2020高考数学专题复习《平面向量测试题》(附详细答案)

合集下载

2020年高考数学试题分项版—平面向量(解析版)

2020年高考数学试题分项版—平面向量(解析版)

2020年高考数学试题分项版——平面向量(解析版)一、选择题1.(2020·全国Ⅲ理,6)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( )A .-3135B .-1935 C.1735 D.1935答案 D解析 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2 =25-12+36=49, ∴|a +b |=7,∴cos 〈a ,a +b 〉=a ·(a +b )|a ||a +b |=a 2+a ·b |a ||a +b |=25-65×7=1935. 2.(2020·新高考全国Ⅰ,7)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB →的取值范围是( )A .(-2,6)B .(-6,2)C .(-2,4)D .(-4,6) 答案 A解析 如图,取A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则A (0,0),B (2,0),C (3,3),F (-1,3). 设P (x ,y ),则AP →=(x ,y ),AB →=(2,0),且-1<x <3. 所以AP →·AB →=(x ,y )·(2,0)=2x ∈(-2,6).3.(2020·新高考全国Ⅱ,3)若D 为△ABC 的边AB 的中点,则CB →等于( ) A .2CD →-CA → B .2CA →-CD → C .2CD →+CA → D .2CA →+CD →答案 A解析 如图所示,∵D 为△ABC 的边AB 的中点, ∴CA →+CB →=2CD →, ∴CB →=2CD →-CA →.4.(2020·全国Ⅱ文,5)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( )A .a +2bB .2a +bC .a -2bD .2a -b 答案 D解析 由题意得|a |=|b |=1,设a ,b 的夹角为θ=60°, 故a ·b =|a ||b |cos θ=12.对A 项,(a +2b )·b =a ·b +2b 2=12+2=52≠0;对B 项,(2a +b )·b =2a ·b +b 2=2×12+1=2≠0;对C 项,(a -2b )·b =a ·b -2b 2=12-2=-32≠0;对D 项,(2a -b )·b =2a ·b -b 2=2×12-1=0.5.(2020·全国Ⅲ文,6)在平面内,A ,B 是两个定点,C 是动点,若AC →·BC →=1,则点C 的轨迹为( )A .圆B .椭圆C .抛物线D .直线 答案 A解析 建立如图所示的平面直角坐标系xOy ,设点A ,B 的坐标分别为(-a,0),(a,0),点C 为(x ,y ), 则AC →=(x +a ,y ),BC →=(x -a ,y ), 所以AC →·BC →=(x -a )(x +a )+y ·y =x 2+y 2-a 2=1, 整理得x 2+y 2=a 2+1. 因此点C 的轨迹为圆.二、填空题1.(2020·全国Ⅰ理,14)设a ,b 为单位向量,且|a +b |=1,则|a -b |=________. 答案3解析 将|a +b |=1两边平方,得a 2+2a ·b +b 2=1. ∵a 2=b 2=1,∴1+2a ·b +1=1,即2a ·b =-1. ∴|a -b |=(a -b )2=a 2-2a ·b +b 2 =1-(-1)+1= 3.2.(2020·全国Ⅱ理,13)已知单位向量a ,b 的夹角为45°,k a -b 与a 垂直,则k =________. 答案22解析 由题意知(k a -b )·a =0,即k a 2-b ·a =0. 因为a ,b 为单位向量,且夹角为45°, 所以k ×12-1×1×22=0,解得k =22. 3.(2020·北京,13)已知正方形ABCD 的边长为2,点P 满足AP →=12(AB →+AC →),则|PD →|=________;PB →·PD →=________. 答案5 -1解析 建立如图所示的平面直角坐标系,∵AP →=12(AB →+AC →),∴P 为BC 的中点.∴点P 的坐标为(2,1),点D 的坐标为(0,2),点B 的坐标为(2,0), ∴|PD →|=5,PB →=(0,-1),PD →=(-2,1), ∴PB →·PD →=-1.4.(2020·天津,15)如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD →=λBC →,AD →·AB →=-32,则实数λ的值为________,若M ,N 是线段BC 上的动点,且|MN →|=1,则DM →·DN →的最小值为________.答案 16 132解析 因为AD →=λBC →,所以AD ∥BC ,则∠BAD =120°, 所以AD →·AB →=|AD →|·|AB →|·cos 120°=-32,解得|AD →|=1.因为AD →,BC →同向,且BC =6, 所以AD →=16BC →,即λ=16.在四边形ABCD 中,作AO ⊥BC 于点O , 则BO =AB ·cos 60°=32,AO =AB ·sin 60°=332.以O 为坐标原点,以BC 和AO 所在直线分别为x ,y 轴建立平面直角坐标系.如图,设M (a,0),不妨设点N 在点M 右侧, 则N (a +1,0),且-32≤a ≤72.又D ⎝⎛⎭⎫1,332,所以DM →=⎝⎛⎭⎫a -1,-332,DN →=⎝⎛⎭⎫a ,-332,所以DM →·DN →=a 2-a +274=⎝⎛⎭⎫a -122+132. 