浅谈传感器敏感材料发展动态#精选.

合集下载

新型材料在传感器领域的应用

新型材料在传感器领域的应用

新型材料在传感器领域的应用随着科技的不断发展,新型材料的应用范围也越来越广泛。

其中,传感器领域是一个新型材料得以大显身手的重要领域。

传感器作为现代科技的核心组成部分,具有广泛的应用前景。

新型材料的引入,不仅可以提升传感器的性能和灵敏度,还可以拓展传感器的应用领域。

一、新型材料在传感器领域的应用现状在传感器领域,新型材料的应用已经取得了一些重要的突破。

例如,碳纳米管材料被广泛应用于气体传感器中,其高灵敏度和高选择性使其成为一种理想的传感器材料。

此外,石墨烯材料也被应用于压力传感器和温度传感器中,其优异的电导率和稳定性使其成为一种非常有潜力的材料。

二、新型材料在传感器领域的优势新型材料在传感器领域的应用具有许多优势。

首先,新型材料通常具有更高的灵敏度和响应速度,可以更精确地检测和测量目标物质。

其次,新型材料的稳定性和耐用性更好,可以在恶劣环境下长时间工作。

此外,新型材料还具有更小的尺寸和重量,可以实现传感器的微型化和便携化。

最后,新型材料的制备成本相对较低,可以降低传感器的制造成本,促进其大规模应用。

三、新型材料在不同传感器中的应用案例1. 气体传感器新型材料在气体传感器中的应用非常广泛。

以碳纳米管材料为例,其在气体传感器中可以实现对多种气体的高灵敏度检测。

通过调整碳纳米管的结构和表面修饰,可以使传感器对不同气体具有高选择性,从而实现对特定气体的准确检测。

2. 温度传感器新型材料在温度传感器中的应用也非常有潜力。

石墨烯材料的高导电性和稳定性使其成为一种理想的温度传感器材料。

通过测量石墨烯材料的电阻变化,可以实现对温度的精确测量。

此外,石墨烯材料的微型化特性还可以实现对微小温度变化的检测,从而拓展了温度传感器的应用范围。

3. 压力传感器新型材料在压力传感器中的应用也非常有前景。

例如,石墨烯材料的高强度和高导电性使其成为一种理想的压力传感器材料。

通过测量石墨烯材料的电阻变化,可以实现对压力的精确测量。

此外,石墨烯材料的柔性特性还可以实现对复杂形状物体的压力检测,从而拓展了压力传感器的应用领域。

敏感材料与传感器

敏感材料与传感器

敏感材料与传感器敏感材料与传感器在现代科技领域中扮演着至关重要的角色。

敏感材料是一种能够对外界环境变化做出敏感反应的材料,而传感器则是通过对敏感材料的利用,将外界的信息转换为可感知的电信号或其他形式的信号输出,从而实现对外界环境的监测和控制。

