE DM AE DA =,即23t DM t =,得到3DM t =.再过P 作BD 的垂线,垂足为点F ,根据 相似三角形的性质得到93DN t =+,可得()DN DM DB +的值即为定值.【详解】(1)解:设()()220y a x a =+≠,把点()5,9B -代入,得()2952a =-+,解得1a =, ∴该抛物线对应的函数表达式为()22244y x x x =+=++.(2)①设直线AB 的函数表达式为y kx b =+,把()2,0A -,()5,9B -代入,得0295k b k b =-+⎧⎨=-+⎩,解得36k b =-⎧⎨=-⎩. ∴直线AB 的函数表达式为36AB y x =--.设直线AB 与y 轴交于点'C ,则点()'0,6C -,∴'10CC =.()15210152ABC S ∆=⨯-⨯=,1115355PAB ABC S S ∆∆==⨯=. 设点()2,44P x x x ++,过P 作y 轴的平行线交AB 于点P',则()',36P x x --, ∴()()213644332x x x ⎡⎤⨯---++⨯=⎣⎦, 13x =-,24x =-,所以点P 的坐标为()13,1P -,()24,4P -.②过P 作x 轴的垂线,垂足为点E ,设AE t =,则()22,P t t--,2PE t =, 由//PE BD ,得APE AMD ∆∆,PE DM AE DA =,即23t DM t =,故3DM t =. 过P 作BD 的垂线,垂足为点F , 由//PF ND ,得BPFBND ∆∆,BF DB PF DN =,即2993t t DN -=-,故93DN t =+. 所以()()939273DN DM DB t t+=+=+,是定值.【点睛】此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质,相似三角形的判定与性质.27.(1)2)36;(3)2. 【解析】【分析】(1)由AC ⊥BC ,AC ⊥AD ,得出∠ACB=∠CAD=90°,利用含30°直角三角形三边的特殊关系以及勾股定理,就可以解决问题;(2)将△BAD 绕点B 顺时针旋转到△BCE ,则△BCE ≌△BAD ,连接DE ,作BH ⊥DE 于H ,作CG ⊥DE 于G ,作CF ⊥BH 于F .这样可以求∠DCE=90°,则可以得到DE 的长,进而把四边形ABCD 的面积转化为△BCD 和△BCE 的面积之和,△BDE 和△CDE 的面积容易算出来,则四边形ABCD 面积可求;(3)取BC 的中点E ,连接AE ,作CF ⊥AD 于F ,DG ⊥BC 于G ,则BE=CE=12BC ,证出△ABE 是等边三角形,得出∠BAE=∠AEB=60°,AE=BE=CE ,得出∠EAC=∠ECA= =30°,证出∠BAC=∠BAE+∠EAC=90°,得出,设AB=x ,则,由直角三角形的性质得出CF=3,从而CG=a ,AF=y ,证明△ACF ∽△CDG ,得出=AF AC CG CD ,求出,由勾股定理得出y 2x)2-32=3x 2-9,b 2=62-a 2=102-(2x+a)2,(2x+a)2+b 2=132,整理得出a=216x x -,进而得y=)216=66x -,得出[)2166x -]2=3x 2-9,解得x 2,得出y 22,解得,得出角形面积即可得出答案.【详解】解:(1)∵AC ⊥BC ,AC ⊥AD ,∴∠ACB =∠CAD =90°,∵对角互余四边形ABCD 中,∠B =60°,∴∠D =30°,在Rt △ABC 中,∠ACB =90°,∠B =60°,BC =1,∴∠BAC =30°,∴AB =2BC =2,AC在Rt △ACD 中,∠CAD =90°,∠D =30°,∴AD=3,CD =2AC =,∵S△ABC =12•AC•BC =12S △ACD ═12•AC•AD =12×3×3=332, ∴S 四边形ABCD =S △ABC +S △ACD =23,故答案为:23;(2)将△BAD 绕点B 顺时针旋转到△BCE ,如图②所示:则△BCE ≌△BAD ,连接DE ,作BH ⊥DE 于H ,作CG ⊥DE 于G ,作CF ⊥BH 于F .∴∠CFH =∠FHG =∠HGC =90°,∴四边形CFHG 是矩形,∴FH =CG ,CF =HG ,∵△BCE ≌△BAD ,∴BE =BD =13,∠CBE =∠ABD ,∠CEB =∠ADB ,CE =AD =8,∵∠ABC+∠ADC =90°,∴∠DBC+∠CBE+∠BDC+∠CEB =90°,∴∠CDE+∠CED =90°,∴∠DCE =90°,在△BDE 中,根据勾股定理可得:DE =22CD CE +=2268+=10,∵BD =BE ,BH ⊥DE ,∴EH =DH =5,∴BH =22BE EH -=22135-=12,∴S △BED =12•BH•DE =12×12×10=60, S △CED =12•CD•CE =12×6×8=24, ∵△BCE ≌△BAD ,∴S 四边形ABCD =S △BCD +S △BCE =S △BED ﹣S △CED =60﹣24=36;(3)取BC 的中点E ,连接AE ,作CF ⊥AD 于F ,DG ⊥BC 于G ,如图③所示:则BE =CE =12BC , ∵BC =2AB ,∴AB =BE ,∵∠ABC =60°, ∴△ABE 是等边三角形,∴∠BAE =∠AEB =60°,AE =BE =CE ,∴∠EAC =∠ECA =12∠AEB =30°, ∴∠BAC =∠BAE+∠EAC =90°, ∴AC,设AB =x ,则AC ,∵∠ADC =30°,∴CF =12CD =3,DF = 设CG =a ,AF =y ,在四边形ABCD 中,∠ABC+∠BCD+∠ADC+∠BAC+∠DAC =360°,∴∠DAC+∠BCD =180°,∵∠BCD+∠DCG =180°,∴∠DAC =∠DCG ,∵∠AFC =∠CGD =90°,∴△ACF ∽△CDG ,∴AF CG =AC CD ,即y a ,∴y在Rt △ACF 中,Rt △CDG 和Rt △BDG 中,由勾股定理得:y 2=2﹣32=3x 2﹣9,b 2=62﹣a 2=102﹣(2x+a)2,(2x+a)2+b 2=132,整理得:x 2+ax ﹣16=0,∴a =216x x-,∴y ×216x x -=)2166x -,∴[)2166x -]2=3x 2﹣9, 整理得:x 4﹣68x 2+364=0,解得:x 2=34﹣,或x 2=∴x2=34﹣∴y2=3(34﹣﹣9=93﹣=93﹣2,∴y∴AF∴AD =AF+DF ,∴△ACD 的面积=12AD×CF =12 【点睛】此题是四边形综合题,主要考查了新定义的理解和应用,相似三角形的判定和性质,勾股定理,等边三角形的判定与性质,旋转的性质,全等三角形的性质,含30°角的直角三角形的性质等知识;本题综合性强,有一定难度.28.(1)9,1;(2)乙【解析】【分析】(1)根据平均数与方差的定义即可求解;(2)根据方差的性质即可判断乙队整齐.【详解】(1)乙队的平均成绩是:1(10482793)10⨯⨯+⨯++⨯=9 方差是:222214(109)2(89)(79)3(99)110⎡⎤⨯⨯-+⨯-+-+⨯-=⎣⎦ (2)∵乙队的方差<甲队的方差∴成绩较为整齐的是乙队.【点睛】此题主要考查平均数与方差,解题的关键是熟知平均数与方差的求解公式及方差的性质. 29.4m【解析】【分析】由CD ∥EF ∥AB 得可以得到△CDF ∽△ABF ,△ABG ∽△EFG ,故CD DF AB BF =,EF FG AB BG =,证DF FG BF BG =,进一步得3437BD BD =++,求出BD ,再得1.6312AB =; 【详解】解:∵CD ∥EF ∥AB ,∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG , ∴CD DF AB BF =,EF FG AB BG=, 又∵CD=EF ,∴DF FG BF BG=, ∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴3437BD BD =++ ∴BD=9,BF=9+3=12 ∴ 1.6312AB = 解得,AB=6.4m因此,路灯杆AB 的高度6.4m .【点睛】 考核知识点:相似三角形的判定和性质.理解相似三角形判定是关键.30.(1)见解析,(2)见解析,(3)13π 【解析】【分析】(1)将三个顶点分别向右平移5个单位,再向上平移2个单位得到对应点,再首尾顺次连接即可得;(2)作出点A ′,B ′绕点C 顺时针旋转90°得到的对应点,再首尾顺次连接可得; (3)根据弧长公式计算可得.【详解】解:(1)如图所示,△A ′B ′C ′即为所求.(2)如图所示,△A ″B ″C ′即为所求.(3)∵A ′C 2223+13A ′C ′A ″=90°,∴点A 90?·13π13, 13π. 【点睛】 本题主要考查作图﹣旋转变换和平移变换,解题的关键是熟练掌握旋转和平移变换的定义和性质,并据此得出变换后的对应点,也考查了弧长公式.31.x 1=7,x 2=1-【解析】【分析】观察原方程,可运用二次三项式的因式分解法进行求解.【详解】解:原方程可化为:(x-7)(x+1)=0,x-7=0或x+1=0;解得:x 1=7,x 2=1-.【点睛】本题考查了解一元二次方程的方法,解题的关键是熟练掌握因式分解法解一元二次方程.32.(1)52;(2)①菱形,理由见解析;②AM=209,MN =9;(3)1. 【解析】【分析】(1)利用相似三角形的性质求解即可.(2)①根据邻边相等的平行四边形是菱形证明即可.②连接AA ′交MN 于O .设AM =MA ′=x ,由MA ′∥AB ,可得'MA AB =CM CA ,由此构建方程求出x ,解直角三角形求出OM 即可解决问题.(3)如图3中,作NH ⊥BC 于H .想办法求出NH ,CM ,利用相似三角形,确定比例关系,构建方程解决问题即可.【详解】解:(1)如图1中,在Rt △ABC 中,∵∠C =90°,AC =4,BC =3,∴AB 5==,∵∠A =∠A ,∠ANM =∠C =90°,∴△ANM ∽△ACB , ∴AN AC =AM AB, ∵AN =12AC ∴12=5AM , ∴AM =52.(2)①如图2中,∵NA ′∥AC ,∴∠AMN =∠MNA ′,由翻折可知:MA =MA ′,∠AMN =∠NMA ′,∴∠MNA ′=∠A ′MN ,∴A ′N =A ′M ,∴AM =A ′N ,∵AM ∥A ′N ,∴四边形AMA ′N 是平行四边形,∵MA =MA ′,∴四边形AMA ′N 是菱形.②连接AA ′交MN 于O .设AM =MA ′=x ,∵MA ′∥AB ,∴'ABC MA C ∽∴'MA AB =CM CA , ∴5x =44x -, 解得x =209, ∴AM =209 ∴CM =169, ∴CA 22MA CM -22201699⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=43, ∴AA 22'AC CA +22443⎛⎫+ ⎪⎝⎭4103 ∵四边形AMA ′N 是菱形,∴AA ′⊥MN ,OM =ON ,OA =OA 210,∴OM=22AM AO-=222021093⎛⎫⎛⎫- ⎪⎪ ⎪⎝⎭⎝⎭=2109,∴MN=2OM=410.(3)如图3中,作NH⊥BC于H.∵NH∥AC,∴△ABC∽△NBH∴NHAC=BNAB=3BH∴NH4=25=3BH∴NH=85,BH=65,∴CH=BC﹣BH=3﹣65=95,∴AM=67AC=247,∴CM=AC﹣AM=4﹣247=47,∵CM∥NH,∴△CPM∽△HPN∴PCPH=CMNH,∴PC9PC5+=4785,∴PC=1.【点睛】本题考查了相似三角形的综合应用,涉及相似三角形的判定与性质、菱形的判定、勾股定理等知识点,综合性较强,难度较大,解题的关键是综合运用上述知识点.。
九年级上册滨州数学期末试卷试卷(word版含答案)

九年级上册滨州数学期末试卷试卷(word 版含答案)一、选择题1.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为( ) A .30° B .45°C .30°或150°D .45°或135°2.已知3sin α=,则α∠的度数是( ) A .30°B .45°C .60°D .90°3.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是( )A .团队平均日工资不变B .团队日工资的方差不变C .团队日工资的中位数不变D .团队日工资的极差不变4.如图,点A ,B ,C 在⊙O 上,∠A=36°,∠C=28°,则∠B=( )A .100°B .72°C .64°D .36° 5.若关于x 的一元二次方程x 2-2x -k =0没有实数根,则k 的取值范围是( ) A .k >-1B .k≥-1C .k <-1D .k≤-16.已知Rt △ABC 中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( ) A .2sin 3B =; B .2cos 3B =; C .2tan 3B =; D .以上都不对;7.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为( ) A .8,10B .10,9C .8,9D .9,108.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( ) A .12B .13C .23D .169.已知⊙O 的直径为4,点O 到直线l 的距离为2,则直线l 与⊙O 的位置关系是 A .相交B .相切C .相离D .无法判断10.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( )A .16k ≤B .116k ≤ C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 11.如图,在矩形中,,,若以为圆心,4为半径作⊙.下列四个点中,在⊙外的是( )A .点B .点C .点D .点 12.抛物线y =(x ﹣2)2+3的顶点坐标是( )A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3)二、填空题13.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD .若AC =2,则cosD =________.14.抛物线y =3(x+2)2+5的顶点坐标是_____.15.在▱ABCD 中,∠ABC 的平分线BF 交对角线AC 于点E ,交AD 于点F .若AB BC =35,则EFBF的值为_____.16.圆锥的母线长是5 cm,底面半径长是3 cm,它的侧面展开图的圆心角是____.17.方程290x 的解为________.18.某一时刻,测得身高1.6m 的同学在阳光下的影长为2.8m ,同时测得教学楼在阳光下的影长为25.2m ,则教学楼的高为__________m .19.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm . 20.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .21.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).22.已知点P (x 1,y 1)和Q (2,y 2)在二次函数y =(x +k )(x ﹣k ﹣2)的图象上,其中k ≠0,若y 1>y 2,则x 1的取值范围为_____.23.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.24.如图,在△ABC 中,AC :BC :AB =3:4:5,⊙O 沿着△ABC 的内部边缘滚动一圈,若⊙O 的半径为1,且圆心O 运动的路径长为18,则△ABC 的周长为_____.三、解答题25.如图,Rt △FHG 中,∠H=90°,FH ∥x 轴,=0.6GHFH,则称Rt △FHG 为准黄金直角三角形(G 在F 的右上方).已知二次函数21y ax bx c =++的图像与x 轴交于A 、B 两点,与y轴交于点E (0,3-),顶点为C (1,4-),点D 为二次函数22(1)0.64(0)y a x m m m =--+->图像的顶点.(1)求二次函数y 1的函数关系式;(2)若准黄金直角三角形的顶点F 与点A 重合、G 落在二次函数y 1的图像上,求点G 的坐标及△FHG 的面积;(3)设一次函数y=mx+m 与函数y 1、y 2的图像对称轴右侧曲线分别交于点P 、Q. 且P 、Q 两点分别与准黄金直角三角形的顶点F 、G 重合,求m 的值并判断以C 、D 、Q 、P 为顶点的四边形形状,请说明理由.26.某景区检票口有A 、B 、C 、D 共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.(1)甲选择A检票通道的概率是;(2)求甲乙两人选择的检票通道恰好相同的概率.27.某超市销售一种书包,平均每天可销售100件,每件盈利30元.试营销阶段发现:该商品每件降价1元,超市平均每天可多售出10件.设每件商品降价x元时,日盈利为w元.