所以当a =12时,DM →·DN →取得最小值132.5.(2020·江苏,13)在△ABC 中,AB =4,AC =3,∠BAC =90°,D 在边BC 上,延长AD 到P ,使得AP =9,若P A →=mPB →+⎝⎛⎭⎫32-m PC →(m 为常数),则CD 的长度是________.答案185或0解析 方法一 ∵AB =4,AC =3,∠BAC =90°, ∴BC =5.由向量系数m +⎝⎛⎭⎫32-m =32为常数,结合等和线定理可知|P A →||PD →|=321. 故PD =23P A =6,AD =P A -PD =3=AC ,当D 与C 重合时,CD =0;当D 与C 不重合时,得∠ACD =∠ADC , ∴∠CAD =π-2∠ACD .在△ABC 中,cos ∠ACB =AC BC =35.在△ADC 中,由正弦定理得CD sin ∠CAD =ADsin ∠ACD,∴CD =sin (π-2∠ACD )sin ∠ACD ·AD =sin 2∠ACDsin ∠ACD ·AD=2cos ∠ACD ·AD =2×35×3=185.综上,CD =185或0.方法二 如图,以点A 为坐标原点,AB ,AC 所在的直线分别为x 轴、y 轴建立平面直角坐标系,则C (0,3),B (4,0),AC →=(0,3),CB →=(4,-3).∵P A →=mPB →+⎝⎛⎭⎫32-m PC →=32PC →+m (PB →-PC →)=32(P A →+AC →)+mCB →=32P A →+32AC →+mCB →, ∴-12P A →=32(0,3)+m (4,-3)=⎝⎛⎭⎫4m ,92-3m , ∴P A →=(-8m,6m -9).∵|P A →|=9,∴64m 2+(6m -9)2=81, ∴m =2725或m =0,当m =2725时,P A →=⎝⎛⎭⎫-21625,-6325, ∴P ⎝⎛⎭⎫21625,6325,∴k P A =63216=724.由⎩⎨⎧y =724x ,x 4+y3=1,解得⎩⎨⎧x =7225,y =2125,∴D ⎝⎛⎭⎫7225,2125, ∴CD =⎝⎛⎭⎫0-72252+⎝⎛⎭⎫3-21252=8 100252=9025=185. 当m =0时,P A →=(0,-9), ∴P (0,9),此时C 与D 重合,CD =0. 综上,CD =185或0.6.(2020·浙江,17)已知平面单位向量e 1,e 2满足|2e 1-e 2|≤2,设a =e 1+e 2,b =3e 1+e 2,向量a ,b 的夹角为θ,则cos 2θ的最小值是________. 答案2829解析 设e 1=(1,0),e 2=(x ,y ), 则a =(x +1,y ),b =(x +3,y ). 由2e 1-e 2=(2-x ,-y ), 故|2e 1-e 2|=(2-x )2+y 2≤2, 得(x -2)2+y 2≤2.又有x 2+y 2=1,得(x -2)2+1-x 2≤2, 化简,得4x ≥3,即x ≥34,因此34≤x ≤1.cos 2θ=⎝⎛⎭⎫a ·b |a |·|b |2=⎣⎢⎡⎦⎥⎤(x +1)(x +3)+y 2(x +1)2+y 2(x +3)2+y 22 =⎝ ⎛⎭⎪⎫4x +42x +26x +102=4(x +1)2(x +1)(3x +5) =4(x +1)3x +5=43(3x +5)-833x +5 =43-833x +5,当x =34时,cos 2θ有最小值,为4⎝⎛⎭⎫34+13×34+5=2829.7.(2020·全国Ⅰ文,14)设向量a =(1,-1),b =(m +1,2m -4),若a ⊥b ,则m =________. 答案 5解析 ∵a ⊥b ,∴a ·b =0.又a =(1,-1),b =(m +1,2m -4),∴1×(m +1)+(-1)×(2m -4)=0,解得m =5.。

2020年高考数学(理)总复习:平面向量(解析版)

2020年高考数学(理)总复习:平面向量(解析版)

2020年高考数学(理)总复习:平面向量题型一 平面向量的概念及线性运算 【题型要点】对于利用向量的线性运算、共线向量定理和平面向量基本定理解决“用已知向量(基向量)来表示一些未知向量”的问题.解决的关键是:①结合图形,合理运用平行四边形法则或三角形法则进行运算;②善于用待定系数法【例1】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .2 2 C. 5D .2【解析】 如图所示,建立平面直角坐标系:设A (0,1),B (0,0),C (2,0),D (2,1),P (x ,y ),根据等面积公式可得圆的半径r =25,即圆C 的方程是(x -2)2+y 2=45,AP →=(x ,y -1),AB →=(0,-1),AD →=(2,0),若满足AP →=λAB →+μAD →,即⎩⎪⎨⎪⎧x =2μy -1=-λ,μ=x 2,λ=1-y ,所以λ+μ=x 2-y +1,设z =x 2-y +1,即x 2-y +1-z =0,点P (x ,y )在圆(x -2)2+y 2=45上,所以圆心到直线的距离d ≤r ,即|2-z |14+1≤25,解得1≤z ≤3,所以z 的最大值是3,即λ+μ的最大值是3.【答案】 A【例2】.点O 为△ABC 内一点,且满足OA →+OB →+4OC →=0,设△OBC 与△ABC 的面积分别为S 1、S 2,则S 1S 2=( )A.18B.16C.14D.12【解析】 延长OC 到D ,使OD =4OC ,延长CO 交AB 于E .∵O 为△ABC 内一点,且满足OA →+OB →+4OC →=0,∴OD →+OA →+OB →=0,∴O 为△DAB 重心,E 为AB 中点,∴OD ∶OE =2∶1,∴OC ∶OE=1∶2,∴CE ∶OE =3∶2,∴S △AEC =S △BEC ,S △BOE =2S △BOC .