本文将探讨敏感材料与传感器在各个领域中的应用,以及它们的发展趋势。

首先,敏感材料与传感器在医疗领域中发挥着重要作用。

例如,生物传感器利用生物敏感材料对生物分子的特异性识别,可以实现对体内生理指标的实时监测,为医生提供了重要的诊断依据。

另外,医用敏感材料的应用也在医疗器械制造和药物传递系统中发挥着重要作用,如可溶性缓释材料和生物可降解材料等,为医疗器械的研发和生产提供了新的可能性。

其次,在环境监测领域,敏感材料与传感器也扮演着不可或缺的角色。

例如,针对大气污染物的监测,利用敏感材料和传感器可以实现对空气中有害气体浓度的实时监测,为环境保护部门提供了重要的数据支持。

此外,水质传感器也可以利用敏感材料对水中各种有害物质进行监测,为水质治理提供了技术支持。

在工业生产领域,敏感材料与传感器也发挥着不可替代的作用。

例如,在智能制造领域,利用敏感材料和传感器可以实现对生产过程的实时监测和控制,提高生产效率和产品质量。

另外,在材料研发和测试领域,敏感材料和传感器也可以实现对材料性能的精确测试和数据采集,为新材料的研发提供了技术支持。

最后,敏感材料与传感器的发展趋势主要体现在以下几个方面。

一是多功能化和智能化,即敏感材料和传感器不仅能够实现单一参数的监测,还可以实现多参数的综合监测,并且具有自适应和自修复的功能。

二是微型化和集成化,即敏感材料和传感器的体积和功耗将进一步减小,可以实现对微小环境的监测和控制。

三是网络化和互联化,即敏感材料和传感器可以实现远程监测和控制,为智能城市和智能制造提供技术支持。

综上所述,敏感材料与传感器在各个领域中发挥着重要作用,并且具有广阔的发展前景。

纳米传感器技术的进展和未来发展方向

纳米传感器技术的进展和未来发展方向

纳米传感器技术的进展和未来发展方向纳米科技领域的快速发展为传感器技术带来了革命性的进展。

纳米传感器技术通过利用纳米材料的特殊性质和微纳加工技术,实现了对微观世界的高灵敏度和高选择性的探测,为各个领域的应用提供了巨大的潜力。

本文将探讨纳米传感器技术的进展和未来发展方向。

一、纳米传感器技术的进展1. 纳米材料的应用纳米材料是纳米传感器技术的核心。

纳米级的碳纳米管、金纳米颗粒、二维材料等具有独特的物理和化学特性,使得纳米传感器可以实现对多种参数的高灵敏度检测。

例如,碳纳米管能够实现对气体、化学物质和生物分子的高选择性检测,金纳米颗粒能够实现对环境和生物样品中目标物质的高灵敏度检测。

2. 微纳加工技术的发展微纳加工技术是纳米传感器技术的基础。

随着微纳加工技术的不断发展,纳米传感器可以实现更高的集成度、更小的尺寸和更低的能耗。

微纳加工技术的进展使得纳米传感器可以实现在微型芯片上集成多个传感单元,从而实现对多个参数的同时监测。

3. 传感器研究的跨学科合作纳米传感器技术的发展离不开不同领域的跨学科合作。

材料科学、工程学、物理学、化学等学科的知识汇聚起来,共同推动纳米传感器技术的进步。

跨学科合作使得研究人员可以通过分享知识和经验来解决技术挑战,提高纳米传感器的性能和可靠性。

二、纳米传感器技术的未来发展方向1. 智能化未来纳米传感器将向智能化方向发展。

通过引入人工智能和机器学习算法,纳米传感器可以实现对环境变量的自动检测和分析,从而实现自适应和自学习的功能。

智能化的纳米传感器将大大提高传感器的自动化水平,减少人为操作和干扰。

2. 多功能化纳米传感器将朝着多功能化方向发展。

传统的传感器通常只能对单个参数进行检测,而纳米传感器可以通过调整材料组分和结构设计,实现对多个参数的同时检测。

例如,可以设计一种纳米传感器,它可以同时检测温度、湿度和气体浓度等多个参数,从而实现对环境的全面监测。

3. 自供能未来的纳米传感器将朝着自供能方向发展。

复合材料柔性传感器及其发展趋势

复合材料柔性传感器及其发展趋势

复合材料柔性传感器及其发展趋势复合材料是由两种或多种不同材料组合而成的材料,具有优异的力学性能、化学稳定性和耐热性能。

复合材料在传感器领域中具有广泛的应用,尤其是在柔性传感器中,其已经成为关键材料。

复合材料柔性传感器是一种能够检测各种外部力或变化的传感器。

与传统的硬性传感器相比,复合材料柔性传感器具有以下优点:复合材料柔性传感器具有较高的灵敏度。

其灵敏度通常由压力、拉力、挠度等外部力对传感器的影响程度来衡量。

由于复合材料的特殊结构和材料组合,它们具有更高的灵敏度。

复合材料柔性传感器具有较大的变形范围。