据此规律,解决下列问题:(1)降价后每件商品盈利元,超市日销售量增加件(用含x的代数式表示);(2)在上述条件不变的情况下,求每件商品降价多少元时,超市的日盈利最大?最大为多少元?28.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.29.解下列方程:(1)(y﹣1)2﹣4=0;(2)3x2﹣x﹣1=0.30.小亮晚上在广场散步,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置.(1)请你在图中画出小亮站在AB处的影子BE;(2)小亮的身高为1.6m,当小亮离开灯杆的距离OB为2.4m时,影长为1.2m,若小亮离开灯杆的距离OD=6m时,则小亮(CD)的影长为多少米?31.中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为;(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中《九章算术》和《孙子算经》的概率.32.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环):小华:7,8,7,8,9,9;小亮:5,8,7,8,10,10.(1)填写下表:平均数(环)中位数(环)方差(环2)小华8小亮83(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么?(3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差.(填“变大”、“变小”、“不变”)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意画出图形,连接OA和OB,根据勾股定理的逆定理得出∠AOB=90°,再根据圆周角定理和圆内接四边形的性质求出即可.【详解】解:如图所示,连接OA,OB,则OA=OB=3,∵AB=2,∴OA2+OB2=AB2,∴∠AOB=90°,∴劣弧AB的度数是90°,优弧AB的度数是360°﹣90°=270°,∴弦AB对的圆周角的度数是45°或135°,故选:D . 【点睛】此题主要考查圆周角的求解,解题的关键是根据图形求出圆心角,再得到圆周角的度数.2.C解析:C 【解析】 【分析】根据特殊角三角函数值,可得答案. 【详解】解:由sin 2α=,得α=60°, 故选:C . 【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.3.B解析:B 【解析】 【分析】根据平均数、方差、中位数和众数的定义分别对每一项进行分析,即可得出答案. 【详解】解:调整前的平均数是:26042804300443⨯+⨯+⨯⨯=280;调整后的平均数是:260528023005525⨯+⨯+⨯++=280; 故A 正确;调整前的方差是:()()()222142602804280280430028012⎡⎤-+-+-⎣⎦=8003; 调整后的方差是:()()()222152602802280280530028012⎡⎤-+-+-⎣⎦=10003;故B 错误;调整前:把这些数从小到大排列为:260,260,260,260,280,280,280,280,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,调整后:把这些数从小到大排列为:260,260,260,260,260,280,280,300,300,300,300,300;最中间两个数的平均数是:280,则中位数是280, 故C 正确;调整前的极差是40,调整后的极差也是40,则极差不变, 故D 正确.故选B.【点睛】此题考查了平均数、方差、中位数和极差的概念,掌握各个数据的计算方法是关键. 4.C解析:C【解析】【分析】【详解】试题分析:设AC和OB交于点D,根据同弧所对的圆心角的度数等于圆周角度数2倍可得:∠O=2∠A=72°,根据∠C=28°可得:∠ODC=80°,则∠ADB=80°,则∠B=180°-∠A-∠ADB=180°-36°-80°=64°,故本题选C.5.C解析:C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.6.C解析:C【解析】【分析】根据勾股定理求出AB,根据锐角三角函数的定义求出各个三角函数值,即可得出答案.【详解】如图:由勾股定理得:22222133AC BC ++==, 所以cosB=313BC AB =,sinB=21233AC AC tanB AB BC === ,所以只有选项C 正确; 故选:C . 【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键.7.D解析:D 【解析】试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10, 最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10; 故选D .考点:众数;中位数.8.B解析:B 【解析】 【分析】直接得出朝上面的数字大于4的个数,再利用概率公式求出答案. 【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次, ∴共有6种情况,其中朝上面的数字大于4的情况有2种, ∴朝上一面的数字是朝上面的数字大于4的概率为:2163=, 故选:B . 【点睛】本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.9.B解析:B 【解析】 【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系. 【详解】∵⊙O 的直径为4,∴⊙O的半径为2,∵圆心O到直线l的距离是2,∴根据圆心距与半径之间的数量关系可知直线l与⊙O的位置关系是相切.故选:B.【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r,圆心到直线的距离是d,当d=r时,直线和圆相切,当d>r时,直线和圆相离,当d<r时,直线和圆相交.10.C解析:C【解析】【分析】一元二次方程有实数根,则根的判别式∆≥0,且k≠0,据此列不等式求解.【详解】根据题意,得:∆=1-16k≥0且k≠0,解得:116k≤且k≠0.故选:C.【点睛】本题考查一元二次方程根的判别式与实数根的情况,注意k≠0.11.C解析:C【解析】【分析】连接AC,利用勾股定理求出AC的长度,即可解题.【详解】解:如下图,连接AC,∵圆A的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D在圆A内,B在圆上,C在圆外,故选C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键.12.A解析:A【解析】【分析】根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h)2+k,顶点坐标为(h,k),对称轴为直线x=h,难度不大.二、填空题13.【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2 =6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.14.(﹣2,5)【解析】【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点解析:(﹣2,5)【解析】【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点睛】本题考查二次函数的性质,熟知二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,顶点坐标为(h,k),对称轴为x=h.15..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠EBC,∵B解析:38.【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠EBC,∵BF是∠ABC的角平分线,∴∠EBC=∠ABE=∠AFB,∴AB =AF , ∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.16.216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,解析:216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则π5180n ⨯=6π, 解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长. 17.【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这x=±解析:3【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.x=±.故答案为3【点睛】本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.18.4【解析】【分析】根据题意可知,,代入数据可得出答案.【详解】解:由题意得出:,即,解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平解析:4【解析】【分析】根据题意可知,1.62.8=身高教学楼高影长教学楼影长,代入数据可得出答案.【详解】解:由题意得出:1.62.8=身高教学楼高影长教学楼影长,即,1.62.825.2=教学楼高解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平行投影,熟记同一时刻物高与影长成正比是解此题的关键.19.4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积是20πcm2,根据圆锥的侧面展开扇形的弧长为:2405Slrπ===8π,再根据锥的侧面展开扇形的弧长等于圆锥的底面周长,可得822lrπππ===4cm.故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.20.4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=解析:4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=0.4.故答案为:0.4.21.24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,解析:24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=12×8π×6=24π(cm2).故答案为:24π.【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l•R,(l为弧长).22.x1>2或x1<0.【解析】【分析】将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y=(x+k)(x﹣k﹣2解析:x1>2或x1<0.【解析】【分析】将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y=(x+k)(x﹣k﹣2)=(x﹣1)2﹣1﹣2k﹣k2,∵点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,∴y1=(x1﹣1)2﹣1﹣2k﹣k2,y2=﹣2k﹣k2,∵y1>y2,∴(x1﹣1)2﹣1﹣2k﹣k2>﹣2k﹣k2,∴(x1﹣1)2>1,∴x1>2或x1<0.故答案为:x1>2或x1<0.【点睛】此题考查的是比较二次函数上两点之间的坐标大小关系,掌握二次函数的顶点式和根据函数值的取值范围求自变量的取值范围是解决此题的关键.23.8【解析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,解析:8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=12×4×4=8,故答案为8.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.24.30【解析】【分析】如图,首先利用勾股定理判定△ABC是直角三角形,由题意得圆心O所能达到的区域是△DEG,且与△ABC三边相切,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ解析:30【解析】【分析】如图,首先利用勾股定理判定△ABC是直角三角形,由题意得圆心O所能达到的区域是△DEG,且与△ABC三边相切,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BM ,DG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,继而则有矩形DEPG 、矩形EQNF 、矩形DFMH ,从而可知DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN ,∠PEF =90°,根据题意可知四边形CPEQ 是边长为1的正方形,根据相似三角形的判定可得△DEF ∽△ACB ,根据相似三角形的性质可知:DE ∶EF ∶FD =AC ∶CB ∶BA =3∶4∶5,进而根据圆心O 运动的路径长列出方程,求解算出DE 、EF 、FD 的长,根据矩形的性质可得:GP 、QN 、MH 的长,根据切线长定理可设:AG =AH =x ,BN =BM =y ,根据线段的和差表示出AC 、BC 、AB 的长,进而根据AC ∶CB ∶BA =3∶4∶5列出比例式,继而求出x 、y 的值,进而即可求解△ABC 的周长.【详解】∵AC ∶CB ∶BA =3∶4∶5,设AC =3a ,CB =4a ,BA =5a (a >0)∴()()()222222=345AC CB a a a BA ++==∴△ABC 是直角三角形,设⊙O 沿着△ABC 的内部边缘滚动一圈,如图所示,连接DE 、EF 、DF ,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BMDG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,∴DG ∥EP ,EQ ∥FN ,FM ∥DH ,∵⊙O 的半径为1∴DG =DH =PE =QE =FN =FM =1,则有矩形DEPG 、矩形EQNF 、矩形DFMH ,∴DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN,∠PEF =90°又∵∠CPE =∠CQE =90°, PE =QE =1∴四边形CPEQ 是正方形,∴PC =PE =EQ =CQ =1,∵⊙O 的半径为1,且圆心O 运动的路径长为18,∴DE +EF +DF =18,∵DE ∥AC ,DF ∥AB ,EF ∥BC ,∴∠DEF =∠ACB ,∠DFE =∠ABC ,∴△DEF∽△ABC,∴DE:EF:DF=AC:BC:AB=3:4:5,设DE=3k(k>0),则EF=4k,DF=5k,∵DE+EF+DF=18,∴3k+4k+5k=18,解得k=32,∴DE=3k=92,EF=4k=6,DF=5k=152,根据切线长定理,设AG=AH=x,BN=BM=y,则AC=AG+GP+CP=x+92+1=x+5.5,BC=CQ+QN+BN=1+6+y=y+7,AB=AH+HM+BM=x+152+y=x+y+7.5,∵AC:BC:AB=3:4:5,∴(x+5.5):(y+7):(x+y+7.5)=3:4:5,解得x=2,y=3,∴AC=7.5,BC=10,AB=12.5,∴AC+BC+AB=30.所以△ABC的周长为30.故答案为30.【点睛】本题是一道动图形问题,考查切线的性质定理、相似三角形的判定与性质、矩形的判定与性质、解直角三角形等知识点,解题的关键是确定圆心O的轨迹,学会作辅助线构造相似三角形,综合运用上述知识点.三、解答题25.(1)y=(x-1)2-4;(2)点G坐标为(3.6,2.76),S△FHG=6.348;(3)m=0.6,四边形CDPQ为平行四边形,理由见解析.【解析】【分析】(1)利用顶点式求解即可,(2)将G点代入函数解析式求出坐标,利用坐标的特点即可求出面积,(3)作出图象,延长QH,交x轴于点R,由平行线的性质得证明△AQR∽△PHQ,设Q[n,0.6(n+1)],代入y=mx+m中,即可证明四边形CDPQ为平行四边形.【详解】(1)设二次函数的解析式是y=a(x-h)2+k,(a≠0),由题可知该抛物线与y轴交于点E(0,3-),顶点为C(1,4-),∴y=a(x-1)2-4,代入E (0,3-),解得a=1,2(1)4y x =--(223y x x =--)(2)设G[a,0.6(a+1)],代入函数关系式,得,2(1)40.6(1)a a --=+,解得a 1=3.6,a 2=-1(舍去),所以点G 坐标为(3.6,2.76).S △FHG =6.348(3)y=mx+m=m (x+1),当x=-1时,y=0,所以直线y=mx+m延长QH ,交x 轴于点R ,由平行线的性质得,QR ⊥x 轴.