∵△OBC 与△ABC 的面积分别为S 1、S 2,∴S 1S 2=16.故选B.【答案】 B .题组训练一 平面向量的概念及线性运算1.在梯形ABCD 中,AB →=3DC →,则BC →等于( ) A .-13AB →+23AD →B .-23AB →+43AD →C.23AB →-AD → D .-23AB →+AD →【解析】 在线段AB 上取点E ,使BE =DC ,连接DE ,则四边形BCDE 为平行四边形,则BC →=ED →=AD →-AE →=AD →-23AB →;故选D.【答案】 D2.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足:OP →=13⎪⎭⎫ ⎝⎛++C O B O A O22121,则P 一定为△ABC 的( )A .重心B .AB 边中线的三等分点(非重心)C .AB 边中线的中点D .AB 边的中点【解析】 如图所示:设AB 的中点是E ,∵O 是三角形ABC 的重心,OP →=13⎪⎭⎫ ⎝⎛++C O B O A O 22121=13()OE →+2OC →,∵2EO →=OC →, ∴OP →=13()4EO →+OE →=EO →,∴P 在AB 边的中线上,是中线的三等分点,不是重心,故选B.【答案】 B3.设P 是△ABC 所在平面内的一点,且CP →=2P A →,则△P AB 与△PBC 的面积的比值是( )A.13B.12C.23D.34【解析】 因为CP →=2P A →,所以|CP →||P A →|=21,又△P AB 在边P A 上的高与△PBC 在边PC 上的高相等,所以S △P AB S △PBC =|P A →||CP →|=12.【答案】 B题型二 平面向量的平行与垂直 【题型要点】(1)设a =(x 1,y 1),b =(x 2,y 2): ①a ∥b ⇒a =λb (b ≠0);②a ∥b ⇔x 1y 2-x 2y 1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.(2)设非零向量a =(x 1,y 1),b =(x 2,y 2):a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0. (3)利用向量平行或垂直的充要条件可建立方程或函数是求参数的取值.【例3】已知向量a =(2,-4),b =(-3,x ),c =(1,-1),若(2a +b )⊥c ,则|b |=( )A.9 B.3C.109 D.310【解析】向量a=(2,-4),b=(-3,x),c=(1,-1),∴2a+b=(1,x-8),由(2a+b)⊥c,可得1+8-x=0,解得x=9.则|b|=(-3)2+92=310.故选D.【答案】 B【例4】.已知a=(3,2),b=(2,-1),若λa+b与a+λb平行,则λ=________.【解析】∵a=(3,2),b=(2,-1),∴λa+b=(3λ+2,2λ-1),a+λb=(3+2λ,2-λ),∵λa+b∥a+λb,∴(3λ+2)(2-λ)=(2λ-1)(3+2λ),解得λ=±1【答案】±1题组训练二平面向量的平行与垂直1.设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=________.【解析】由|a+b|2=|a|2+|b|2,得a⊥b,所以m×1+1×2=0,解得m=-2.【答案】-22.已知向量a=(3,1),b=(1,3),c=(k,-2),若(a-c)∥b,则向量a与向量c的夹角的余弦值是()A.55 B.15C.-55D.-15【解析】∵a=(3,1),b=(1,3),c=(k,-2),∴a-c=(3-k,3),∵(a-c)∥b,∴(3-k)·3=3×1,∴k=2,∴a·c=3×2+1×(-2)=4,∴|a|=10,|c|=22,∴cos 〈a ,b 〉=a ·c |a |·|c |=410·22=55,故选A. 【答案】 A题型三 平面向量的数量积 【题型要点】(1)涉及数量积和模的计算问题,通常有两种求解思路: ①直接利用数量积的定义; ②建立坐标系,通过坐标运算求解.(2)在利用数量积的定义计算时,要善于将相关向量分解为图形中模和夹角已知的向量进行计算.求平面向量的模时,常把模的平方转化为向量的平方.【例5】在平行四边形ABCD 中,|AD →|=3,|AB →|=5,AE →=23AD →,BF →=13BC →,cos A =35,则|EF →|=( )A.14 B .2 5 C .4 2D .211【解析】如图,取AE 的中点G ,连接BG ∵AE →=23AD →,BF →=13BC →,∴AG →=12AE →=13AD →=13BC →=BF →,∴EF →=GB →,∴|GB →|2=|AB →-AG |2=AB →2-2AB →·AG →+AG →2=52-2×5×1×35+1=20,∴|EF →|=|GB →|=25,故选B. 【答案】 B【例6】.已知A ,B 是圆O :x 2+y 2=4上的两个动点,|AB →|=2,OC →=53OA →-23OB →.若M是线段AB 的中点,则OC →·OM →的值为( )A .3B .2 3C .2D .-3【解析】 因为点M 是线段AB 的中点,所以OM →=12()OA →+OB →,|OA =|OB |=|AB |=2,所以△ABC 是等边三角形,即〈OA →,OB →〉=60°,OA →·OB →=2×2×cos60°=2,OC →·OM →=⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛-B O A O B O A O21213235=56OA →2-13OB 2+12OA →·OB → =56×22-13×22+12×2=3,故选A. 【答案】 A题组训练三 平面向量的数量积1.