由于复合材料的柔韧性和弹性,它们能够更好地适应外部变形。

这使得复合材料柔性传感器在弯曲、拉伸等场景中能够保持其传感性能。

复合材料柔性传感器具有较好的耐久性。

复合材料通常具有较高的耐磨损性和抗氧化性能,能够更好地应对不同的环境条件。

这使得复合材料柔性传感器在长时间使用或复杂应用场景下更加稳定和可靠。

复合材料柔性传感器具有较低的成本。

复合材料的制备工艺相对简单,成本较低,适合大规模生产。

这降低了复合材料柔性传感器的生产成本,使其更具竞争力。

复合材料的研究和应用将更加多样化。

随着科学技术的不断发展,新的复合材料将不断涌现,其特性和应用也将得到不断改进和扩展。

这将为柔性传感器的发展提供更多的选择。

复合材料柔性传感器将更加智能化。

随着物联网、人工智能等技术的快速发展,智能化的传感器将成为未来的发展方向。

复合材料柔性传感器将不仅能够感知外部力,还能够进行数据处理和分析,实现更丰富的功能。

复合材料柔性传感器将更加轻薄化和柔软化。

随着科学技术的进步,制备复合材料的方法将不断改进,使复合材料柔性传感器可以更加轻薄、柔软,以适应更多的应用场景。

复合材料柔性传感器将更加环保和可持续。

随着人们对环境问题的关注程度提高,材料的环保性将成为一个重要的考虑因素。

在复合材料的研究和应用中,将更加注重绿色和可循环利用的原则,以减少对环境的影响。

新型柔性压力敏感材料在压力传感器中的应用前景

新型柔性压力敏感材料在压力传感器中的应用前景

新型柔性压力敏感材料在压力传感器中的应用前景近年来,随着科技的不断进步,新型柔性压力敏感材料在压力传感器领域逐渐展现出广阔的应用前景。

传统的压力传感器往往存在尺寸较大、体积沉重、易损坏等缺点,而新型柔性压力敏感材料的出现将极大地改善这些问题。

本文将探讨新型柔性压力敏感材料在压力传感器中的应用前景,并分析其在不同领域中的潜在应用。

一、新型柔性压力敏感材料的特点新型柔性压力敏感材料是一种具有优异弹性和变形能力的材料,其特点主要有以下几个方面:1. 柔韧性强:新型柔性压力敏感材料具有良好的柔韧性,能够承受多次弯曲和拉伸而不损坏,适用于各种曲面和不规则形状的应用。

2. 高灵敏度:这种材料对压力的响应速度快,灵敏度高,能够准确地感知到微小的压力变化,并及时将信号传递给用户。

3. 低功耗:相比传统的压力传感器,新型柔性压力敏感材料具有更低的功耗,可长时间稳定运行,不需要频繁更换电池。

二、新型柔性压力敏感材料在医疗行业中的应用在医疗行业中,压力传感器的应用尤为重要。

新型柔性压力敏感材料的出现为医疗行业带来了巨大的变革和机遇。

它可以被应用于以下方面:1. 健康监测:新型柔性压力敏感材料可以制作成柔性贴片,在人体的关键部位贴附,并实时监测心率、血压、脉搏等数据,为医生提供准确的健康状况评估。

2. 医疗器械:新型柔性压力敏感材料可以用于制作手术器械的手柄,通过感知手指的压力变化,精确地控制手术器械的运动,提高手术的精准度,减少医疗事故的发生率。

三、新型柔性压力敏感材料在汽车领域中的应用随着汽车行业的发展,对于安全性和驾驶体验的要求不断提高。

新型柔性压力敏感材料在汽车领域中的应用具有广阔的前景。

1. 安全气囊:新型柔性压力敏感材料可以被应用于汽车安全气囊中,能够精确感知乘客身体的压力变化,并根据具体情况智能控制气囊的充气速度和力度,提高乘客的安全性。

2. 车座检测:利用新型柔性压力敏感材料,可以制造出能够感知驾驶员和乘客的体重分布情况的座椅,根据不同的体重分布,智能调整车座的角度和硬度,提供更加舒适的乘坐体验。

新型传感器的研究现状及未来发展趋势

新型传感器的研究现状及未来发展趋势

新型传感器的研究现状及未来发展趋势传感器是一种现代化技术所必需的元件,它能够将各种物理量转化为电信号。

传感器的应用范围广泛,例如自动化生产、交通运输、医疗诊断、安全监测等领域,因此传感器技术的发展对现代化生产、生活、科学技术的发展有着非常重要的作用。

传感器的种类很多,根据测量的物理量不同,可以分为温度传感器、压力传感器、流量传感器、湿度传感器、加速度传感器、光学传感器等等。

在这些传感器中,新型传感器是一种备受关注的技术。

一、新型传感器的研究现状1. MEMS技术传感器MEMS是微电子机械系统(Micro-Electro-Mechanical System)的缩写,它是一种微型化的电气机械系统,它能够将机械元件和电子元件进行集成化处理。