因为FH ∥x 轴,所以∠QPH=∠QAR,因为∠PHQ=∠ARQ=90°,所以△AQR ∽△PQH, 所以QR QH AR PH= =0.6, 设Q[n,0.6(n+1)],代入y=mx+m 中,mn+m=0.6(n+1),m (n+1)=0.6(n+1),因为n+1≠0,所以m=0.6..因为y 2=(x-1-m )2+0.6m-4,所以点D 由点C 向右平移m 个单位,再向上平移0.6m 个单位所得, 过D 作y 轴的平行线,交x 轴与K,再作CT ⊥KD,交KD 延长线与T, 所以KD QR SK AR==0.6, 所以tan ∠KSD=tan ∠QAR ,所以∠KSD=∠QAR ,所以AQ ∥CS ,即CD ∥PQ.因为AQ ∥CS ,由抛物线平移的性质可得,CT=PH,DT=QH,所以PQ=CD ,所以四边形CDPQ 为平行四边形.【点睛】本题考查了待定系数法求解二次函数解析式,二次函数的图象和性质,一次函数与二次函数的交点问题,相似三角形的判定和性质,综合性强,难度较大,掌握待定系数法是求解(1)的关键,求出G点坐标是求解(2)的关键,证明三角形的相似并理解题目中准黄金直角三角形的概念是求解(3)的关键.26.(1)14;(2)14.【解析】【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解.【详解】(1)解:一名游客经过此检票口时,选择A通道通过的概率=14,故答案为:14;(2)解:列表如下:A B C DA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E,它的发生有4种可能:(A,A)、(B,B)、(C,C)、(D,D)∴P(E)=416=14.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.27.(1)(30-x);10x;(2)每件商品降价10元时,商场日盈利最大,最大值是4000元.【解析】【分析】(1)降价后的盈利等于原来每件的盈利减去降低的钱数;件降价1元,超市平均每天可多售出10件,则降价x元,超市平均每天可多售出10x件;(2)等量关系为:每件商品的盈利×可卖出商品的件数=利润w,化为一般式后,再配方可得出结论.【详解】解:(1)降价后每件商品盈利(30-x)元;,超市日销售量增加10x件;(2)设每件商品降价x元时,利润为w元根据题意得:w=(30-x)(100+10x)= -10x2+200x+3000=-10(x-10)2+4000∵-10<0,∴w有最大值,当x=10时,商场日盈利最大,最大值是4000元;答:每件商品降价10元时,商场日盈利最大,最大值是4000元.【点睛】本题考查的知识点是二次函数的实际应用,根据题意找出等量关系式列出利润w关于x的二次函数解析式是解题的关键.28.(1)23;(2)13π﹣23.【解析】【分析】(1)根据垂径定理得CE的长,再根据已知DE平分AO得CO=12AO=12OE,根据勾股定理列方程求解.(2)先求出扇形的圆心角,再根据扇形面积和三角形的面积公式计算即可.【详解】解:(1)连接OF,∵直径AB⊥DE,∴CE=12DE=1.∵DE平分AO,∴CO=12AO=12OE.设CO=x,则OE=2x.由勾股定理得:12+x2=(2x)2.x∴OE=2x=3.即⊙O.(2)在Rt△DCP中,∵∠DPC=45°,∴∠D=90°﹣45°=45°.∴∠EOF=2∠D=90°.∴S扇形OEF=290360π⋅⋅⎝⎭=13π.∵∠EOF=2∠D=90°,OE=OFS Rt△OEF=212⨯⎝⎭=23.∴S阴影=S扇形OEF﹣S Rt△OEF=13π﹣23.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了扇形的面积公式、圆周角定理和含30度的直角三角形三边的关系.29.(1)y1=3,y2=﹣1;(2)x1x2【解析】【分析】(1)先移项,然后利用直接开方法解一元二次方程即可;(2)利用公式法解一元二次方程即可.【详解】解:(1)(y﹣1)2﹣4=0,(y ﹣1)2=4, y ﹣1=±2, y =±2+1, y 1=3,y 2=﹣1; (2)3x 2﹣x ﹣1=0, a =3,b =﹣1,c =﹣1,△=b 2﹣4ac =(﹣1)2﹣4×3×(﹣1)=13>0, x =1136±, x 1=1136+,x 2=1136-. 【点睛】此题考查的是解一元二次方程,掌握利用直接开方法和公式法解一元二次方程是解决此题的关键.30.(1)如图,BE 为所作;见解析;(2)小亮(CD )的影长为3m . 【解析】 【分析】(1)根据光是沿直线传播的道理可知在小亮由B 处沿BO 所在的方向行走到达O 处的过程中,连接PA 并延长交直线BO 于点E ,则可得到小亮站在AB 处的影子; (2)根据灯的光线与人、灯杆、地面形成的两个直角三角形相似解答即可. 【详解】(1)如图,连接PA 并延长交直线BO 于点E ,则线段BE 即为小亮站在AB 处的影子:(2)延长PC 交OD 于F ,如图,则DF 为小亮站在CD 处的影子, AB =CD =1.6,OB =2.4,BE =1.2,OD =6, ∵AB ∥OP , ∴△EBA ∽△EOP ,∴,AB EB OP EO =即1.6 1.2,1.2 2.4OP =+ 解得OP =4.8, ∵CD ∥OP ,∴△FCD ∽△FPO , ∴CD FD OP FO =,即1.64.86FDFD =+,解得FD=3答:小亮(CD)的影长为3m.【点睛】本题考查的是相似三角形的判定及性质,解答此题的关键是根据题意画出图形,构造出相似三角形,再根据相似三角形的性质解答.31.(1)14;(2)16【解析】【分析】(1)根据小聪选择的数学名著有四种可能,而他选中《九章算术》只有一种情况,再根据概率公式解答即可;(2)此题需要两步完成,所以可采用树状图法或者采用列表法求解.【详解】解:(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为14.故答案为14;(2)将四部名著《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》分别记为A,B,C,D,记恰好选中《九章算术》和《孙子算经》为事件M.方法一:用列表法列举出从4部名著中选择2部所能产生的全部结果:12种结果出现的可能性相等,所有可能的结果中,满足事件M的结果有2种,即DB,BD,∴P(M)=21= 126.方法二:根据题意可以画出如下的树状图:由树状图可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等, 所有可能的结果中,满足事件M 的结果有2种,即BD ,DB , ∴P (M )=21=126. 故答案为:16. 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比. 32.(1)8,8,23;(2)选择小华参赛.(3)变小 【解析】 【分析】(1)根据方差、平均数和中位数的定义求解; (2)根据方差的意义求解; (3)根据方差公式求解. 【详解】(1)解:小华射击命中的平均数:7+8+7+8+9+96=8,小华射击命中的方差:2222122(78)2(88)2(98)63S ⎡⎤=-+-+-=⎣⎦, 小亮射击命中的中位数:8+8=82; (2)解:∵x 小华=x 小亮,S 2小华<S 2小亮∴选小华参赛更好,因为两人的平均成绩相同,但小华的方差较小,说明小华的成绩更稳定,所以选择小华参赛.(3)解:小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差变小. 【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数和众数.。
九年级上册滨州数学期末试卷试卷(word版含答案)

九年级上册滨州数学期末试卷试卷(word版含答案)一、选择题1.如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=1.5,BC=2,DE=1.8,则EF=()A.4.4 B.4 C.3.4 D.2.42.如图,在△ABC中,DE∥BC,若DE=2,BC=6,则ADEABC的面积的面积=()A.13B.14C.16D.193.若x=2y,则xy的值为()A.2 B.1 C.12D.134.下列方程有两个相等的实数根是()A.x2﹣x+3=0 B.x2﹣3x+2=0 C.x2﹣2x+1=0 D.x2﹣4=05.已知点O是△ABC的外心,作正方形OCDE,下列说法:①点O是△AEB的外心;②点O是△ADC的外心;③点O是△BCE的外心;④点O是△ADB的外心.其中一定不成立的说法是()A.②④B.①③C.②③④D.①③④6.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A .8B .12C .14D .167.如图,在Rt ABC ∆中,90C CD AB ∠=︒⊥,,垂足为点D ,一直角三角板的直角顶点与点D 重合,这块三角板饶点D 旋转,两条直角边始终与AC BC 、边分别相交于G H 、,则在运动过程中,ADG ∆与CDH ∆的关系是( )A .一定相似B .一定全等C .不一定相似D .无法判断8.若关于x 的方程20ax bx c ++=的解为11x =-,23x =,则方程2(1)(1)0a x b x c -+-+=的解为( )A .120,2x x ==B .122,4x x =-=C .120,4x x ==D .122,2x x =-= 9.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为( )A .10πB .10C .103π D .π 10.抛物线2(1)2y x =-+的顶点坐标是( ) A .(﹣1,2) B .(﹣1,﹣2) C .(1,﹣2) D .(1,2)11.如图,在圆内接四边形ABCD 中,∠A :∠C =1:2,则∠A 的度数等于( )A .30°B .45°C .60°D .80°12.二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表:x … 0 1 3 4 …y … 2 4 2 ﹣2 …则下列判断中正确的是( )A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当x=﹣1时y >0D .方程ax 2+bx+c=0的负根在0与﹣1之间二、填空题 13.已知二次函数222y x x -=-,当-1≤x≤4时,函数的最小值是__________.14.若53x y x +=,则y x=______. 15.二次函数y=x 2−4x+5的图象的顶点坐标为 .16.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____.17.方程22x x =的根是________.18.从2,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____.19.如图,在ABC 中,62BC =+,45C ∠=︒,2AB AC =,则AC 的长为________.20.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________.21.如图,△ABC 中,AB =AC =5,BC =6,AD ⊥BC ,E 、F 分别为AC 、AD 上两动点,连接CF 、EF ,则CF +EF 的最小值为_____.22.如图,在Rt ABC ∆中,90ACB ∠=,6AC =,8BC =,D 、E 分别是边BC 、AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则14PA PB +的最小值为__________.23.已知二次函数y=ax2+bx+c的图象如图,对称轴为直线x=1,则不等式ax2+bx+c>0的解集是_____.24.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S甲、2S乙,且22S S甲乙,则队员身高比较整齐的球队是_____.三、解答题25.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为AC的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若CE=163,AB=6,求⊙O的半径.26.如图1,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,试过点P作x轴的垂线1,再过点A作1的垂线,垂足为Q,连接AP.(1)求抛物线的函数表达式和点C的坐标;(2)若△AQP∽△AOC,求点P的横坐标;(3)如图2,当点P位于抛物线的对称轴的右侧时,若将△APQ沿AP对折,点Q的对应点为点Q′,请直接写出当点Q′落在坐标轴上时点P的坐标.27.如图,AB 是⊙O 的直径,AE 平分∠BAF ,交⊙O 于点E ,过点E 作直线ED ⊥AF ,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线;(2)∠C =45°,⊙O 的半径为2,求阴影部分面积.28.先化简,再求值:221a a -÷(1﹣11a +),其中a 是方程x 2+x ﹣2=0的解. 29.在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点及点O 都在格点上(每个小方格的顶点叫做格点).(1)以点O 为位似中心,在网格区域内画出△A ′B ′C ′,使△A ′B ′C ′与△ABC 位似(A ′、B ′、C ′分别为A 、B 、C 的对应点),且位似比为2:1;(2)△A ′B ′C ′的面积为 个平方单位;(3)若网格中有一格点D ′(异于点C ′),且△A ′B ′D ′的面积等于△A ′B ′C ′的面积,请在图中标出所有符合条件的点D ′.(如果这样的点D ′不止一个,请用D 1′、D 2′、…、D n ′标出)30.(1)(学习心得)于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在ABC 中,,90AB AC BAC ∠==,D 是ABC 外一点,且AD AC =,求BDC ∠的度数.若以点A 为圆心,AB 为半径作辅助A ,则C 、D 必在A 上,BAC ∠是A 的圆心角,而BDC ∠是圆周角,从而可容易得到BDC ∠=________.(2)(问题解决)如图2,在四边形ABCD 中,90BAD BCD ∠=∠=,25BDC ∠=,求BAC ∠的度数.(3)(问题拓展)如图3,,E F 是正方形ABCD 的边AD 上两个动点,满足AE DF =.连接交于点,连接CF 交BD 于点G ,连接BE 交于点H ,若正方形的边长为2,则线段DH 长度的最小值是_______.31.如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF=3m ,沿BD 方向到达点F 处再测得自己得影长FG=4m ,如果小明的身高为1.6m ,求路灯杆AB 的高度.32.已知□ABCD 边AB 、AD 的长是关于x 的方程212x mx -+=0的两个实数根. (1)当m 为何值时,四边形ABCD 是菱形?(2)当AB=3时,求□ABCD 的周长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用平行线分线段成比例定理对各选项进行判断即可.【详解】解:∵a∥b∥c,∴AB DE BC EF=,∵AB=1.5,BC=2,DE=1.8,∴1.5 1.82EF= , ∴EF=2.4故选:D.【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.2.D解析:D【解析】【分析】由DE∥BC知△ADE∽△ABC,然后根据相似比求解.【详解】解:∵DE∥BC∴△ADE∽△ABC.又因为DE=2,BC=6,可得相似比为1:3.即ADEABC的面积的面积=2213:=19.故选D.【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.3.A解析:A【解析】【分析】将x=2y代入xy中化简后即可得到答案.【详解】将x=2y代入xy得:22x yy y==,故选:A.【点睛】此题考查代数式代入求值,正确计算即可.4.C解析:C【解析】【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可.【详解】A、x2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意;B、x2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意;C、x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意;D、x2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意;故选:C.