已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小是( )A .-2B .-32C .-43D .-1【解析】 以BC 为x 轴,BC 的垂直平分线AD 为y 轴,D 为坐标原点建立坐标,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),所以P A →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ) 所以PB →+PC →=(-2x ,-2y ),P A →·(PB →+PC →)=2x 2-2y (3-y )=2x 2+2223⎪⎪⎭⎫ ⎝⎛-y -32≥-32 当P ⎪⎪⎭⎫ ⎝⎛23,0时,所求的最小值为-32,故选B.【答案】 B2.已知向量|OA →|=3,|OB →|=2,OC →=mOA →+nOB →,若OA →与OB 的夹角为60°,且OC →⊥AB →,则实数mn的值为( )A.16B.14 C .6D .4【解析】 OA →·OB →=3×2×cos60°=3, ∵OC →=mOA →+nOB →,OC →⊥AB →,∴(mOA →+nOB →)·AB →=(mOA →+nOB →)·(OB →-OA →)=(m -n )OA →·OB →-mOA →2+nOB →2=0,∴3(m -n )-9m +4n =0,∴m n =16,故选A.【答案】 A题型四 数与形相辅相成求解向量问题【例7】 在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的取值范围是( )A .[4,6]B .[19-1,19+1]C .[23,27]D .[7-1,7+1] 【解析】 法一:设出点D 的坐标,利用向量的坐标运算公式及向量模的运算公式求解.设D (x ,y ),则由|CD →|=1,C (3,0),得(x -3)2+y 2=1. 又∵OA →+OB →+OD →=(x -1,y +3),∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.∴|OA →+OB →+OD →|的几何意义为点P (1,-3)与圆(x -3)2+y 2=1上点之间的距离,由|PC |=7知,|OA →+OB →+OD →|的最大值是1+7,最小值是7-1.故选D.法二:根据向量OA →+OB →的平行四边形法则及减法法则的几何意义,模的几何意义求解. 如图,设M (-1,3),则OA →+OB →=OM →,取N (1,-3),∴OM →=-ON →.由|CD →|=1,可知点D 在以C 为圆心,半径r =1的圆上, ∴OA →+OB →+OD →=OD →-ON →=ND →,∴|OA →+OB →+OD →|=|ND →|,∴|ND →|max =|NC →|+1=7+1,|ND →|min =7-1. 【答案】 D题组训练四 数与形相辅相成求解向量问题已知|b |=1,非零向量a 满足〈a ,b -a 〉=120°,则|a |的取值范围是________. 【解析】如图,设CA →=b ,CB →=a ,则b -a =BA →,在△ABC 中,AC =1,∠ABC =60°. 根据圆的性质:同弧所对的圆周角相等.作△ABC 的外接圆,当BC 为圆的直径时,|a |最大,此时|a |=BC =1sin 60°=233; 当B ,C 无限接近时,|a |=BC →0.故|a |的取值范围是⎥⎦⎤⎝⎛332,0 【答案】 ⎥⎦⎤⎝⎛332,0 【专题训练】 一、选择题1.已知向量a =(2,-4),b =(-3,x ),c =(1,-1),若(2a +b )⊥c ,则|b |=( ) A .9 B .3 C.109D .310【解析】 向量a =(2,-4),b =(-3,x ),c =(1,-1),∴2a +b =(1,x -8), 由(2a +b )⊥c ,可得1+8-x =0,解得x =9.则|b |=(-3)2+92=310.故选D. 【答案】 D2.已知向量a =(1,k ),b =(2,2),且a +b 与a 共线,那么a ·b 的值为( ) A .1 B .2 C .3D .4【解析】 ∵向量a =(1,k ),b =(2,2), ∴a +b =(3,k +2),又a +b 与a 共线. ∴(k +2)-3k =0,解得k =1,∴a ·b =(1,1)·(2,2)=1×2+1×2=4,故选D. 【答案】 D3.设向量a ,b 满足|a |=1,|b |=2,且a ⊥(a +b ),则向量a 在向量a +2b 方向上的投影为( )A .-1313B.1313C .-113D.113【解析】∵a ⊥(a +b ),∴a ·(a +b )=1+a ·b =0,∴a ·b =-1,∴|a +2b |2=1+4a ·b +16=13,则|a +2b |=13,又a ·(a +2b )=a ·(a +b )+a ·b =-1,故向量a 在向量a +2b 方向上的投影为-113=-1313.选A.【答案】 A4.已知A ,B ,C 是圆O 上的不同的三点,线段CO 与线段AB 交于点D ,若OC →=λOA →+μOB →(λ∈R ,μ∈R ),则λ+μ的取值范围是( )A .(0,1)B .(1,+∞)C .(1,2]D .(-1,0)【解析】 由题意可得OD →=kOC →=kλOA →+kμOB →(0<k <1),又A ,D ,B 三点共线可得kλ+kμ=1,则λ+μ=1k>1,即λ+μ的取值范围是(1,+∞),故选B.【答案】 B5.在梯形ABCD 中,AD ∥BC ,已知AD =4,BC =6,若CD →=mBA →+nBC →(m ,n ∈R ),则mn=( ) A .-3 B .