因此,MEMS技术传感器的优势在于体积很小、功耗低、响应速度快、可靠性高、价格便宜等等。

如今,MEMS技术传感器的应用已经非常广泛,例如手机中的加速度传感器、陀螺仪、磁力计、压力传感器等等,这些传感器的应用大大提升了手机的功能和用户体验。

2. 光纤传感器光纤传感器是一种基于光学原理的传感器,它使用光的传输来测量物理量。

与传统传感器相比,光纤传感器具有很多优势,例如高灵敏度、抗干扰能力强、安全可靠、经济实用,能够实现长距离传递、分布式检测等等。

目前,光纤传感器主要应用在石油天然气、交通运输、环境监测、生命科学等领域。

例如,在石油天然气开采中,光纤传感器可以测量油井的温度、压力、流量等参数,可以帮助确定油井的产量和工作状态,并且可以提高油井的生产效率。

3. 生物传感器生物传感器主要是应用在医疗诊断领域中的,它能够检测人体内的生物分子、细胞和组织等信息。

例如,可以测量血液中的血糖、白细胞计数、酸碱度等指标,可以帮助医生进行疾病的诊断和治疗。

目前,生物传感器技术发展非常迅速,尤其是以DNA、RNA 等为基础的生物传感器,它可以快速、准确地检测病原体、基因变异等信息,有望成为未来医疗诊断中的主要手段。

基于二维材料的传感器研究进展

基于二维材料的传感器研究进展

基于二维材料的传感器研究进展随着物联网、智能化技术的发展,传感器的应用越来越广泛,而二维材料则因其优异的电学、光学、热学性能,成为制备传感器的重要材料之一。

本文将从二维材料传感器的研究进展、应用前景等方面进行探讨。

一、二维材料传感器的研究进展在众多的二维材料中,石墨烯是最早应用于传感器的材料。

早在2014年,就有研究者利用石墨烯制备了一种超灵敏的气体传感器。

随后,人们对其他二维材料的传感性能也开始进行研究。

其中,过渡金属二硫化物(TMDs)是相对较为热门的研究对象之一。

2017年,来自美国哥伦比亚大学,日本九州大学等机构的研究者合作,在TMDs上制备出了一种高灵敏度、高选择性的气体传感器。

这种传感器基于TMDs表面对气体的吸附效应,可以准确地检测出十余种不同气体的存在。

除此之外,人们还发现了许多其他的二维材料在传感器领域的应用,例如硫化锌、钼二硫化物等。

除了单一材料的应用,人们还开始研究多种二维材料的复合,并尝试将其应用于传感器领域。

例如,近年来已经有多篇研究文章报道了氧化石墨烯和氮化硼复合材料的制备及其在传感器中的应用。

二、二维材料传感器的应用前景与传统传感器相比,二维材料传感器的优点在于其高灵敏度、高选择性及响应速度快等特点。

这些特点使得二维材料传感器在许多领域都有着广泛的应用前景。

首先,在环境领域中,二维材料传感器可以用于气体污染检测、水质检测等方面。

例如,可以利用二维材料传感器检测空气中的一氧化碳、甲烷等有害气体,以及水中的大肠杆菌等污染物,提供实时的监测数据,为环境保护提供有力支撑。

其次,在医疗领域,二维材料传感器也有着广泛应用的前景。

可以利用其高灵敏度制备出生物传感器,检测人体内部细胞、蛋白质等物质的存在。

另外,利用二维材料传感器还可以制备出各种健康监测设备,如可穿戴式血压计、监测心电图仪等。

总而言之,基于二维材料的传感器在未来将有着广泛的应用前景。

需要进一步深入的研究,以发掘出其更多的性能和应用潜力。

浅谈传感器技术的发展现状与趋势

浅谈传感器技术的发展现状与趋势

浅谈传感器技术的发展现状与趋势摘要:传感器是新技术革命和信息社会的重要技术基础,传感器技术是实现测试与自动控制的重要环节。

本文阐述了传感器的含义和分类,分析了传感器的发展现状和发展趋势,对实际生产具有指导意义。

关键词:传感器技术发展现状发展趋势1.什么是传感器所谓传感器,即为能感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。