【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.5.A解析:A【解析】【分析】根据三角形的外心得出OA=OC=OB,根据正方形的性质得出OA=OC<OD,求出OA=OB=OC=OE≠OD,再逐个判断即可.【详解】解:如图,连接OB、OD、OA,∵O为锐角三角形ABC的外心,∴OA=OC=OB,∵四边形OCDE为正方形,∴OA=OC<OD,∴OA=OB=OC=OE≠OD,∴OA=OC≠OD,即O不是△ADC的外心,OA=OE=OB,即O是△AEB的外心,OB=OC=OE,即O是△BCE的外心,OB=OA≠OD,即O不是△ABD的外心,故选:A.【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.6.D解析:D【解析】【分析】直接利用三角形中位线定理得出DE∥BC,DE=12BC,再利用相似三角形的判定与性质得出答案.【详解】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=12 BC,∴△ADE∽△ABC,∵DEBC=12,∴14ADEABCSS∆∆=,∵△ADE的面积为4,∴△ABC的面积为:16,故选D.【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE∽△ABC是解题关键.7.A解析:A【解析】【分析】根据已知条件可得出A DCB ∠∠=,ADG CDH ∠∠=,再结合三角形的内角和定理可得出AGD CHD ∠∠=,从而可判定两三角形一定相似.【详解】解:由已知条件可得,ADC EDF CDB C 90∠∠∠∠====︒,∵A ACD ACD DCH 90∠∠∠∠+=+=︒,∴A DCH ∠∠=,∵ADG EDC EDC CDH 90∠∠∠∠+=+=︒,∴ADG CDH ∠∠=,继而可得出AGD CHD ∠∠=,∴ADG ~CDH .故选:A .【点睛】本题考查的知识点是相似三角形的判定定理,灵活利用三角形内角和定理以及余角定理是解此题的关键.8.C解析:C【解析】【分析】设方程2(1)(1)0a x b x c -+-+=中,1t x =-,根据已知方程的解,即可求出关于t 的方程的解,然后根据1t x =-即可求出结论.【详解】解:设方程2(1)(1)0a x b x c -+-+=中,1t x =-则方程变为20at bt c ++=∵关于x 的方程20ax bx c ++=的解为11x =-,23x =,∴关于t 的方程20at bt c ++=的解为11t =-,23t =, ∴对于方程2(1)(1)0a x b x c -+-+=,11x -=-或3解得:10x =,24x =,故选C .【点睛】此题考查的是根据已知方程的解,求新方程的解,掌握换元法是解决此题的关键.9.C解析:C【解析】【详解】如图所示:在Rt △ACD 中,AD=3,DC=1,根据勾股定理得:2210AD CD +=又将△ABC 绕点C 顺时针旋转60°, 则顶点A 所经过的路径长为601010π⨯=. 故选C.10.D解析:D【解析】【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ),∴抛物线2(1)2y x =-+的顶点坐标是(1,2).故选D .11.C解析:C【解析】【分析】设∠A 、∠C 分别为x 、2x ,然后根据圆的内接四边形的性质列出方程即可求出结论.【详解】解:设∠A 、∠C 分别为x 、2x ,∵四边形ABCD 是圆内接四边形,∴x +2x =180°,解得,x =60°,即∠A =60°,故选:C .【点睛】此题考查的是圆的内接四边形的性质,掌握圆的内接四边形的性质是解决此题的关键.12.D解析:D【分析】根据表中的对应值,求出二次函数2y ax bx c =++的表达式即可求解.【详解】解:选取02(,),14(,),32(,)三点分别代入2y ax bx c =++得 24932c a b c a b c =⎧⎪++=⎨⎪++=⎩解得:132a b c =-⎧⎪=⎨⎪=⎩∴二次函数表达式为232y x x =-++∵1a =-,抛物线开口向下;∴选项A 错误;∵2c =函数图象与y 的正半轴相交;∴选项B 错误;当x=-1时,2(1)3(1)220y =--+⨯-+=-<;∴选项C 错误;令0y =,得2320x x -++=,解得:1x =,2x =∵10-,方程20ax bx c ++=的负根在0与-1之间; 故选:D .【点睛】本题考查二次函数图象与性质,掌握性质,利用数形结合思想解题是关键.二、填空题13.-3【解析】【分析】根据题意和二次函数的性质可以求得当−1≤x≤4时,函数的最小值.【详解】解:∵二次函数,∴该函数的对称轴是直线x =1,当x >1时,y 随x 的增大而增大,当x <1时,y 随解析:-3【解析】【分析】根据题意和二次函数的性质可以求得当−1≤x ≤4时,函数的最小值.解:∵二次函数222y x x -=-,∴该函数的对称轴是直线x =1,当x >1时,y 随x 的增大而增大,当x <1时,y 随x 的增大而减小,∵−1≤x≤4,∴当x =1时,y 取得最小值,此时y =-3,故答案为:-3.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答. 14.【解析】【分析】将已知比例式变形化成等积式,整理出x 与y 的倍数关系,再化成比例式即可得.【详解】解:∵,∴3x+3y=5x,∴2x=3y,∴.故答案为:.【点睛】本题考查比例的 解析:23【解析】【分析】将已知比例式变形化成等积式,整理出x 与y 的倍数关系,再化成比例式即可得.【详解】 解:∵53x y x +=, ∴3x+3y=5x,∴2x=3y, ∴23y x =. 故答案为:23. 【点睛】本题考查比例的基本性质,解题关键是将比例式与等积式之间能相互转换.15.(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.解析:(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数245y x x =-+配方得22()1y x =-+则顶点坐标为(2,1)考点:二次函数的图象和性质. 16.【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m 的不等式求解即可.【详解】解:∵关于x 的方程(m ﹣2)x2﹣2x+1=0是一元二次方程,∴m -2≠0,∴m≠解析:2m ≠【解析】【分析】根据一元二次方程的定义ax 2+bx+c=0(a ≠0),列含m 的不等式求解即可.【详解】解:∵关于x 的方程(m ﹣2)x 2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m ≠2.故答案为:m ≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.17.x1=0,x2=2【解析】【分析】先移项,再用因式分解法求解即可.【详解】解:∵,∴,∴x(x-2)=0,x1=0,x2=2.故答案为:x1=0,x2=2.【点睛】本题考查了一解析:x 1=0,x 2=2【解析】【分析】先移项,再用因式分解法求解即可.【详解】解:∵22x x =,∴22=0x x -,∴x(x-2)=0,x 1=0,x 2=2.故答案为:x 1=0,x 2=2.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.18.【解析】分析:由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵从,0,π,3.14,6这五个数中随机 解析:35【解析】分析:,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个, ∴抽到有理数的概率是:35. 故答案为35. 点睛:知道“从2,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.19.【解析】【分析】过点作的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求的长.【详解】过作于点,设,则,因为,所以,则由勾股定理得,因为,所以,则.则.【点睛】本题考查勾股定解析:2【解析】【分析】过A 点作BC 的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求AC 的长.【详解】过A 作AD BC ⊥于D 点,设2AC x =,则2AB x =,因为45C ∠=︒,所以AD CD x ==,则由勾股定理得223BD AB AD x =-=,因为62BC =+,所以362BC x x =+=+,则2x =.则2AC =.【点睛】本题考查勾股定理和正余弦公式的运用,要学会通过作辅助线得到特殊三角形,以便求解. 20.6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.21.【解析】【分析】作BM⊥AC 于M ,交AD 于F ,根据三线合一定理求出BD 的长和AD⊥BC,根据三角形面积公式求出BM ,根据对称性质求出BF =CF ,根据垂线段最短得出CF +EF≥BM,即可得出答案解析:245【解析】【分析】作BM ⊥AC 于M ,交AD 于F ,根据三线合一定理求出BD 的长和AD ⊥BC ,根据三角形面积公式求出BM ,根据对称性质求出BF =CF ,根据垂线段最短得出CF +EF ≥BM ,即可得出答案.【详解】作BM ⊥AC 于M ,交AD 于F ,∵AB =AC =5,BC =6,AD 是BC 边上的中线,∴BD =DC =3,AD ⊥BC ,AD 平分∠BAC ,∴B 、C 关于AD 对称,∴BF =CF ,根据垂线段最短得出:CF +EF =BF +EF ≥BF +FM =BM ,即CF+EF≥BM,∵S△ABC=12×BC×AD=12×AC×BM,∴BM=642455 BC ADAC,即CF+EF的最小值是245,故答案为:245.【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.22.【解析】【分析】先在CB上取一点F,使得CF=,再连接PF、AF,然后利用相似三角形的性质和勾股定理求出AF,即可解答.【详解】解:如图:在CB上取一点F,使得CF=,再连接PF、AF,解析:2【解析】【分析】先在CB上取一点F,使得CF=12,再连接PF、AF,然后利用相似三角形的性质和勾股定理求出AF,即可解答.【详解】解:如图:在CB上取一点F,使得CF=12,再连接PF、AF,∵∠DCE=90°,DE=4,DP=PE,∴PC=12DE=2,∵14CFCP=,14CPCB=∴CF CP CP CB=又∵∠PCF=∠BCP,∴△PCF∽△BCP,∴14 PF CFPB CP==∴PA+14PB=PA+PF,∵PA+PF≥AF,AF=2222114562CF AC⎛⎫+=+=⎪⎝⎭∴PA+14PB ≥.1452∴PA+14PB的最小值为145,故答案为145.【点睛】本题考查了勾股定理、相似三角形的判定和性质等知识,正确添加常用辅助线、构造相似三角形是解答本题的关键.23.﹣1<x<3【解析】【分析】先求出函数与x轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点坐标为(3,0),∴抛物线与x轴的另一个解析:﹣1<x<3【解析】【分析】先求出函数与x轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点坐标为(3,0),∴抛物线与x轴的另一个交点坐标为(﹣1,0),∵当﹣1<x<3时,y>0,∴不等式ax 2+bx +c >0的解集为﹣1<x <3.故答案为﹣1<x <3.【点睛】此题主要考查二次函数的图像,解题的关键是求出函数与x 轴的另一个交点.24.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵,∴队员身解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵22S S >甲乙,∴队员身高比较整齐的球队是乙,故答案为:乙.【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量三、解答题25.(1)DE 与⊙O 相切;理由见解析;(2)4.【解析】【分析】(1)连接OD ,由D 为AC 的中点,得到AD CD =,进而得到AD=CD ,根据平行线的性质得到∠DOA =∠ODE =90°,求得OD ⊥DE ,于是得到结论;(2)连接BD ,根据四边形对角互补得到∠DAB =∠DCE ,由AD CD =得到∠DAC =∠DCA =45°,求得△ABD ∽△CDE ,根据相似三角形的性质即可得到结论.【详解】(1)解:DE 与⊙O 相切证:连接OD ,在⊙O 中∵D 为AC 的中点∴AD CD=∴AD=DC∵AD=DC,点O是AC的中点∴OD⊥AC∴∠DOA=∠DOC=90°∵DE∥AC∴∠DOA=∠ODE=90°∵∠ODE=90°∴OD⊥DE∵OD⊥DE,DE经过半径OD的外端点D ∴DE与⊙O相切.(2)解:连接BD∵四边形ABCD是⊙O的内接四边形∴∠DAB+∠DCB=180°又∵∠DCE+∠DCB=180°∴∠DAB=∠DCE∵AC为⊙O的直径,点D、B在⊙O上,∴∠ADC=∠ABC=90°∵AD CD=,∴∠ABD=∠CBD=45°∵AD=DC,∠ADC=90°∴∠DAC=∠DCA=45°∵DE∥AC∴∠DCA=∠CDE=45°在△ABD和△CDE中∵∠DAB=∠DCE,∠ABD=∠CDE=45°∴△ABD∽△CDE∴ABCD=ADCE∴6CD=163AD∴AD=DC=42, CE=163,AB=6,在Rt△ADC中,∠ADC=90°,AD=DC=42,∴AC=22AD DC+=8∴⊙O的半径为4.【点睛】本题考查了直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.26.(1)y=﹣x2+3x+4;(﹣1,0);(2)P的横坐标为134或114.(3)点P的坐标为(4,0)或(5,﹣6)或(2,6).【解析】【分析】(1)利用待定系数法求抛物线解析式,然后利用抛物线解析式得到一元二次方程,通过解一元二次方程得到C点坐标;(2)利用△AQP∽△AOC得到AQ=4PQ,设P(m,﹣m2+3m+4),所以m=4|4﹣(﹣m2+3m+4|,然后解方程4(m2﹣3m)=m和方程4(m2﹣3m)=﹣m得P点坐标;(3)设P(m,﹣m2+3m+4)(m>32),当点Q′落在x轴上,延长QP交x轴于H,如图2,则PQ=m2﹣3m,证明Rt△AOQ′∽Rt△Q′HP,利用相似比得到Q′B=4m﹣12,则OQ′=12﹣3m,在Rt△AOQ′中,利用勾股定理得到方程42+(12﹣3m)2=m2,然后解方程求出m得到此时P点坐标;当点Q′落在y轴上,易得点A、Q′、P、Q所组成的四边形为正方形,利用PQ=PQ′得到|m2﹣3m|=m,然后解方程m2﹣3m=m和方程m2﹣3m=﹣m 得此时P点坐标.【详解】解:(1)把A(0,4),B(4,0)分别代入y=﹣x2+bx+c得41640cb c=⎧⎨-++=⎩,解得34bc=⎧⎨=⎩,∴抛物线解析式为y=﹣x2+3x+4,当y =0时,﹣x 2+3x +4=0,解得x 1=﹣1,x 2=4,∴C (﹣1,0);故答案为y =﹣x 2+3x +4;(﹣1,0);(2)∵△AQP ∽△AOC , ∴AQ PQ AO CO∴=, ∴441AQ AO PQ CO ===,即AQ =4PQ , 设P (m ,﹣m 2+3m +4),∴m =4|4﹣(﹣m 2+3m +4|,即4|m 2﹣3m |=m ,解方程4(m 2﹣3m )=m 得m 1=0(舍去),m 2=134,此时P 点横坐标为134; 解方程4(m 2﹣3m )=﹣m 得m 1=0(舍去),m 2=114,此时P 点坐标为1175,416⎛⎫ ⎪⎝⎭; 综上所述,点P 的坐标为(134,5116)或(114,7516); (3)设()23,342P m m m m ⎛⎫-++> ⎪⎝⎭, 当点Q ′落在x 轴上,延长QP 交x 轴于H ,如图2,则PQ =4﹣(﹣m 2+3m +4)=m 2﹣3m ,∵△APQ 沿AP 对折,点Q 的对应点为点Q ',∴∠AQ ′P =∠AQP =90°,AQ ′=AQ =m ,PQ ′=PQ =m 2﹣3m ,∵∠AQ ′O =∠Q ′PH ,∴Rt △AOQ ′∽Rt △Q ′HP , ∴AO AQ Q H PQ '''=,即243m Q H m m '=-,解得Q ′H =4m ﹣12, ∴OQ ′=m ﹣(4m ﹣12)=12﹣3m ,在Rt △AOQ ′中,42+(12﹣3m )2=m 2,整理得m 2﹣9m +20=0,解得m 1=4,m 2=5,此时P 点坐标为(4,0)或(5,﹣6); 当点Q ′落在y 轴上,则点A 、Q ′、P 、Q 所组成的四边形为正方形,∴PQ =AQ ′,即|m 2﹣3m |=m ,解方程m 2﹣3m =m 得m 1=0(舍去),m 2=4,此时P 点坐标为(4,0);解方程m 2﹣3m =﹣m 得m 1=0(舍去),m 2=2,此时P 点坐标为(2,6),综上所述,点P 的坐标为(4,0)或(5,﹣6)或(2,6)【点睛】本题考查了待定系数法,相似三角形的性质,解一元二次方程,三角形折叠,题目综合性较强,解决本题的关键是:①熟练掌握待定系数法求函数解析式;②能够熟练掌握相似三角形的判定和性质;③能够熟练掌握一元二次方程的解法;④理解折叠的性质.27.