-13C.13D .3【解析】 过点A 作AE ∥CD ,交BC 于点E ,则BE =2,CE =4,所以mBA →+nBC →=CD →=EA →=EB →+BA →=-26BC →+BA →=-13BC →+BA →,所以m n =1-13=-3.【答案】 A6.如图,正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC →=λAM →+μBN →,则λ+μ=( )A .2 B.83 C.65D.85【解析】 法一 如图以AB ,AD 为坐标轴建立平面直角坐标系,设正方形边长为1,AM →=⎪⎭⎫ ⎝⎛21,1,BN →=⎪⎭⎫ ⎝⎛-1,21,AC →=(1,1).∵AC →=λAM →+μBN →=λ⎪⎭⎫ ⎝⎛21,1+μ⎪⎭⎫ ⎝⎛-1,21=⎪⎭⎫⎝⎛+-μλμλ2,2,∴⎩⎨⎧λ-12μ=1,λ2+μ=1,解之得⎩⎨⎧λ=65,μ=25,故λ+μ=85.法二 以AB →,AD →作为基底,∵M ,N 分别为BC ,CD 的中点,∴AM →=AB →+BM →=AB →+12AD →,BN →=BC →+CN →=AD →-12AB →,因此AC →=λAM →+μBN →=⎪⎭⎫ ⎝⎛-2μλAB →+⎪⎭⎫ ⎝⎛+μλ2AD →,又AC →=AB →+AD →,因此⎩⎨⎧λ-μ2=1,λ2+μ=1,解得λ=65且μ=25.所以λ+μ=85【答案】 D7.如图所示,直线x =2与双曲线C :x 24-y 2=1的渐近线交于E 1,E 2两点.记OE 1→=e 1,OE 2→=e 2,任取双曲线C 上的点P ,若OP →=a e 1+b e 2(a ,b ∈R ),则ab 的值为( )A.14 B .1 C.12D.18【解析】由题意易知E 1(2,1),E 2(2,-1),∴e 1=(2,1),e 2=(2,-1),故OP →=a e 1+b e 2=(2a +2b ,a -b ),又点P 在双曲线上,∴(2a +2b )24-(a -b )2=1,整理可得4ab =1,∴ab=14. 【答案】 A8.在平面直角坐标系中,向量n =(2,0),将向量n 绕点O 按逆时针方向旋转π3后得向量m ,若向量a 满足|a -m -n |=1,则|a |的最大值是( )A .23-1B .23+1C .3D.6+2+1【解析】 由题意得m =(1,3).设a =(x ,y ),则a -m -n =(x -3,y -3),∴|a -m -n |2=(x -3)2+(y -3)2=1,而(x ,y )表示圆心为(3,3)的圆上的点,求|a |的最大值,即求该圆上点到原点的距离的最大值,最大值为23+1.【答案】 B9.已知锐角△ABC 的外接圆的半径为1,∠B =π6,则BA →·BC →的取值范围为__________.【解析】 如图,设|BA →|=c ,|BC →|=a ,△ABC 的外接圆的半径为1,∠B =π6.由正弦定理得a sin A =c sin C =2,∴a =2sin A ,c =2sin C ,C =5π6-A ,由⎩⎨⎧0<A <π20<5π6-A <π2,得π3<A <π2,∴BA →·BC →=ca cos π6=4×32sin A sin C =23sin A sin ⎪⎭⎫ ⎝⎛-A 65π =23sin A ⎪⎪⎭⎫ ⎝⎛+A A sin 23cos 21=3sin A cos A +3sin 2A =32sin2A +3(1-cos2A )2=32sin2A +32cos2A +32=3sin ⎪⎭⎫ ⎝⎛-32πA +32. ∵π3<A <π2,∴π3<2A -π3<2π3,∴32<sin ⎪⎭⎫ ⎝⎛-32πA ≤1,∴3<3sin ⎪⎭⎫ ⎝⎛-32πA +32≤3+32.∴BA →·BC →的取值范围为⎥⎦⎤⎝⎛+233,3. 【答案】 ⎥⎦⎤ ⎝⎛+233,310.已知点O ,N ,P 在△ABC 所在的平面内,且|OA →|=|OB →|=|OC →|,NA →+NB →+NC →=0,P A →·PB →=PB →·PC →=PC →·P A →,则点O ,N ,P 依次是△ABC 的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心【解析】 因为|OA →|=|OB →|=|OC →|,所以点O 到三角形的三个顶点的距离相等,所以O 为△ABC 的外心;由NA →+NB →+NC →=0,得NA →+NB →=-NC →=CN →,由中线的性质可知点N 在三角形AB 边的中线上,同理可得点N 在其他边的中线上,所以点N 为△ABC 的重心;由P A →·PB →=PB →·PC →=PC →·P A →,得P A →·PB →-PB →·PC →=PB →·CA →=0,则点P 在AC 边的垂线上,同理可得点P 在其他边的垂线上,所以点P 为△ABC 的垂心.【答案】 C11.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积:a ⊗b =(a 1,a 2)⊗(b 1,b 2)=(a 1b 1,a 2b 2).已知向量m =⎪⎭⎫ ⎝⎛4,21,n =⎪⎭⎫⎝⎛0,6π,点P 在y =cos x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ上的最大值是( )A .4B .2C .2 2D .2 3【解析】 因为点P 在y =cos x 的图象上运动,所以设点P 的坐标为(x 0,cos x 0),设Q 点的坐标为(x ,y ),则OQ →=m ⊗OP →+n ⇒(x ,y )=⎪⎭⎫ ⎝⎛4,21⊗(x 0,cos x 0)+⎪⎭⎫ ⎝⎛0,6π⇒(x ,y )=⎪⎭⎫ ⎝⎛+00cos 4,621x x π⇒⎩⎪⎨⎪⎧x =12x 0+π6,y =4cos x 0,即⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛-=00cos 462xy x x π⇒y =4cos ⎪⎭⎫ ⎝⎛-32πx , 即f (x )=4cos ⎪⎭⎫⎝⎛-32πx ,当x ∈⎥⎦⎤⎢⎣⎡3,6ππ时, 由π6≤x ≤π3⇒π3≤2x ≤2π3⇒0≤2x -π3≤π3, 所以12≤cos ⎪⎭⎫ ⎝⎛-32πx ≤1⇒2≤4cos ⎪⎭⎫ ⎝⎛-32πx ≤4,所以函数y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ的最大值是4,故选A. 