传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

它是实现自动检测和自动控制的首要环节。

传感器技术是现代科技的前沿技术,许多国家已将传感器技术与通信技术和计算机技术列为同等重要的位置,称之为信息技术的三大支柱之一[1-2]。

2.传感器分类2.1按照其用途分类传感器按照其用途可分为压力敏和力敏传感器位置传感器、液面传感器能耗传感器、速度传感器加速度传感器、射线辐射传感器、热敏传感器、24GHz雷达传感器。

2.2按照其原理分类传感器按照其原理分类可分为振动传感器、湿敏传感器、磁敏传感器、气敏传感器、真空度传感器、生物传感器等。

2.3按照其输出信号为标准分类按照其输出信号为标准可将传感器分为模拟传感器、数字传感器、膺数字传感器和开关传感器。

模拟传感器是将被测量的非电学量转换成模拟电信号。

数字传感器是将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。

膺数字传感器是将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。

开关传感器是当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。

2.4按照其材料为标准分类在外界因素的作用下,所有材料都会作出相应的、具有特征性的反应。

它们中的那些对外界作用最敏感的材料,即那些具有功能特性的材料,被用来制作传感器的敏感元件。

从所应用的材料观点出发可将传感器分成下列几类:(1)按照其所用材料的类别分:金属聚合物和陶瓷混合物;(2)按材料的物理性质分:导体绝缘体和半导体磁性材料;(3)按材料的晶体结构分:单晶、多晶和非晶材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈传感器敏感材料发展动态1 微型化(Micro)为了能够与信息时代信息量激增、要求捕获和处理信息的能力日益增强的技术发展趋势保持一致,对于传感器性能指标(包括精确性、可靠性、灵敏性等)的要求越来越严格;与此同时,传感器系统的操作友好性亦被提上了议事日程,因此还要求传感器必须配有标准的输出模式;而传统的大体积弱功能传感器往往很难满足上述要求,所以它们已逐步被各种不同类型的高性能微型传感器所取代;后者主要由硅材料构成,具有体积小、重量轻、反应快、灵敏度高以及成本低等优点。

1.1 由计算机辅助设计(CAD)技术和微机电系统(MEMS)技术引发的传感器微型化目前,几乎所有的传感器都在由传统的结构化生产设计向基于计算机辅助设计(CAD)的模拟式工程化设计转变,从而使设计者们能够在较短的时间内设计出低成本、高性能的新型系统,这种设计手段的巨大转变在很大程度上推动着传感器系统以更快的速度向着能够满足科技发展需求的微型化的方向发展。

对于微机电系统(MEMS)的研究工作始于20世纪60年代,其研究范畴涉及材料科学、机械控制、加工与封装工艺、电子技术以及传感器和执行器等多种学科,是一个极具前景的新兴研究领域。

MEMS的核心技术是研究微电子与微机械加工与封装技术的巧妙结合,期望能够由此而制造出体积小巧但功能强大的新型系统。

经过几十年的发展,尤其最近十多年的研究与发展,MEMS技术已经显示出了巨大的生命力,此项技术的有效采用将信息系统的微型化、智能化、多功能化和可靠性水平提高到了一个新的高度。

在当前技术水平下,微切削加工技术已经可以生产出来具有不同层次的3D微型结构,从而可以生产出体积非常微小的微型传感器敏感元件,象毒气传感器、离子传感器、光电探测器这样的以硅为主要构成材料的传感/探测器都装有极好的敏感元件[1],[2]。

目前,这一类元器件已作为微型传感器的主要敏感元件被广泛应用于不同的研究领域中。

1.2 微型传感器应用现状就当前技术发展现状来看,微型传感器已经对大量不同应用领域,如航空、远距离探测、医疗及工业自动化等领域的信号探测系统产生了深远影响;目前开发并进入实用阶段的微型传感器已可以用来测量各种物理量、化学量和生物量,如位移、速度/加速度、压力、应力、应变、声、光、电、磁、热、PH值、离子浓度及生物分子浓度等 2 智能化(Smart)智能化传感器(Smart Sensor)是20世纪80年代末出现的另外一种涉及多种学科的新型传感器系统。