(1)见解析;(2)2-2【解析】【分析】(1)若要证明CD是⊙O的切线,只需证明CD与半径垂直,故连接OE,证明OE∥AD即可;(2)根据等腰直角三角形的性质和扇形的面积公式即可得到结论.【详解】解:(1)连接OE.∵OA=OE,∴∠OAE=∠OEA,又∵∠DAE=∠OAE,∴∠OEA=∠DAE,∴OE∥AD,∴∠ADC=∠OEC,∵AD⊥CD,∴∠ADC=90°,故∠OEC=90°.∴OE⊥CD,∴CD是⊙O的切线;(2)∵∠C=45°,∴△OCE是等腰直角三角形,∴CE=OE=2,∠COE=45°,∴阴影部分面积=S △OCE ﹣S 扇形OBE =12⨯2×2﹣2452360π⨯=2﹣2π. 【点睛】本题综合考查了圆与三角形,涉及了切线的判定、等腰三角形的性质、扇形的面积,灵活的将图形与已知条件相结合是解题的关键.28.2a 1-, -23. 【解析】【分析】 先求出程x 2+x ﹣2=0的解,再将所给分式化简,然后把使分式有意义的解代入计算即可.【详解】解:∴x 2+x ﹣2=0,∴(x-1)(x+2)=0,∴x 1=1,x 2=-2,原式=()()211a a a +-•1a a +=2a 1-,∵a 是方程x 2+x ﹣2=0的解,∴a =1(没有意义舍去)或a =﹣2,则原式=﹣23. 【点睛】本题考查了分式的化简求值,一元二次方程的解法,熟练掌握分式的运算法则和一元二次方程的解法是解答本题的关键.29.(1)详见解析;(2)10;(3)详见解析【解析】【分析】(1)依据点O 为位似中心,且位似比为2:1,即可得到△A ′B ′C ′;(2)依据割补法进行计算,即可得出△A ′B ′C ′的面积;(3)依据△A ′B ′D ′的面积等于△A ′B ′C ′的面积,即可得到所有符合条件的点D ′.【详解】解:(1)如图所示,△A ′B ′C ′即为所求;(2)△A ′B ′C ′的面积为4×6﹣12×2×4﹣12×2×4﹣12×2×6=24﹣4﹣4﹣6=10;故答案为:10;(3)如图所示,所有符合条件的点D′有5个.【点睛】此题主要考查位似图形的作图,解题的关键是熟知位似图形的性质及网格的特点. 30.(1)45;(2)25°;(3)51【解析】【分析】(1)利用同弦所对的圆周角是所对圆心角的一半求解.(2)由A、B、C、D共圆,得出∠BDC=∠BAC,(3)根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=12AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.【详解】(1)如图1,∵AB=AC,AD=AC,∴以点A为圆心,点B、C、D必在⊙A上,∵∠BAC是⊙A的圆心角,而∠BDC是圆周角,∴∠BDC=12∠BAC=45°,故答案是:45;(2)如图2,取BD的中点O,连接AO、CO.∵∠BAD =∠BCD =90°,∴点A 、B 、C 、D 共圆,∴∠BDC =∠BAC ,∵∠BDC =25°,∴∠BAC =25°;(3)在正方形ABCD 中,AB =AD =CD ,∠BAD =∠CDA ,∠ADG =∠CDG ,在△ABE 和△DCF 中,AB CD BAD CDA AE DF ⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△DCF (SAS ),∴∠1=∠2,在△ADG 和△CDG 中,AD CD ADG CDG DG DG ⎧⎪∠∠⎨⎪⎩===,∴△ADG ≌△CDG (SAS ),∴∠2=∠3,∴∠1=∠3,∵∠BAH +∠3=∠BAD =90°,∴∠1+∠BAH =90°,∴∠AHB =180°−90°=90°,取AB 的中点O ,连接OH 、OD ,则OH =AO =12AB =1, 在Rt △AOD 中,OD 2222125AO AD ++=根据三角形的三边关系,OH +DH >OD ,∴当O 、D 、H 三点共线时,DH 的长度最小,最小值=OD−OH .【点睛】本题主要考查了圆的综合题,需要掌握垂径定理、圆周角定理、等腰直角三角形的性质以及勾股定理等知识,难度偏大,解题时,注意辅助线的作法.31.4m【解析】【分析】由CD ∥EF ∥AB 得可以得到△CDF ∽△ABF ,△ABG ∽△EFG ,故CD DF AB BF =,EF FG AB BG =,证DF FG BF BG =,进一步得3437BD BD =++,求出BD ,再得1.6312AB =; 【详解】解:∵CD ∥EF ∥AB ,∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG , ∴CD DF AB BF =,EF FG AB BG=, 又∵CD=EF , ∴DF FG BF BG =, ∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7, ∴3437BD BD =++ ∴BD=9,BF=9+3=12 ∴ 1.6312AB = 解得,AB=6.4m因此,路灯杆AB 的高度6.4m .【点睛】考核知识点:相似三角形的判定和性质.理解相似三角形判定是关键.32.(1)2)14【解析】【分析】(1)由菱形的四边相等知方程有两个相等的实数根,据此利用根的判别式求解可得,注意验根;(2)由AB=3知方程的一个解为3,代入方程求出m 的值,从而还原方程,再利用根与系数的关系得出AB+AD 的值,从而得出答案.【详解】解:(1)若四边形ABCD是菱形,则AB=AD,所以方程有两个相等的实数根,则△=(-m)2-4×1×12=0,解得m=±检验:当m=,x=符合题意;当m=,x=-,不符合题意,故舍去.综上所述,当m为,四边形ABCD是菱形.(2)∵AB=3,∴9-3m+12=0,解得m=7,∴方程为x2-7x+12=0,则AB+AD=7,∴平行四边形ABCD的周长为2(AB+AD)=14.【点睛】本题主要考查根与系数的关系,解题的关键是掌握根的判别式、根与系数的关系,菱形和平行四边形的性质.。
滨州市—九年级上期末考试数学试题及答案

山东省滨州市—第一学期期末考试九年级数学试题第Ⅰ卷 选择题一、选择题:(本大题共12小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将其字母标号填写在答题栏内)1.某反比例函数的图象过点(1,-4),则此反比例函数解析式为( ) A .xy 4=B . xy 41=C . xy 4-= D . xy 41-= 2.一元二次方程x 2+px -6=0的一个根为2,则p 的值为( ) A .-1B .-2C . 1D .23.用四个相同的小立方体搭几何体,要求每个几何体的主视图、左视图、俯视图中至少有两种视图的形状是相同的,下列四种摆放方式中不符合要求的是( ) A .B .C .D .4.下列四个图形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是( )5.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE=2,OB=4,则AB 的长为( ) A .32 B . 4 C . 6 D .346.从标号分别为1,2,3,4,5的5张卡片中,随机抽取一张,下列事件中,必然事件是( ) A .标号小于6 B.标号大于6 C . 标号是奇数 D . 标号是37.如图,△ABO 缩小后变为△''A B O ,其中A 、B 的对应点分别为'A 、'B ,点A 、B 、'A 、'B 均在图中格点上,若线段AB 上有一点P(m ,n),则点P 在''A B 上的对应点'P 的坐标为( )A .(2m,n ) B .(m ,n )C .(m ,2n)D .(2m ,2n )8.身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是( ) 同学 甲 乙 丙 丁放出风筝线长140m 100m 95m 90m 线与地面夹角30° 45° 45° 60° A 、甲 B 、乙 C 、丙 D 、丁 9.如果点A (-3,y 1),B (-2,y 2),C (1,y 3)都在反比例函数kyx (k >0)的图象上,那么,y 1,y 2,y 3的大小关系是( )A .132yyy B .213yy y C .123y yy D .321yyy10.如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,CD ⊥AB ,若∠DAB =70°,则∠BOC =( ) A. 70° B. 130° C. 140° D. 160° 11.如图所示,给出下列条件:①∠B =∠ACD ;②∠ADC =∠ACB ;③BCAB CD AC =;④AC 2=AD ·AB .其中单独能够判定△ABC ∽△ACD 的个数为( )A .1B .2C .3D .412. 二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +b 2-4ac 与反比例函数y =xcb a ++在同一坐标系内的图象大致为( )第Ⅰ卷答案栏题号 1 2 3 4 5 6 7 8 9 10 11 12 答案第Ⅱ卷 非选择题二、填空题:13.已知ABC △与DEF △相似且面积比为4∶25,则ABC △与DEF △的相似比为 .14.已知关于x 的一元二次方程02=--m x x 有两个不相等的实数根,则实数m 的取值范围是 .15.如图所示,将△ABC 绕点A 按逆时针旋转30°后,得到△ADC ′,则∠ABD 的度数是 .16.已知抛物线m x x y +-=822的顶点在x 轴上,则m= .17.如图,在Rt ABC △中,9042C AC BC ===∠°,,,分别以AC .BC 为直径画半圆,则图中阴影部分的面积为 .(结果保留π)18. 对于每个非零自然数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n 、B n 两点,以n n A B 表示这两点间的距离,则201520152211B A B A B A +++ 的值是三、解答题:(本大题共7个小题,解答时请写出必要的演推过程) 19.(1)解方程:x 2+2x -3=0(2)已知反比例函数xmy -=5,当x =2时y =3. ①求m 的值;②当3≤x≤6时,求函数值y 的取值范围.20. 方程22(6)x m x m -++=0有两个相等的实数根,且满足12x x +=12x x ,试求m 的值。
山东省滨州市九年级上学期数学期末考试试卷

山东省滨州市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(a-1)x2+2x-3=0是一元二次方程,则字母a应满足()A . a>1B . a≠1C . a≠0D . a<-12. (2分) (2016九上·延庆期末) 如图,已知△ABC中,BC=8,BC边上的高h=4,D为BC边上一个动点,EF∥BC,交AB 于点E,交AC于点F,设E到BC的距离为x,△DEF的面积为y,则y关于x的函数图象大致为()A .B .C .D .3. (2分)(2018·道外模拟) 下列图形是轴对称图形而不是中心对称图形的是()A .B .C .D .4. (2分)(2020·武汉模拟) 下列事件是必然事件的是()A . 某种彩票中奖率为1%,则买100张这种彩票必然中奖B . 今晚努力学习,明天考试必然考出好成绩C . 从装有2个红球、3个白球的袋中随机摸出4个球,则一定会摸出红球D . 抛掷一枚普通的骰子所得的点数一定小于65. (2分)(2016·德州) 下列说法正确的是()A . 为了审核书稿中的错别字,选择抽样调查B . 为了了解春节联欢晚会的收视率,选择全面调查C . “射击运动员射击一次,命中靶心”是随机事件D . “经过由交通信号灯的路口,遇到红灯”是必然事件6. (2分)设a,b是方程x2﹣x﹣2013=0的两个实数根,则a2+2a+3b﹣2的值为()A . 2011B . 2012C . 2013D . 20147. (2分)已知直线l与半径为2的⊙O的位置关系是相离,则点O到直线l的距离的取值范围在数轴上的表示正确的是()A .B .C .D .8. (2分)(2017·杭州模拟) 如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B的落点依次为B1 , B2 , B3 ,…,则B2017的坐标为()A . (1345,0)B . (1345.5,)C . (1345,)D . (1345.5,0)9. (2分)在△ABC中,已知∠C=90°,BC=3,AC=4,则它的内切圆半径是()A .B . 1C . 2D .10. (2分)(2017·微山模拟) 一条开口向下的抛物线的顶点坐标是(2,3),则这条抛物线有()A . 最大值3B . 最小值3C . 最大值2D . 最小值﹣2二、填空题 (共6题;共7分)11. (1分)(2018·柳州) 一元二次方程的解是________.12. (1分)(2017·平顶山模拟) 在平面直角坐标系中,将二次函数y=x2﹣2的图象先向左平移1个单位,再向上平移1个单位后,则平移后的顶点坐标为________.13. (1分)(2017·上海) 不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是________.14. (1分)(2018·浦东模拟) 已知线段MN的长是4cm,点P是线段MN的黄金分割点,则较长线段MP的长是________cm.15. (2分)多边形是由一些________组成的封闭图形.16. (1分) (2015八下·津南期中) 如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F.且AD交EF于O,则∠AOF=________度.三、解答题 (共8题;共53分)17. (5分)(2017·新吴模拟) 计算下列各题:(1)解方程:x2﹣6x﹣6=0;(2)解不等式组:.18. (10分)如图①,半径为R,圆心角为n°的扇形面积是S扇形=,由弧长l=,得S扇形==••R=lR.通过观察,我们发现S扇形=lR类似于S三角形=×底×高.类比扇形,我们探索扇环(如图②,两个同心圆围成的圆环被扇形截得的一部分交作扇环)的面积公式及其应用.(1)设扇环的面积为S扇环,的长为l1,的长为l2,线段AD的长为h(即两个同心圆半径R与r的差).类比S梯形=×(上底+下底)×高,用含l1,l2,h的代数式表示S扇环,并证明;(2)用一段长为40m的篱笆围成一个如图②所示的扇环形花园,线段AD的长h为多少时,花园的面积最大,最大面积是多少?19. (5分)某公司在联欢晚会上举行抽奖活动,在一个不透明的袋子中,分别装有写着整数2011,2012,2013,2014,2015的五个小球.(1)若抽到奇数能获得自行车一辆,则员工小乐能获得自行车的概率是多少?(2)从中任意抽一个球,以球上的数作为不等式ax﹣2013<0中的系数a,求使该不等式有正整数解的概率.20. (5分)如图,已知P是正方形ABCD内一点,PA=1,PB=2,PC=3,以点B为旋转中心,将△ABP沿顺时针方向旋转,使点A与点C重合,这时P点旋转到G点,连接BG、CG、PG。
山东滨州九年级上学期数学期末考试卷(含答案)