【答案】 A 二、填空题12.如图,在平行四边形ABCD 中,E 和F 分别在边CD 和BC 上,且DC →=3 DE →,BC →=3 BF →,若AC →=mAE →+nAF →,其中m ,n ∈R ,则m +n =________.【解析】 由题设可得AE →=AD →+DE →=AD →+13DC →=AD →+13AB →,AF →=AB →+BF →=AB →+13AD →=AB→+13AD →,又AC →=mAE →+nAF →,故AC →=mAD →+13mAB →+nAB →+13nAD →=(13m +n )AB →+(m +13n )AD →,而AC →=12(AB →+AD →),故⎩⎨⎧13m +n =12m +13n =12⇒m +n =32.故应填答案32.【答案】 3213.若函数f (x )=2sin ⎪⎭⎫⎝⎛+48ππx (-2<x <14)的图象与x 轴交于点A ,过点A 的直线l与函数f (x )的图象交于B 、C 两点,O 为坐标原点,则(OB →+OC →)·OA →=________.【解析】 ∵-2<x <14,∴f (x )=0的解为x =6,即A (6,0),而A (6,0)恰为函数f (x )图象的一个对称中心,∴B 、C 关于A 对称,∴(OB →+OC →)·OA →=2OA →·OA →=2|OA |2=2×36=72. 【答案】 7214.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点, 则|P A →|2+|PB →|2|PC →|2=________.【解析】 建立如图所示的平面直角坐标系, 设|CA →|=a ,|CB →|=b ,则A (a,0),B (0,b ) ∵点D 是斜边AB 的中点,∴D ⎪⎭⎫⎝⎛2,2b a , ∵点P 为线段CD 的中点,∴P ⎪⎭⎫⎝⎛4,4b a ∴|PC →|2=24⎪⎭⎫ ⎝⎛a +24⎪⎭⎫ ⎝⎛b =a 216+b 216|PB →|2=24⎪⎭⎫ ⎝⎛a +24⎪⎭⎫ ⎝⎛-b b =a 216+9b 216|P A →|2=24⎪⎭⎫ ⎝⎛-a a +24⎪⎭⎫ ⎝⎛b =9a 216+b 216∴|P A →|2+|PB →|2=9a 216+b 216+a 216+9b 216=10⎪⎪⎭⎫ ⎝⎛+161622b a =10|PC →|2,∴|P A →|2+|PB →|2|PC →|2=10.【答案】 1015.在△ABC 中,AB ⊥AC ,AB =1t ,AC =t ,P 是△ABC 所在平面内一点,若AP →=4AB →|AB →|+AC →|AC →|,则△PBC 面积的最小值为________.【解析】 由题意建立如图所示的坐标系,可得A (0,0),B ⎪⎭⎫ ⎝⎛0,1t ,C (0,t ),∵AP →=4AB →|AB →|+AC →|AC →|=(4,0)+(0,1)=(4,1),∴P (4,1);又|BC |=221⎪⎭⎫⎝⎛+t t ,BC 的方程为tx +y t =1,∴点P 到直线BC 的距离为d =221114⎪⎭⎫ ⎝⎛+-+t t t t ,∴△PBC 的面积为S =12·|BC |·d=12·221⎪⎭⎫ ⎝⎛+t t ·221114⎪⎭⎫ ⎝⎛+-+t t t t=12|4t +1t -1|≥12·|24t ·1t -1|=32, 当且仅当4t =1t ,即t =12时取等号,∴△PBC 面积的最小值为32.【答案】 32。

2020年全国高考数学试题分类汇编4-平面向量-含详细答案

2020年全国高考数学试题分类汇编4-平面向量-含详细答案

2020年全国高考数学试题分类汇编平面向量一、选择题1. 设a ⃗ =(1,2),b ⃗ =(1,1),且a ⃗ 与a ⃗ +λb⃗ 的夹角为锐角,则实数λ的取值范围是( ) A. (−53,0)∪(0,+∞) B. (−53,+∞) C. [−53,0)∪(0,+∞)D. (−53,0)2. △ABC 中A(2,1),B(0,4),C(5,6),则AB ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ =( ) A. 7 B. 8 C. 9 D. 103. 已知M(3,−2),N(−5,−1),且MP ⃗⃗⃗⃗⃗⃗ =12MN ⃗⃗⃗⃗⃗⃗ ,则P 点的坐标为( ) A. (−8,1)B. (−1,−32)C. (1,32)D. (8,−1)4. 已知向量a ⃗ ,b ⃗ 满足|a ⃗ |=√5,b ⃗ =(2,4),则“a ⃗ =(−1,−2)”是“a ⃗ //b ⃗ ”成立的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 过抛物线y 2=2x 的焦点且与x 轴垂直的直线与抛物线交于M 、N 两点,O 为坐标原点,则OM ⃗⃗⃗⃗⃗⃗⃗ ⋅ON⃗⃗⃗⃗⃗⃗ =( ) A. 34B. 14C. −14D. −346. 在以AB 为边,AC 为对角线的矩形中,AB⃗⃗⃗⃗⃗ =(3,1), AC ⃗⃗⃗⃗⃗ =(2,k),则实数k =( ) A. −6 B. 4 C. 2D. 237. △ABC 是边长为2的等边三角形,已知向量a ⃗ ,b ⃗ 满足AB ⃗⃗⃗⃗⃗ =2a ⃗ ,AC ⃗⃗⃗⃗⃗ =2a ⃗ +b ⃗ ,则下列结论正确的是( )A. |b ⃗ |=1B. a ⃗ ⊥b ⃗C. a ⃗ ⋅b⃗ =1 D. (4a ⃗ +b⃗ )⊥BC ⃗⃗⃗⃗⃗ 8. 