此类传感器系统一经问世即刻受到科研界的普遍重视,尤其在探测器应用领域,如分布式实时探测、网络探测和多信号探测方面一直颇受欢迎,产生的影响较大。

2.1 智能化传感器的特点智能化传感器是指那些装有微处理器的,不但能够执行信息处理和信息存储,而且还能够进行逻辑思考和结论判断的传感器系统。

这一类传感器就相当于是微型机与传感器的综合体一样,其主要组成部分包括主传感器、辅助传感器及微型机的硬件设备。

如智能化压力传感器,主传感器为压力传感器,用来探测压力参数,辅助传感器通常为温度传感器和环境压力传感器。

采用这种技术时可以方便地调节和校正由于温度的变化而导致的测量误差,而环境压力传感器测量工作环境的压力变化并对测定结果进行校正;而硬件系统除了能够对传感器的弱输出信号进行放大、处理和存储外,还执行与计算机之间的通信联络。

通常情况下,一个通用的检测仪器只能用来探测一种物理量,其信号调节是由那些与主探测部件相连接着的模拟电路来完成的;但智能化传感器却能够实现所有的功能,而且其精度更高、价格更便宜、处理质量也更好。

与传统的传感器相比,智能化传感器具有以下优点:1.智能化传感器不但能够对信息进行处理、分析和调节,能够对所测的数值及其误差进行补偿,而且还能够进行逻辑思考和结论判断,能够借助于一览表对非线性信号进行线性化处理,借助于软件滤波器滤波数字信号。

此外,还能够利用软件实现非线性补偿或其它更复杂的环境补偿,以改进测量精度。

2.智能化传感器具有自诊断和自校准功能,可以用来检测工作环境。

当工作环境临近其极限条件时,它将发出告警信号,并根据其分析器的输入信号给出相关的诊断信息。

当智能化传感器由于某些内部故障而不能正常工作时,它能够借助其内部检测链路找出异常现象或出了故障的部件。

3.智能化传感器能够完成多传感器多参数混合测量,从而进一步拓宽了其探测与应用领域,而微处理器的介入使得智能化传感器能够更加方便地对多种信号进行实时处理。

此外,其灵活的配置功能既能够使相同类型的传感器实现最佳的工作性能,也能够使它们适合于各不相同的工作环境。

4.智能化传感器既能够很方便地实时处理所探测到的大量数据,也可以根据需要将它们存储起来。

存储大量信息的目的主要是以备事后查询,这一类信息包括设备的历史信息以及有关探测分析结果的索引等;5.智能化传感器备有一个数字式通信接口,通过此接口可以直接与其所属计算机进行通信联络和交换信息。

此外,智能化传感器的信息管理程序也非常简单方便,譬如,可以对探测系统进行远距离控制或者在锁定方式下工作,也可以将所测的数据发送给远程用户等。

2.2 智能化传感器的发展与应用现状目前,智能化传感器技术正处于蓬勃发展时期,具有代表意义的典型产品是美国霍尼韦尔公司的ST-3000系列智能变送器和德国斯特曼公司的二维加速度传感器,以及另外一些含有微处理器(MCU)的单片集成压力传感器、具有多维检测能力的智能传感器和固体图像传感器(SSIS)等。

与此同时,基于模糊理论的新型智能传感器和神经网络技术在智能化传感器系统的研究和发展中的重要作用也日益受到了相关研究人员的极大重视。

指出的一点是:目前的智能化传感器系统本身尽管全都是数字式的,但其通信协议却仍需借助于4~20 mA的标准模拟信号来实现。

一些国际性标准化研究机构目前正在积极研究推出相关的通用现场总线数字信号传输标准;不过,在眼下过渡阶段仍大多采用远距离总线寻址传感器(HART)协议,即Highway Addressable Remote Transducer。

这是一种适用于智能化传感器的通信协议,与目前使用4~20mA模拟信号的系统完全兼容,模拟信号和数字信号可以同时进行通信,从而使不同生产厂家的产品具有通用性。

能化传感器多用于压力、力、振动冲击加速度、流量、温湿度的测量,如美国霍尼韦尔公司的ST3000系列全智能变送器和德国斯特曼公司的二维加速度传感器就属于这一类传感器。

另外,智能化传感器在空间技术研究领域亦有比较成功的应用实例[6]。

发展中,智能化传感器无疑将会进一步扩展到化学、电磁、光学和核物理等研究领域。

可以预见,新兴的智能化传感器将会在关系到全人类国民生的各个领域发挥越来越大作用。

3 多功能传感器(Multifunction)如前所述,通常情况下一个传感器只能用来探测一种物理量,但在许多应用领域中,为了能够完美而准确地反映客观事物和环境,往往需要同时测量大量的物理量。