山东滨州九年级上学期数学期末考试卷(含答案)一、选择题:(每小题4分,共48分.)1.一元二次方程240x -=的解是( ) A.-2B.2C.4±D.2±2.如图所示的几何体的主视图是( )A. B. C. D.3.下列方程中,有两个相等实数根的是( ) A.212x x +=B.210x +=C.223x x -=D.220x x -=4.用配方法解关于x 的一元二次方程2230x x --=,配方后的方程可以是( ) A.2(1)4x -=B.2(1)4x +=C.2(1)1x -=D.2(1)16x +=5.菱形的两条对角线长分别是6和8,则此菱形的周长是( ) A.5B.20C.24D.326.如图,A 、B 两点在河的两岸,要测量这两点之间的距离,测量者在与A 同侧的河岸边选定一点C ,测出AC a =米,90BAC ∠=︒,40ACB ∠=︒,则AB 等于( )A.sin 40a ︒B.cos40a ︒C.tan 40a ︒D.tan 40a︒7.若点()11,A y -,()22,B y ,()33,C y 在反比例函数6y x=-的图象上,则1y ,2y ,3y 的大小关系是( ) A.123y y y >>B.231y y y >>C.132y y y >>D.321y y y >>8.定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”.如“947”就是一个“V ”数,若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V ”数的概率是( )A.0.25B.0.3C.0.5D.0.759.如图,已知ABC △中,30CAB B ∠=∠=︒,AB =点D 在BC 边上,把ABC △沿AD 翻折使AB 与AC 重合,得AB D '△,则ABC △与AB D '△重叠部分的面积为( )C.310.如图,Rt ABC △中,90C ∠=︒,点D 在AC 上,DBC A ∠=∠.若4AC =,4cos 5A =,则BD 的长度为A.94B.125C.154D.411.如图,在ABC △中,90ACB ∠=︒,边BC 在x 轴上,顶点A ,B 的坐标分别为(2,6)-和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A.3,22⎛⎫ ⎪⎝⎭B.(2,2)C.11,24⎛⎫⎪⎝⎭D.(4,2)12.如图,二次函数2(0)y ax bx c a =++≠的图象经过点(1,2)-,且与x 轴交点的横坐标分别为1x ,2x ,其中121x -<<-,201x <<,下列结论:①420a b c -+<;②20a b -<;③0a <;④284b a ac +>,其中正确的有( )A.1个B.2个C.3个D.4个二、填空(每小题4分,共24分) 13.方程298x x =-的解是______.14.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是_____.15.如图,在Rt ABC ∆中,C 90∠=︒,D 是AB 的中点,ED AB ⊥交AC 于点E .设A α∠=,且1tan 3α=, 则tan 2α=______.16.如图,等腰三角形底边长和底边上的高都是18厘米,现在沿底边依从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第_____个.17.如图,在矩形ABCD 中,ABC ∠的平分线BE 与AD 交于点E ,BED ∠的平分线EF 与DC 交于点F ,若AB 12=,2DF FC =,则BC 的长是_____.18.如图,已知动点A 在函数4(0)y x x=>的图象上,AB x ⊥轴于点B ,AC y ⊥轴,点C ,延长CA 至点D ,使AD AB =,延长BA 至点E ,使AE AC =.直线DE 分别交x 轴于y 轴点P ,Q .当:4:9QE DP =时,图中阴影部分的面积等于_____.三、解答题:(共78分)19.计算:2cos 60tan 4530︒+︒︒ 20.解方程.2230x x --=.21.已知:如图,点C ,D 在线段AB 上,PCD △是等边三角形,且1AC =,2CD =,4DB =.求证:ACP PDB ∽△△.22.现有5个质地、大小完全相同的小球上分别标有数学-1,-2,1,2,3.先将标有数字-2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里.现分别从这两个盒子里各随机取出一个小球.(1)请利用列表或画树状图的方法表示取出的两个小球上数字之和所有可能的结果; (2)求取出的两个小球上的数字之和等于0的概率.23.某海滨浴场东西走向的海岸线可近似看作直线l (如图).救生员甲在A 处的瞭望台上观察海面情况,发现其正北方向的B 处有人发出求救信号.他立即沿AB 方向径直前往救援,同时通知正在海岸线上巡逻的救生员乙.乙马上从C 处入海,径直向B 处游去.甲在乙入海10秒后赶到海岸线上的D 处,再向B 处游去.若40CD =米,B 在C 的北偏东35°方向,甲、乙的游泳速度都是2米/秒.问谁先到达B 处?请说明理由.(参考数据:sin550.82︒≈,cos550.57︒≈,tan55 1.43︒≈)24.阅读下列内容,并答题:我们知道,计算n 边形的对角线条数公式为:1(3)2n n -.如果一个n 边形共有20条对角线,那么可以得到方程1(3)202n n -=.整理得23400n n --=;解得8n =或5n =-,n 为大于等于3的整数,5n ∴=-不合题意,舍去.8n ∴=,即多边形是八边形. 根据以上内容,问:(1)若一个多边形共有9条对角线,求这个多边形的边数;(2)小明说:“我求得一个多边形共有10条对角线”,你认为小明同学说法正确吗?为什么? 25.已知:如图,在平面直角坐标系中,一次函数(0)y ax b a =+≠的图象与反比例函数(0)ky k x=≠的图象交于一、三象限内的A 、B 两点,与x 轴交于C 点,点A 的坐标为(2,)m ,点B 的坐标为(,2)n -,2tan 5BOC ∠=.(1)求该反比例函数和一次函数的解析式;(2)在x 轴上有一点E (O 点除外),使得BCE △与BCO △的面积相等,求出点E 的坐标.26.如图,在ABC △中,90ACB ∠=︒,CD 是中线,AC BC =,一个以点D 为顶点的45°角绕点D 旋转,使角的两边分别与AC ,BC 的延长线相交,交点分别为点E ,F ,DF 与AC 交于点M ,DE 与BC 交于点N .图①图②(1)如图①,若CE CF =,求证:DE DF =;(2)如图②,在EDF ∠绕点D 旋转的过程中:若4CE =,2CF =, ①求线段AB 的长; ②求DN 的长. 27.综合与探究在平面直角坐标系中,抛物线212y x bx c =++经过点 (4,0)A -,点M 为抛物线的顶点,点B 在y 轴上,且OA OB =,直线AB 与抛物线在第一象限交于点 (2,6)C ,如图.备用图(1)求抛物线的解析式;∠=______.(2)直线AB的函数解析式为______,点M的坐标为______,sin ACO△的周长最小.请求出点Q的坐标;(3)在y轴上找一点Q,使得AMQ(4)在抛物线的对称轴上是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.参考答案一、选择题DDAA BCCC ACBD 二、填空题13.11x =,28x = 14.0.25 15.34 16.517.4 18.133三、解答题 19.120.11x =-,23x =21.证明:PCD △是等边三角形,60PCD PDC ∴∠=∠=︒,2PC CD PD ===, 120PCA PDB ∴∠=∠=︒,1AC =,4BD =,:1:2AC PC ∴=,:1:2PD BD = ::AC PC PD BD ∴= ACP PDB ∴∽△△.22.解:(1)列表或画树状图表示取出的两个小球上数字之和所有可能结果如下:列表得或列树状图(2)由表格或树状图可知,所有可能出现的结果共有6种,P ∴(和为0)2163==. 23.解:由题意得55BCD ∠=︒,90BDC ∠=︒,tan BDBCD CD∴∠=tan 40tan5557.2BD CD BCD ∴=⋅∠=⨯︒≈(米)cos CD BCD BC ∠= 4070.2cos cos55CD BC BCD ∴==≈∠︒(米). 57.21038.62t =+=甲(秒),70.235.12t ==乙(秒). t t >甲乙.答:乙先到达B 处.24.解:(1)根据题意得:1(3)92n n -=,整理得:23180n n --=,解得:6n =或n 3=-.n 为大于等于3的整数,3n ∴=-不合题意,舍去.6n ∴=,即多边形是六边形 (2)小明同学说法是不正确的,理由如下:当1(3)102n n -=时,整理得:23200n n --=,解得:32n =,∴符合方程23200n n --=的正整数n 不存在,∴多边形的对角线不可能有10条 25.解:(1)过点B 作BD x ⊥轴于点D .点B 的坐标为(,2)n -,2BD ∴=.在Rt BDO △中,tan BDBOC OD∠=, 22tan 5BOC OD ∴∠==,5OD ∴=. 又点B 在第三象限,∴点B 的坐标为(5,2)--.将(5,2)B --代入k y x =,得25k -=-,10k ∴=. ∴该反比例函数的解析式为10y x=.将点(2,)A m 代入10y x =,得1052m ==,(2,5)A ∴.将(2,5)A 和(5,2)B --分别代入y ax b =+,得255 2.a b a b +=⎧⎨-+=-⎩,解得1,3.a b =⎧⎨=⎩∴该一次函数的解析式为3y x =+.(2)在3y x =+中,令0y =,即30x +=, 3.x ∴=-.∴点C 的坐标为(3,0)-,3OC ∴=.又在x 轴上有一点E (O 点除外),BCE BCO S S =△△,3CE OC ∴==, 6OE ∴=,(6,0)E ∴-.26.(1)证明:90ACB =︒∠,AC BC =,AD BD =,45BCD ACD ∴∠=∠=︒,90BCE ACF ∠=∠=︒ 135DCE DCF ∴∠=∠=︒,在DCE △与DCF △中,,,,CE CF DCE DCF CD CD =⎧⎪∠=∠⎨⎪=⎩DCE DCF ∴∆∆≌,DE DF ∴=;(2)解:①135DCF DCE ∠=∠=︒,CDF F 18013545∴∠+∠=︒-︒=︒,45CDF CDE ∠+∠=︒,F CDE ∴∠=∠,CDF CED ∴∽△△,CD CF CE CD∴=,即2CD CE CF =⋅,90ACB ∠=︒,AC BC =,AD BD =, 12CD AB ∴=,24AB CE CF ∴=⋅;当4CE =,2CF =时,232AB =,AB ∴=②如解图,过D 作DG BC ⊥于点G , 则90DGN ECN ∠=∠=︒,CG DG =,当4CE =,2CF =时,由2CD CE CF =⋅得CD =∴在Rt DCG ∆中,sin sin 452CG DG CD DCG ==⋅∠=︒=,ECN DGN ∠=∠,ENC DNG ∠=∠,CEN GDN ∴∆∆∽,2CN CE GN DG ∴==,1233GN CG ∴==,3DN ∴===.27.图①图②解:(1)将点A 、C 的坐标代入抛物线表达式得:11640214262b c b c ⎧⨯-+=⎪⎪⎨⎪⨯++=⎪⎩,解得20b c =⎧⎨=⎩故直线AB 的表达式为:2122y x x =+; (2)点(4,0)A -,4OB OA ==,故点(0,4)B , 由点A 、B 的坐标得,直线AB 的表达式为:4y x =+; 对于2122y x x =+,函数的对称轴为2x =-,故点(2,2)M --;sin 5ACO ∠=; (3)做A 点关于y 轴的对称点A ',连接M A ',交y 轴于Q 点,AMQ △的周长AM AQ MQ AM A M '=++=+最小,点(4,0)A ',设直线A M '的表达式为:y kx b =+,则4022k b k b +=⎧⎨-+=-⎩,解得1343k b ⎧=⎪⎪⎨⎪=-⎪⎩,故直线A M '的表达式为:1433y x =- 令0x =,则43y =-,故点40,3Q ⎛⎫- ⎪⎝⎭;(4)存在,故点(2,6)N -.。
山东省滨州市滨城区2024届九年级上学期期末考试数学试卷(含解析)

2023-2024学年度第一学期期末考试九年级数学试题(A)温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页.满分120分.考试用时120分钟.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、姓名、准考证号填写在答题卡中规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共30分)一、选择题:本大题共10个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分30分.1.下列几何图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.菱形D.对角线相等的四边形答案:C解析:解:A、等边三角形是轴对称图形,不是中心对称图形,故此选项不合题意;B、平行四边形不是轴对称图形,是中心对称图形,故此选项不合题意;C、菱形即是轴对称图形,也是中心对称图形,故此选项符合题意;D、对角线相等的四边形如等腰梯形不是轴对称图形,也不是中心对称图形,故此选项不合题意;故选:C.2.已知反比例函数y=-6x,则下列描述正确的是()A.图象位于第一、三象限B.y随x的增大而增大C.图象不可能与坐标轴相交D.图象必经过点32,-23(答案:C 解析:∵y=-6x,k=-6<0,∴函数的图象在第二、四象限,在每个象限内,y 随x 的增大而增大,故选项A 、B 不符合题意;当x=-32时,y=4,∴函数图象经过点-32,4,图象不可能与坐标轴相交,故选项D 不符合题意,选项C 符合题意.3.在平面直角坐标系中,已知点()()4,2,2,2AB ---,以原点为位似中心,相似比为1:2,把AOB 缩小,则点A 的对应的坐标是()A.()2,1-B.()8,4-C.()8,4-或()8,4- D.()2,1-或()2,1-答案:D解析:解:∵点()42A -,,以O 为位似中心,相似比为12,∴点A 的对应点的坐标为:114222⎛⎫-⨯⨯ ⎪⎝⎭,或114222⎛⎫⎛⎫⎛⎫-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,即()21-,或()21-,,故选:D .4.若正n 边形边长为4,它的一个内角为120︒,则其外接圆的半径为()A. B.4C. D.2答案:B解析:解:经过正n 边形的中心O 作边AB 的垂线OC ,∴90OCB ∠=︒,正n 边形的一个内角为120︒,4AB=,∴=60B ∠︒,2BC =,∴30O ∠=︒,∴4OB =,故选:B .5.小区新增了一家快递店,前三天的揽件数如图所示,若该快递店揽件数平均增长,增长率均为x ,则根据图中信息,得到x 所满足的方程是()A.()22001242x += B.()22001242x -=C.()20012242x += D.()20012242x -=答案:A解析:解:由表格可知:所得方程为()22001242x +=;故选A .6.将抛物线247y x x =-+先向右平移2个单位,再向下平移4个单位得到的抛物线解析式是()A.()2y x 41=-- B.21y x =-C.()247=-+y x D.27y x =+答案:A解析:解:依题意得()2224744323y x x x x x =-+=-++=-+∵抛物线()223y x =-+先向右平移2个单位∴()()2222343y x x =--+=-+∵再向下平移4个单位∴()()2243441y x x =-+-=--故选:A .7.如图,AB 为O 的直径,PB ,PC 分别与⊙O 相切于点B ,C ,过点C 作AB 的垂线,垂足为E ,交O 于点D .若CD PB ==BE 长为()A.1B.2C.3D.4答案:C解析:解:作CH PB ⊥于H ,∵直径AB CD ⊥于H ,∴12CE DE CD ==,∵PC ,PB 分别切O 于C ,B ,∴PB PC CD ===AB PB ⊥,∴四边形ECHB 是矩形,∴BH CE ==,BE CH =,∴.PH PB BH =-=∴.3CH ===,∴3BE CH ==.故选:C .8.如图,点D ,E 分别在ABC 的AB AC ,边上,增加下列条件中的一个:①AED B ∠=∠,②ADE C ∠=∠,③AE DE AB BC =,④AD AEAC AB=,使ADE V 与ACB △一定相似的有()A.①②③B.①②④C.①③④D.②③④答案:B解析:解:①添加AED B ∠=∠,又DAE CAB ∠=∠,∴ADE ACB ∽,成立;②添加ADE C ∠=∠,且DAE CAB ∠=∠,∴ADE ACB ∽,成立;③添加AE DEAB BC =,但AED ∠不一定与B ∠相等,故ADE V 与ACD 不一定相似;④添加AD AEAC AB=且DAE CAB ∠=∠,∴ADE ACB ∽,成立.综上,使ADE V 与ACB △一定相似的有①②④,故选:B .9.对某条路线的长度进行10次测量,得到1x ,2x ,3x ,4x ,…,10x 这10个数据(如下表):数据1x 2x 3x 4x 5x 6x 7x 8x 9x 10x 对应值6.86.56.76.97.06.9 6.47.16.67.1设()()()()222212310y x x x x x x x x =-+-+-++- ,若当x m =时,y 有最小值,则m 的值为().A.6.7B.6.8C.6.9D.7.0答案:B解析:解:由题意得:6.8 6.5 6.7 6.97.0 6.9 6.47.1 6.67.168+++++++++=,()()()()222212310y x x x x x x x x =-+-+-++- 2222222211223310102222x xx x x xx x x xx x x xx x =-++-++-+++-+()2222123101231202..0...1x x x x x x x x x x =-+++++++++ 222212302121680x x x x x x -⨯++=+++ ,∵100>,∴当1366.8210x -=-=⨯时,y 有最小值,即 6.8m =;故选B .10.如图AD 是ABC 的中线,E 是AD 上一点,且13AE AD =,CE 的延长线交AB 于点F ,若 1.2AF =,则AB 的值为()A.6B.5C.4.5D.5.5答案:A解析:解:如图,过点D 作DM CF ∥,交AB 于点M ,∵AD 是ABC 的中线,∴BD DC =,∵DM CF ∥,∴BMMF =,∵DM CF ∥,∴AFE AMD ∽,∴=AE AFAD AM,∵13AE AD =,∴1=3AF AM ,∵BMMF =,∴15AF AB =,∵ 1.2AF =,∴=5 1.2=6AB ⨯,故选:A .