已知向量a ⃗ =(1,m),b ⃗ =(3,−2),且(a ⃗ +b ⃗ )⊥b ⃗ ,则m =( )A. −8B. −6C. 6D. 89. 设a ⃗ ,b ⃗ 是向量,则“|a ⃗ |=|b ⃗ |”是“|a ⃗ +b ⃗ |=|a ⃗ −b ⃗ |”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件10. 若|a ⃗ |=1,|b ⃗ |=2,c ⃗ =a ⃗ +b ⃗ ,且c ⃗ ⊥a ⃗ ,则向量a ⃗ 与b ⃗ 的夹角为( )A. 30°B. 60°C. 120°D. 150°11. 在平面直角坐标系中,已知两点A(cos80°,sin80°),B(cos20°,sin20°),则|AB ⃗⃗⃗⃗⃗ |的值是( )A. 12B. √22 C. √32D. 112. 在平行四边形ABCD 中,AB//CD ,AB ⃗⃗⃗⃗⃗ =(2,−2),AD ⃗⃗⃗⃗⃗⃗ =(2,1),则AC ⃗⃗⃗⃗⃗ ⋅DB⃗⃗⃗⃗⃗⃗ =( ) A. −3 B. 2 C. 3 D. 413. 设四边形ABCD 为平行四边形,|AB ⃗⃗⃗⃗⃗ |=6,|AD ⃗⃗⃗⃗⃗⃗ |=4,若点M 、N 满足BM ⃗⃗⃗⃗⃗⃗ =3MC ⃗⃗⃗⃗⃗⃗ ,DN ⃗⃗⃗⃗⃗⃗ =2NC ⃗⃗⃗⃗⃗⃗ ,则AM ⃗⃗⃗⃗⃗⃗ ⋅NM⃗⃗⃗⃗⃗⃗⃗ =( ) A. 20 B. 15 C. 9 D. 614. 设m⃗⃗⃗ ,n ⃗ 为非零向量,则“存在负数λ,使得m ⃗⃗⃗ =λn ⃗ ”是“m ⃗⃗⃗ ·n ⃗ <0”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件15. 设点A,B,C 不共线,则“ AB⃗⃗⃗⃗⃗ 与 AC ⃗⃗⃗⃗⃗ 的夹角是锐角”是“ |AB ⃗⃗⃗⃗⃗ +AC|⃗⃗⃗⃗⃗⃗⃗ >|BC ⃗⃗⃗⃗⃗⃗⃗ |”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件16. 已知向量a ⃗ =(2,4),b ⃗ =(−1,1),则2a ⃗ −b ⃗ =( )A. (5,7)B. (5,9)C. (3,7)D. (3,9)17. 如图,在△ABC 中,AD ⊥AB ,BC ⃗⃗⃗⃗⃗ =√3BD ⃗⃗⃗⃗⃗⃗ ,|AD ⃗⃗⃗⃗⃗⃗ |=1,则AC ⃗⃗⃗⃗⃗ ⋅AD⃗⃗⃗⃗⃗⃗ =( ) A. 2√3B. √32 C. √33D. √318. 设a ⃗ ,b ⃗ 是非零向量,“a ⃗ ⋅b ⃗ =|a ⃗ ||b ⃗ |”是“a ⃗ //b ⃗ ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件19. 设a ⃗ ,b ⃗ 均为单位向量,则“”是“a ⃗ ⊥b ⃗ ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件二、填空题20. 已知向量a ⃗ 与b ⃗ 的夹角为60°,且a ⃗ =(−2,−6),|b ⃗ |=√10,则a ⃗ ·b ⃗ =______. 21. 已知向量a ⃗ =(−4,3),b ⃗ =(6,m),且a ⃗ ⊥b ⃗ ,则m =______. 22. 设向量a ⃗ =(1,−1),b ⃗ =(m +1,2m −4),若a ⃗ ⊥b ⃗ ,则m =______. 23. 已知单位向量a ⃗ ,b ⃗ 的夹角为45°,k a ⃗ −b⃗ 与a ⃗ 垂直,则k =______. 24. 已知平面向量a ⃗ ,b ⃗ ,|a ⃗ |=1,|b ⃗ |=2,a ⃗ ⋅b ⃗ =1,则向量a ⃗ ,b ⃗ 的夹角为______. 25. 已知向量a ⃗ 与b ⃗ 的夹角为120°,|a ⃗ |=3,|a ⃗ +b ⃗ |=√13,则|b ⃗ |=________.26. 已知向量a ⃗ =(2,1),b ⃗ =(1,−2),若m a ⃗ +n b ⃗ =(9,−8)(m,n ∈R),则m −n 的值为______. 27. 设向量a ⃗ =(1,0),b ⃗ =(−1,m).若a ⃗ ⊥(m a ⃗ −b ⃗ ),则m =______. 28. 设向量a ⃗ ,b ⃗ 不平行,向量λa ⃗ +b ⃗ 与a ⃗ +2b ⃗ 平行,则实数λ=________. 29. 已知向量a ⃗ =(1,√3),b ⃗ =(√3,1),则a ⃗ 与b ⃗ 夹角的大小为______.30. 已知向量a ⃗ ,b ⃗ 满足|a ⃗ |=1,b ⃗ =(2,1),且λa ⃗ +b ⃗ =0⃗ (λ∈R),则|λ|= ______ . 31. 若P(x,y)满足约束条件{x −y ≥0x +y −2≤0y ≥0,设A(3,−4),则OP⃗⃗⃗⃗⃗ 在OA ⃗⃗⃗⃗⃗ 方向上投影的最小值为______. 32. 已知正方形ABCD 的边长为2,E 为CD 的中点,则AE⃗⃗⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =______. 33. 已知实数x 1、x 2、y 1、y 2满足:x 12+y 12=1,x 22+y 22=1,x 1x 2+y 1y 2=12,则11√2+22√2的最大值为______.34. 已知向量a ⃗ 与b ⃗ 的夹角为120°,且|a ⃗ |=|b ⃗ |=4,那么b ⃗ ⋅(2a ⃗ +b ⃗ )的值为______.35. 平面向量a ⃗ =(1,2),b ⃗ =(4,2),c ⃗ =m a ⃗ +b ⃗ (m ∈R),且c ⃗ 与a ⃗ 的夹角等于c ⃗ 与b ⃗ 的夹角,则m =______. 三、解答题36. 已知平面向量a ⃗ =(1,x),b ⃗ =(2x +3,−x)(x ∈R).