由若干种敏感元件组成的多功能传感器则是一种体积小巧而多种功能兼备的新一代探测系统,它可以借助于敏感元件中不同的物理结构或化学物质及其各不相同的表征方式,用单独一个传感器系统来同时实现多种传感器的功能。

随着传感器技术和微机技术的飞速发展,目前已经可以生产出来将若干种敏感元件综装在同一种材料或单独一块芯片上的一体化多功能传感器。

3.1 多功能传感器的执行规则和结构模式概括来讲,多功能传感器系统主要的执行规则和结构模式包括:(1)多功能传感器系统由若干种各不相同的敏感元件组成,可以用来同时测量多种参数。

譬如,可以将一个温度探测器和一个湿度探测器配置在一起(即将热敏元件和湿敏元件分别配置在同一个传感器承载体上)制造成一种新的传感器,这样,这种新的传感器就能够同时测量温度和湿度。

(2)将若干种不同的敏感元件精巧地制作在单独的一块硅片中,从而构成一种高度综合化和小型化的多功能传感器。

由于这些敏感元件是被综装在同一块硅片中的,它们无论何时都工作在同一种条件下,所以很容易对系统误差进行补偿和校正。

(3)借助于同一个传感器的不同效应可以获得不同的信息。

以线圈为例,它所表现出来的电容和电感是各不相同的。

(4)在不同的激励条件下,同一个敏感元件将表现出来不同的特征。

而在电压、电流或温度等激励条件均不相同的情况下,由若干种敏感元件组成的一个多功能传感器的特征可想而知将会是多么的千差万别!有时候简直就相当于是若干个不同的传感器一样,其多功能特征可谓名副其实。

3.2 多功能传感器的研制与应用现状多功能传感器无疑是当前传感器技术发展中一个全新的研究方向,日前有许多学者正在积极从事于该领域的研究工作。

如将某些类型的传感器进行适当组合而使之成为新的传感器,如用来测量流体压力和互异压力的组合传感器。

又如,为了能够以较高的灵敏度和较小的粒度同时探测多种信号,微型数字式三端口传感器可以同时采用热敏元件、光敏元件和磁敏元件;这种组配方式的传感器不但能够输出模拟信号,而且还能够输出频率信号和数字信号. 从目前的发展现状来看,最热门的研究领域也许是各种类型的仿生传感器了,而且在感触、刺激以及视听辨别等方面已有最新研究成果问世。

从实用的角度考虑,多功能传感器中应用较多的是各种类型的多功能触觉传感器,譬如人造皮肤触觉传感器就是其中之一,这种传感器系统由PVDF材料、无触点皮肤敏感系统以及具有压力敏感传导功能的橡胶触觉传感器等组成。

据悉,美国MERRITT公司研制开发的无触点皮肤敏感系统获得了较大的成功,其无触点超声波传感器、红外辐射引导传感器、薄膜式电容传感器、以及温度、气体传感器等在美国本土应用甚广。

与其它方面的研究成果相比,目前在人工嗅觉方面的研究还似乎远远不尽人意。

由于嗅觉元件接收到的判别信号是非常复杂的,其中总是混合着成千上万种化学物质,这就使得嗅觉系统处理起这些信号来异常错综复杂。

人工嗅觉传感系统的典型产品是功能各异的Electronic nose(电子鼻),近10多年来,该技术的发展很快,目前已有数种商品化的产品在国际市场流通,美、法、德、英等国家均有比较先进的电子鼻产品问世。

“电子鼻”系统通常由一个交叉选择式气体传感器阵列和相关的数据处理技术组成,并配以恰当的模式识别系统,具有识别简单和复杂气味的能力,主要用来解决一般情况下的气味探测问题。

根据应用对象的不同,“电子鼻”系统传感器阵列中传感器的构成材料及配置数量亦有所不同,其中,构成材料包括金属氧化物半导体、导电聚合物、石英晶振等,配置数量则从几个到数十个不等。

总之,“电子鼻”系统是气体传感器技术和信息处理技术进行有效结合的高科技产物,其气体传感器的体积很小,功耗也很低,能够方便地捕获并处理气味信号。

气流经过气体传感器阵列进入到“电子鼻”系统的信号预处理元件中,最后由阵列响应模式来确定其所测气体的特征。

相关文档
最新文档