第Ⅱ卷(非选择题共90分)二.填空题(共6小题,每小题3分,满分18分)11.已知点A(a ,1)与B(5,b)关于原点对称,则a b +的值为_____.答案:-6解析:根据两点关于原点对称得:51a b =-=-,.∴(5)(1)6a b +=-+-=-.故答案为:-6.12.一个不透明的袋中装有2个红球和1个白球,这些球除颜色外无其他差别.现随机从袋中摸出一个球,记下它的颜色后放回摇匀,再从袋中摸出一个球,则两次摸出的球都是“红球”的概率是________.答案:49解析:解:由题意,列表如下:白红红白白,白白,红白,红红红,白红,红红,红红红,白红,红红,红共有9种情况,其中两次摸出的球都是“红球”的情况有4种,∴49P =;故答案为:49.13.如图,将ABC 绕点A 逆时针旋转45︒得到ADE V ,45BAC ∠=︒,3AB =,4AC =.连接BE ,则BE 的长为____.答案:5解析:解:将ABC 绕点A 逆时针旋转45︒得到ADE V ,∴45CAE ∠=︒,4AE AC ==,∵45BAC ∠=︒,∴90EAB CAE BAC ∠=∠+∠=︒,∴5BE ===.故答案为:5.14.关于方程27160x x -+=有如下判断:(1)该方程无实数根;(2)该方程的两根之和是7;(3)该方程的两根之积是16,以上三个判断中正确的有______个.答案:1解析:解:∵一元二次方程27160x x -+=,∴()274116150∆=--⨯⨯=-<,∴该方程无实数根,∴不存在两根之和与两根之积,∴只有(1)正确,故答案为:1.15.如图,AOBC 的面积为3,边AO 在x 轴上,点C 在y 轴上,点B 、D 在双曲线(0)ky k x=>上,B 、D 两点的横坐标之比是1:3,则BOD 的面积是__________.答案:4解析:解:∵▱AOBC 的面积为3,∴△OBC 的面积为32,∴3232k =⨯=,∴双曲线的解析式为3y x =,∵点B 、D 在双曲线3y x=上,且B 、D 两点的横坐标之比是1:3,∴设B (a ,3a ),D (3a ,1a),∴△OBE 和△ODF 的面积都为32,过点B 、D 分别作x 轴的垂线,垂足分别为E 、F ,∴OBD OBE ODFEBDF S S S S =+- 梯形EBDF S =梯形()11332a a a a ⎛⎫=+- ⎪⎝⎭4=.故答案为:4.16.如图,四边形ABCD 是O 的内接四边形,BC CD =,将ABC 绕点C 旋转至EDC △,则下列结论:①AC 平分BAD ∠;②点A ,D ,E 在同一条直线上;③若60BAD ∠=︒,则AB AD +=;④若AD AB CD -=,则120ABC ∠=︒,其中一定正确的是______(填序号).答案:①②④解析:解:∵BC CD =,∴ BCCD =,∴BAC CAD ∠=∠,∴AC 平分BAD ∠,故①正确;∵将ABC 绕点C 旋转至EDC △,∴ABC EDC ∠=∠,∵四边形ABCD 是O 的内接四边形,∴180ABC ADC ∠+∠=︒,∴180EDC ADC ∠+∠=︒,∴点A ,D ,E 在同一条直线上;故②正确;∵BC CD =,∴ BCCD =,∴BAC CAD ∠=∠,∵60BAD ∠=︒,∴1302BAC CAD BAD ∠∠=∠==︒,由旋转可知,30E BAC ∠=∠=︒,∴30CAE E ∠=∠=︒,DE AB =,∴AE AD DE AB AD =+=+,AC CE =,。
山东省滨州沾化区六校联考2024届数学九年级第一学期期末统考试题含解析

山东省滨州沾化区六校联考2024届数学九年级第一学期期末统考试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)1.一个铝质三角形框架三条边长分别为24cm、30cm、36cm,要做一个与它相似的铝质三角形框架,现有长为27cm、45cm的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有()A.0种B.1种C.2种D.3种2.如图是某个几何体的三视图,则该几何体是()A.长方体B.圆锥C.圆柱D.三棱柱3.如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位4.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a等于()A.1B.2C.3D.45.如图,在O 中,弦AB=12,半径OC AB ⊥与点P ,且P 为的OC 中点,则AC 的长是( )A .42B .6C .8D .436.下列算式正确的是( )A .110--=B .()33--=C .231-=D .|3|3--=7.如图,数轴上M ,N ,P ,Q 四点中,能表示3点的是( )A .MB .NC .PD .Q 8.点A (﹣5,4)所在的象限是 ( )A .第一象限B .第二象限C .第三象限D .第四象限 9.反比例函数的图象位于平面直角坐标系的( ) A .第一、三象限 B .第二、四象限 C .第一、二象限 D .第三、四象限10.二次函数y=x 2+4x+3的图象可以由二次函数y=x 2的图象平移而得到,下列平移正确的是( )A .先向左平移2个单位,再先向上平移1个单位B .先向左平移2个单位,再先向下平移1个单位C .先向右平移2个单位,再先向上平移1个单位D .先向右平移2个单位,再先向下平移1个单位二、填空题(每小题3分,共24分)11.如图,Rt △ABC 中,∠A=90°,∠B=30°,AC=6,以A 为圆心,AC 长为半径画四分之一圆,则图中阴影部分面积为__________.(结果保留π)12.如图,在边长为2的菱形ABCD 中,60D ∠=︒,点E 、F 分别在边AB 、BC 上. 将∆BEF 沿着直线EF 翻折,点B 恰好与边AD 的中点G 重合,则BE 的长等于________.13..如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是_______.14.若函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点,那么m 的值为___.15.在一个不透明的口袋中,有大小、形状完全相同,颜色不同的球15个,从中摸出红球的概率为13,则袋中红球的个数为_____.16.点(),1m 是二次函数221y x x =--图像上一点,则236m m -的值为__________17.一组数据:2,3,4,2,4的方差是___. 18.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为21y x 1040=-+,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是______米.(精确到1米)三、解答题(共66分)19.(10分)如图,E 是正方形ABCD 的CD 边上的一点,BF ⊥AE 于F ,(1)求证:△ADE ∽△BFA ;(2)若正方形ABCD 的边长为2,E 为CD 的中点,求△BFA 的面积,20.(6分)如图1,已知直线12l l //,线段AB 在直线1l 上,1BC l ⊥于点C ,且AB BC =,P 是线段BC 上异于两端点的一点,过点P 的直线分别交2l 、1l 于点D 、E (点A 、E 位于点B 的两侧),满足BP BE =,连接AP 、CE . (1)求证:ABP CBE ∆≅∆;(2)连结AD 、BD ,BD 与AP 相交于点F ,如图2, ①当2BC BP =时,求证:AP BD ⊥; ②当(1)BC n n BP=>时,设PBE ∆的面积为S ,PAD ∆的面积为1S ,PCE ∆的面积为2S ,求12S S 的值.21.(6分)在ABC ∆中,90ACB ∠=,2AC BC ==,以点B 为圆心、1为半径作圆,设点M 为⊙B 上一点,线段CM 绕着点C 顺时针旋转90,得到线段CN ,连接BM 、AN .(1)在图中,补全图形,并证明BM AN = .(2)连接MN ,若MN 与⊙B 相切,则BMC ∠的度数为 .(3)连接BN ,则BN 的最小值为 ;BN 的最大值为 .22.(8分)计算:3tan30°− tan45°+ 2sin60°23.(8分) “十一”黄金周期间, 西安旅行社推出了“西安红色游”项目团购活动,收费标准如下:若总人数不超过25人,每人收费1000元;若总人数超过25人,每增加1人,每人收费降低20元(每人收费不低于700元),设有x 人参加这一旅游项目的团购活动.(1)当x=35时,每人的费用为______元.(2)某社区居民组团参加该活动,共支付旅游费用27000元,求该社区参加此次“西安红色游”的人数.24.(8分)如图,在平面直角坐标系中,一次函数()0y kx b k =+≠与反比例函数()0m y m x=≠的图象相交于A B ,两点,过点A 作AD x ⊥轴于点D ,5AO =,:3:4OD AD =,B 点的坐标为()6n -,.(1)求一次函数和反比例函数的表达式;(2)求AOB ∆的面积;(3)P 是y 轴上一点,且AOP ∆是等腰三角形,请直接写出所有符合条件的P 点坐标.25.(10分)已知正比例函数y =x 的图象与反比例函数y =k x (k 为常数,且k ≠0)的图象有一个交点的纵坐标是1. (Ⅰ)当x =4时,求反比例函数y =k x的值; (Ⅱ)当﹣1<x <﹣1时,求反比例函数y =k x的取值范围. 26.(10分)如图,ABC ∆的顶点坐标分别为()2,4A --,()0B ,-4,()1C ,-1. (1)画出ABC ∆关于点O 的中心对称图形111A B C ∆;(2)画出ABC ∆绕原点O 逆时针旋转90︒的222A B C ∆,直接写出点2C 的坐标为_________;(3)若ABC ∆内一点()P m n ,绕原点O 逆时针旋转90︒的对应点为Q ,则Q 的坐标为____________.(用含m ,n 的式子表示)参考答案一、选择题(每小题3分,共30分)1、B【解题分析】先判断出两根铝材哪根为边,需截哪根,再根据相似三角形的对应边成比例求出另外两边的长,由另外两边的长的和与另一根铝材相比较即可.【题目详解】∵两根铝材的长分别为27cm、45cm,若45cm为一边时,则另两边的和为27cm,27<45,不能构成三角形,∴必须以27cm为一边,45cm的铝材为另外两边,设另外两边长分别为x、y,则(1)若27cm与24cm相对应时,27x y==,243036解得:x=33.75cm,y=40.5cm,x+y=33.75+40.5=74.25cm>45cm,故不成立;(2)若27cm与36cm相对应时,27x y==,363024解得:x=22.5cm,y=18cm,x+y=22.5+18=40.5cm<45cm,成立;(3)若27cm与30cm相对应时,27x y==,303624解得:x =32.4cm ,y =21.6cm ,x +y =32.4+21.6=54cm >45cm ,故不成立;故只有一种截法.故选B.2、B【分析】根据几何体的三视图,可判断出几何体.【题目详解】解:∵主视图和左视图是等腰三角形∴此几何体是锥体∵俯视图是圆形∴这个几何体是圆锥故选B.【题目点拨】此题主要考查了几何体的三视图,关键是利用主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状. 3、A【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”,可知所得的三角形与原三角形关于x 轴对称.【题目详解】解:∵纵坐标乘以﹣1,∴变化前后纵坐标互为相反数,又∵横坐标不变,∴所得三角形与原三角形关于x 轴对称.故选:A .【题目点拨】本题考查平面直角坐标系中对称点的规律.解题关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4、A【题目详解】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.根据题意得:21233a =++, 解得:a=1, 经检验,a=1是原分式方程的解,故本题选A. 5、D【分析】根据垂径定理求出AP ,连结OA 根据勾股定理构造方程可求出OA 、OP ,再求出PC ,最后根据勾股定理即可求出AC .【题目详解】解:如图,连接OA ,∵AB=12,OC⊥AB,OC过圆心O,∴AP=BP=12AB=6,∵P为的OC中点,设⊙O的半径为2R,即OA=OC=2R,则PO=PC=R,在Rt△OPA中,由勾股定理得:AO2=OP2+AP2,即:(2R)2=R2+62,解得:R=23即OP=PC=23在Rt△CPA中,由勾股定理得:AC2=AP2+PC2,即AC2=62+2(23)解得:AC=3故选:D.【题目点拨】本题考查了垂径定理和勾股定理,能根据垂径定理求出AP的长是解此题的关键.6、B【解题分析】根据有理数的减法、绝对值的意义、相反数的意义解答即可.【题目详解】A. 112--=-,故不正确;B. ()33--=,正确;C. 231-=-,故不正确;D. |3|3--=-,故不正确;故选B.【题目点拨】本题考查了有理数的运算,熟练掌握有理数的减法法则、绝对值的意义、相反数的意义是解答本题的关键.7、C【解题分析】首先判断出3的近似值是多少,然后根据数轴的特征,当数轴方向朝右时,右边的数总比左边的数大,判断出能表示3点是哪个即可.【题目详解】解:∵3≈1.732,在1.5与2之间,∴数轴上M,N,P,Q四点中,能表示3的点是点P.故选:C【题目点拨】本题考查了在数轴上找表示无理数的点的方法,先求近似数再描点.8、B【分析】根据象限内点的坐标特点即可解答.【题目详解】点A(﹣5,4)所在的象限是第二象限,故选:B.【题目点拨】此题考查象限内点的坐标,熟记每个象限及坐标轴上点的坐标特点是解题的关键.9、A【解题分析】试题分析:∵k=2>0,∴反比例函数的图象在第一,三象限内,故选A.考点:反比例函数的性质.10、B【解题分析】试题分析:因为函数y=x2的图象沿y轴向下平移1个单位长度,所以根据左加右减,上加下减的规律,直接在函数上加1可得新函数y=x2﹣1;然后再沿x轴向左平移2个单位长度,可得新函数y=(x+2)2﹣1.解:∵函数y=x2的图象沿沿x轴向左平移2个单位长度,得,y=(x+2)2;然后y轴向下平移1个单位长度,得,y=(x+2)2﹣1;故可以得到函数y=(x+2)2﹣1的图象.故选B.考点:二次函数图象与几何变换.二、填空题(每小题3分,共24分)11、3﹣3π【解题分析】试题解析:连结AD.∵直角△ABC中,∠A=90°,∠B=30°,AC=6,∴∠C=60°,3,∵AD=AC,∴三角形ACD是等边三角形,∴∠CAD=60°,∴∠DAE=30°,∴图中阴影部分的面积=211306663-633-=93-3 22360ππ⨯⨯⨯⨯⨯12、7 5【分析】如图,作GH⊥BA交BA的延长线于H,EF交BG于O.利用勾股定理求出MG,由此即可解决问题. 【题目详解】过点G作GM⊥AB交BA延长线于点M,则∠AMG=90°,∵G为AD的中点,∴AG=12AD=122⨯=1,∵四边形ABCD是菱形,∴AB//CD ,∴∠MAG=∠D=60°,∴∠AGM=30°,∴AM=12AG=12,∴223AG AM-=设BE=x,则AE=2-x,∵EG=BE,∴EG=x,在Rt△EGM中,EG2=EM2+MG2,∴x2=(2-x+12)2+23⎛⎝⎭,∴x=75,故答案为7 5 .【题目点拨】本题考查了菱形的性质、轴对称的性质等,正确添加辅助线构造直角三角形利用勾股定理进行解答是关键.13、2【解题分析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出 OA ,最后用勾股定理即可得出结论.【题目详解】设圆锥底面圆的半径为 r ,∵AC=6,∠ACB=120°, ∴1206180l π⨯⨯==2πr , ∴r=2,即:OA=2,在 Rt △AOC 中,OA=2,AC=6,根据勾股定理得,22AC OA -2, 故答案为2.【题目点拨】本题考查了扇形的弧长公式,圆锥的侧面展开图,勾股定理,求出 OA 的长是解本题的关键.14、0或247【分析】由题意可分情况进行讨论:①当m=0时,该函数即为一次函数,符合题意,②当m ≠0时,该函数为二次函数,然后根据二次函数的性质进行求解即可.【题目详解】解:由题意得:①当m=0时,且m+2=2,该函数即为一次函数,符合题意;②当m ≠0时,该函数为二次函数,则有:∵图象与x 轴只有一个交点,∴()()224241210b ac m m m -=+-+=,解得:12m m ==综上所述:函数与x 轴只有一个交点时,m 的值为:0或47±故答案为:0或47±. 【题目点拨】 本题主要考查二次函数的图像与性质及一次函数的性质,熟练掌握二次函数的图像与性质及一次函数的性质是解题的关键.15、5【分析】等量关系为:红球数:总球数=13,把相关数值代入即可求解. 【题目详解】设红球有x 个,根据题意得:1153x =, 解得:x=1.故答案为1.【题目点拨】用到的知识点为:概率=所求情况数与总情况数之比.16、1【分析】把点(),1m 代入221y x x =--即可求得22m m -值,将236m m -变形()232m m -,代入即可.【题目详解】解:∵点(),1m 是二次函数221y x x =--图像上, ∴2121m m =--则222m m -=.∴()223632326m m m m -=-=⨯=故答案为:1.【题目点拨】 本题考查了二次函数图象上点的坐标特征,根据点坐标求待定系数是解题的关键.17、0.1【分析】根据方差的求法计算即可. 【题目详解】平均数为2342435++++= , 方差为:()()()()()222221[2333432343]0.85-+-+-+-+-= ,故答案为:0.1.【题目点拨】本题主要考查方差,掌握方差的求法是解题的关键.18、【解题分析】由于两盏E 、F 距离水面都是8m ,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值. 故有21? 10840x -+=, 即280x =,1x =,2x =-.所以两盏警示灯之间的水平距离为:1218m x x -=-=≈()()三、解答题(共66分)19、(1)见详解;(2)45【分析】(1)根据两角相等的两个三角形相似,即可证明△ADE ∽△BFA ;(2)利用三角形的面积比等于相似比的平方,即可解答.【题目详解】(1)证明:∵BF ⊥AE 于点F ,四边形ABCD 为正方形,∴△ADE 和△BFA 均为直角三角形,∵DC ∥AB ,∴∠DEA=∠FAB ,∴△ADE ∽△BFA ;(2)解:∵AD=2,E 为CD 的中点,∴DE=1,∴,∴AE AB = ∵△ADE ∽△BFA ,∴245BFA ADE S S ∆∆==, ∵S △ADE =12×1×2=1, ∴S △BFA =45S △ADE =45.【题目点拨】本题主要考查三角形相似的性质与判定,熟记相似三角形的判定是解决第(1)小题的关键;第(2)小题中,利用相似三角形的面积比是相似比的平方是解决此题的关键.20、(1)证明见解析;(2)①证明见解析;②121S n S =+ 【分析】(1)根据平行和垂直得出∠ABP=∠CBE ,再根据SAS 证明即可;(2)①延长AP 交CE 于点H ,求出AP ⊥CE ,证出△CPD ∽△BPE ,推出DP=PE ,求出平行四边形BDCE ,推出CE ∥BD 即可;②分别用S 表示出△PAD 和△PCE 的面积,代入求出即可.【题目详解】(1)∵1BC l ⊥,∴ABP CBE ∠=∠,在ABP ∆和CBE ∆中,AB BC ABP CBE BP BE =⎧⎪∠=∠⎨⎪=⎩,∴()ABP CBE SAS ∆≅∆;(2)①延长AP 交CE 于点H ,∴ABP CBE ∆≅∆,∴∠APB=∠CEB ,∴90PAB AFE ECB AEH ∠+∠=∠+∠=︒,∴AP CE ⊥,∵2BC BP=,即P 为BC 的中点,12l l //, ∴CPD ∆∽BPE ∆, ∴1DP CP PE BP ==, ∴DP PE =,∴四边形BDCE 是平行四边形,∴//CE BD ,∵AP CE ⊥,∴AP BD ⊥; ②∵BC n BP=, ∴•BC n BP =,∴(1)CP n BP =-,∵//CD BE ,∴CPD ∆∽BPE ∆, ∴1PD PC n PE PB==-, 设△PBE 的面积S △PBE =S ,则△PCE 的面积S △PCE 满足PCE PBE S PC ==n-1S PB△△,即S 2=(n-1)S , 即2(1)S n S =-,∵PAB BCE S S nS ∆∆==,∴(1)PAE S n S ∆=+, ∵PAD PAE S PD ==n-1S PE△△, ∴S 1=(n-1)•S △PAE ,即S 1=(n+1)(n-1)•S ,, ∴12(1)(1)1(1)S n n S n S n S+-==+-. 【题目点拨】本题考查了平行四边形的性质和判定,相似三角形的性质和判定,全等三角形的性质和判定的应用,主要考查了学生的推理能力,题目比较好,有一定的难度.21、(1)证明见解析;(2)45或135 ;(3)13; 【分析】(1)根据题意,作出图像,然后利用SAS 证明MCB NCA ∆≅∆,即可得到结论;(2)根据题意,由MN 与⊙B 相切,得到∠BMN=90°,结合点M 的位置,即可求出BMC ∠的度数;(3)根据题意,当点N 恰好落在线段AB 上时,BN 的值最小;当点N 落在BA 延长线上时,BN 的值最大,分别求出BN 的值,即可得到答案.【题目详解】解:(1)如图,补全图形,证明:90ACB MCN ∠=∠=︒MCB NCA ∴∠=∠,∵,CM CN CB CA ==,MCB NCA ∴∆≅∆,BM AN ∴=;(2)根据题意,连接MN ,∵MN 与⊙B 相切,∴∠BMN=90°,∵△MNC 是等腰直角三角形,∴∠CMN=45°,如上图所示,∠BMC=904545︒-︒=︒;如上图所示,∠BMC=9045135︒+︒=︒;综合上述,BMC ∠的度数为:45︒或135︒;故答案为:45︒或135︒;(3)根据题意,当点N恰好落在线段AB上时,BN的值最小;如图所示,∵AN=BM=1,∵22(2)(2)2AB=+=,∴211BN=-=;当点N落在BA延长线上时,BN的值最大,如图所示,由AN=BN=1,∴BN=BA+AN=2+1=3;∴BN的最小值为1;BN的最大值为3;故答案为:1,3.【题目点拨】本题考查了圆的性质,全等三角形的旋转模型,等腰直角三角形的判定和性质,以及勾股定理,解题的关键是熟练掌握圆的动点问题,注意利用数形结合和分类讨论的思想进行解题.22、31【分析】先计算出特殊的三角函数值,按照运算顺序计算即可.【题目详解】解:原式33 31232 =⨯-+⨯313 =-+=231.【题目点拨】本题主要考查特殊锐角的三角函数值,解题的关键是熟记特殊锐角的三角函数值.23、 (1)800;(2)该社区共有30人参加此次“西安红色游”【分析】(1)当x=35时,根据“若总人数不超过25人,每人收费1000元;若总人数超过25人,每增加1人,每人收费降低20元,(但每人收费不低于700元)”可得每人的费用为1000-(35-25)×20=800元; (2)该社区共支付旅游费用27000元,显然人数超过了25人,设该社区共有x 人参加此次“西安红色游”,则人均费用为[1000-20(x-25)]元,根据旅游费=人均费用×人数,列一元二次方程求x 的值,结果要满足上述不等式.【题目详解】解:(1)当x=35时,每人的费用为1000-(35-25)×20=800(元). (2)设该社区共有x 人参加此次“西安红色游”,∵1000×25=25000元<27000元, ∴x>25.由题意,得x[1000-20(x-25)]=27000,整理,得x 2-75x+1350=0,解得x 1=30,x 2=45.检验:当x=30时,人均旅游费用为1000-20×(30-25)=900元>700元,符合题意; 当x=45时,人均旅游费用为1000-20×(45-25)=600元<700元,不合题意,舍去, ∴x=30.答:该社区共有30人参加此次“西安红色游”.【题目点拨】本题考查了一元二次方程的应用.关键是设旅游人数,表示人均费用,根据旅游费=人均费用×人数,列一元二次方程.24、(1)223y x =+,12y x =;(2)9;(3)P 点坐标为(0,5)或(0,-5)或(0,8)或2508⎛⎫ ⎪⎝⎭, 【分析】(1)先根据勾股定理求出OD=3,AD=4,得出点A (3,4),进而求出反比例函数解析式,再求出点B 坐标,最后用待定系数法求出直线AB 解析式;(2)求出直线AB 与y 轴的交点坐标,再根据AOB AOM MOB S S S ∆∆∆=+解答即可;(3)设出点P 坐标,进而表示出OP ,AP ,OA ,利用等腰三角形的两边相等建立方程求解即可得出结论.【题目详解】(1)∵:3:4OD AD =,∴设3OD x =,则4AD x =,()()222345x x +=,∴1x =,∴3OD =,4=AD ,∴A 点的坐标为(3,4), ∵m y x =过A 点, ∴12m =,∴12y x=,当6x =-时,2y =-, ∴B 点坐标为(-6,-2),∵直线y kx b =+过A B ,,∴34,62,k b k b +=⎧⎨-+=-⎩ 解得2,32,k b ⎧=⎪⎨⎪=⎩ ∴直线解析式为223y x =+. (2)如图,记直线与y 轴交于M 点, 对于223y x =+,当0x =时,2y =, ∴M 点坐标为(0,2), ∴2326922AOB AOM MOB S S S ∆∆∆⨯⨯=+=+=.(3)设点P (0,m ),∵A (3,4),O (0,0),∴OA=5,OP=|m|,29()4m +-∵△AOP 是等腰三角形,∴①当OA=OP 时,∴|m|=5,∴m=±5, ∴P (0,5)或(0,-5),②当OA=AP 时,∴∴m=0(舍)或m=8,∴P (0,8),③OP=AP 时,∴∴m=258, ∴P (0,258), 即:当P 点坐标为(0,8),(0,5),(0,-5)或(0,258)时,△AOP 是等腰三角形. 【题目点拨】此题是反比例函数综合题,主要考查了勾股定理,待定系数法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.25、(Ⅰ)1;(Ⅱ)﹣4<y <﹣1.【解题分析】(Ⅰ)首先把y =1代入直线的解析式,求得交点坐标,然后利用待定系数法求得反比例函数的解析式,最后把x =4代入求解;(Ⅱ)首先求得当x =﹣1和x =﹣1时y 的值,然后根据反比例函数的性质求解.【题目详解】解:(Ⅰ)在y =x 中,当y =1时,x =1,则交点坐标是(1,1),把(1,1)代入y =k x,得:k =4, 所以反比例函数的解析式为y =4x, 当x =4,y =4k =1; (Ⅱ)当x =﹣1时,y =2k -=﹣1; 当x =﹣1时,y =1k -=﹣4, 则当﹣1<x <﹣1时,反比例函数y =k x 的范围是:﹣4<y <﹣1. 【题目点拨】此题考查了反比例函数与一次函数的交点问题,以及反比例函数的增减性,两函数的交点即为同时满足两函数解析式的点,其中用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.26、(1)详见解析;(2)图详见解析,点2C 的坐标为()11,;(3)Q 的坐标为()-n m ,. 【分析】(1)利用关于原点对称的点的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出A 2、B 2、C 2,从而得到C 2点的坐标;(3)利用(2)中对应点的坐标变换规律写出Q 的坐标.【题目详解】解:(1) 如图,111A B C ∆为所作;(2)如图,222A B C ∆为所作;点2C 的坐标为()11,(3)由(2)中的规律可知Q 的坐标为()-n m ,.【题目点拨】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省滨州市沾化县九年级(上)期末数学试卷
一、选择题(每小题3分,共36分)
1.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()
A.B.C.D.
2.(3分)已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为()
A.﹣10B.4C.﹣4D.10
3.(3分)将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4B.y=(x+1)2+2C.y=(x﹣1)2+4D.y=(x﹣1)2+2 4.(3分)在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()
A.B.
C.D.
5.(3分)如图,⊙C与∠AOB的两边分别相切,其中OA边与⊙C相切于点P.若∠AOB =90°,OP=6,则OC的长为()
A.12B.C.D.
6.(3分)如图,A,B,C三点在已知的圆上,在△ABC中,∠ABC=70°,∠ACB=30°,D是的中点,连接DB,DC,则∠DBC的度数为()
A.30°B.45°C.50°D.70°
7.(3分)兴化市“菜花节”观赏人数逐年增加,据有关部门统计,2015年约为20万人次,2017年约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8
B.28.8(1+x)2=20
C.20(1+x)2=28.8
D.20+20(1+x)+20(1+x)2=28.8
8.(3分)△ABC在如图所示的平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1,再将△A1B1C1绕点O旋转180°后得到△A2B2C2.则下列说法正确的是()
A.A1的坐标为(3,1)B.=3
C.B2C=2D.∠AC2O=45°
9.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()
A.65°B.130°C.50°D.100°
10.(3分)如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()
A.45°B.30°C.75°D.60°
11.(3分)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论:①OC∥AE;②EC=BC;③∠DAE=∠ABE;④AC⊥OE,其中正确的有()
A.1个B.2个C.3个D.4个
12.(3分)二次函数y=a(x﹣4)2﹣4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为()
A.1B.﹣1C.2D.﹣2
二、填空题(每小题4分,共24分)
13.(4分)如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为.
14.(4分)若实数a,b满足(2a+2b)(2a+2b﹣2)﹣8=0,则a+b=.
15.(4分)已知二次函数y=2x2﹣6x+m的图象与x轴没有交点,则m的值为.16.(4分)公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s =20t﹣5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行m才能停下来.
17.(4分)在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是.
18.(4分)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出以下结论:
①abc<0;②b2﹣4ac>0;③4b+c<0;④若B(﹣5,y1),C(2,y2)为函数图象上的两
点,则y1>y2;⑤当﹣3≤x≤1时,y≥0,其中正确的结论是.(填序号)
三、解答题(共60分)
19.(10分)(1)解方程:x2﹣2(x+4)=0.
(2)解方程:x(x﹣1)=3(2x﹣1).
20.(10分)如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(﹣6,12),B(﹣6,0),C(0,6),D(﹣6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.
(1)画出旋转后的小旗A′C′D′B′;
(2)写出点A′,C′,D′的坐标;
(3)求出线段BA旋转到B′A′时所扫过的扇形的面积.
21.(10分)如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.
如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.
22.(10分)2016年3月国际风筝节期间,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:
(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?
(3)当售价定为多少时,王大伯获得利润W最大,最大利润是多少?
23.(10分)如图,已知AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.
(1)求证:EF是⊙O的切线;
(2)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.
24.(10分)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.
(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△P AB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.
山东省滨州市沾化县九年级(上)期末数学试卷
参考答案
一、选择题(每小题3分,共36分)
1.B;2.C;3.D;4.D;5.C;6.C;7.C;8.D;9.C;10.D;11.C;
12.A;
二、填空题(每小题4分,共24分)
13.17°;14.﹣1或2;15.m>;16.20;17.;18.②③⑤;
三、解答题(共60分)
19.;20.;21.;22.;23.;24.;。