(1)若a ⃗ ⊥b ⃗ ,求x 的值;(2)若a ⃗ //b⃗ ,求|a ⃗ −b ⃗ |.37. 已知点M(−2,0),N(2,0),动点P 满足条件|PM|−|PN|=2√2.记动点P 的轨迹为W .(Ⅰ)求W 的方程;(Ⅱ)若A ,B 是W 上的不同两点,O 是坐标原点,求OA⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ 的最小值.38. 已知抛物线C :y 2=2px 经过点P(1,2),过点Q(0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM ⃗⃗⃗⃗⃗⃗⃗ =λQO ⃗⃗⃗⃗⃗⃗ ,QN ⃗⃗⃗⃗⃗⃗ =μQO ⃗⃗⃗⃗⃗⃗ ,求证:1λ+1μ为定值.答案和解析1.【答案】A【解析】【分析】本题考查向量数量积的坐标表示,考查向量的夹角问题,属于简单题. 由题意,a ⃗ 与(a ⃗ +λb ⃗ )的数量积大于0,且排除同向的情况即可得. 【解答】解:由已知得a ⃗ ·(a ⃗ +λb ⃗ )>0且去掉a ⃗ 与(a ⃗ +λb ⃗ )方向相同的情况, a ⃗ +λb ⃗ =(1+λ,2+λ),a ⃗ ·(a ⃗ +λb ⃗ )=1+λ+2(2+λ)=3λ+5>0, 解出λ>−53,当a ⃗ 与(a ⃗ +λb ⃗ )方向相同时λ=0, 所以λ>−53且λ≠0, 故选A .2.【答案】C【解析】【分析】本题考查了平面向量的坐标表示与数量积运算问题,是基础题目. 根据平面向量的坐标表示与数量积运算,计算即可. 【解答】解:△ABC 中,A(2,1),B(0,4),C(5,6), ∴AB⃗⃗⃗⃗⃗ =(−2,3),AC ⃗⃗⃗⃗⃗ =(3,5), 则AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =−2×3+3×5=9. 故选C .3.【答案】B【解析】【分析】本题主要考查两个向量的加减法法则的应用,两个向量坐标形式的运算,属于基础题.设点P 的坐标为(x,y),则由MP ⃗⃗⃗⃗⃗⃗ =12MN ⃗⃗⃗⃗⃗⃗⃗ 可得(x −3,y +2)=12(−8,1),解方程求得x 、y 的值,即可求得点P 的坐标. 【解答】解:设点P 的坐标为(x,y),则由 MP ⃗⃗⃗⃗⃗⃗ =12MN ⃗⃗⃗⃗⃗⃗⃗ 可得(x −3,y +2)=12(−8,1)=(−4,12), ∴x −3=−4,y +2=12. 解得x =−1,y =−32, ∴点P 的坐标为(−1,−32), 故选B .4.【答案】A【解析】【分析】本题主要考查充分条件、必要条件、充要条件的定义,属于基础题. 通过向量共线的充要条件利用充分必要条件的定义求解. 【解答】解:由a ⃗ =(−1,−2),则b ⃗ =−2a ⃗ , 显然a ⃗ //b ⃗ 成立,故充分性具备.反之,若a ⃗ //b ⃗ ,则b ⃗ =λa ⃗ ,设a ⃗ =(x,y), 则必有{2=λx,4=λy,所以y =2x ,① 又x 2+y 2=5,② 由①②得{x =1,y =2或{x =−1,y =−2.则a⃗ =(1,2)或a ⃗ =(−1,−2),故必要性不具备. 因而是充分不必要条件. 故选A .5.【答案】D【解析】【分析】本题考查了抛物线的性质以及平面向量数量积的运算,属于基础题.先求出抛物线的焦点坐标,从而得出垂直x 轴的直线方程,将直线方程代入y 2=2x 求得y 的值,即可求出OM⃗⃗⃗⃗⃗⃗⃗ ⋅ON ⃗⃗⃗⃗⃗⃗ . 【解答】解:y 2=2x 的焦点坐标是(12,0),则过焦点且垂直x 轴的直线是x =12,代入y 2=2x 得y =±1, 所以不妨设M(12,1),N(12,−1)故OM ⃗⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗⃗ =(12,1)·(12,−1)=14−1=−34. 故选D .6.【答案】B【解析】解:BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =(−1,k −1); 据题意知,AB ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ; ∴AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =−3+k −1=0; ∴k =4. 故选:B .可得出BC ⃗⃗⃗⃗⃗ =(−1,k −1),而根据题意可知AB ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,从而得出AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =0,进行数量积的坐标运算即可求出k . 考查向量垂直的充要条件,向量数量积和减法的坐标运算,以及向量减法的几何意义.7.【答案】D【解析】解:因为已知三角形ABC 的等边三角形,a ⃗ ,b ⃗ 满足AB ⃗⃗⃗⃗⃗ =2a ⃗ ,AC ⃗⃗⃗⃗⃗ =2a ⃗ +b ⃗ ,又AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ,∴b ⃗ 的方向应该为BC ⃗⃗⃗⃗⃗ 的方向. 所以a ⃗ =12AB ⃗⃗⃗⃗⃗ ,b ⃗ =BC ⃗⃗⃗⃗⃗ , 所以|b ⃗ |=2,a ⃗ ⋅b ⃗ =1×2×cos120°=−1,4a ⃗ ⋅b ⃗ =4×1×2×cos120°=−4,b ⃗ 2=4,所以4a ⃗ ⋅b ⃗ +b ⃗ 2=0,即(4a⃗ +b ⃗ )⋅b ⃗ =0,即(4a ⃗ +b ⃗ )⋅BC ⃗⃗⃗⃗⃗ =0,所以(4a ⃗ +b ⃗ )⊥BC ⃗⃗⃗⃗⃗ ; 故选:D .由题意,知道a ⃗ =12AB ⃗⃗⃗⃗⃗ ,b ⃗ =BC ⃗⃗⃗⃗⃗ ,根据已知三角形为等边三角形解之.本题考查了向量的数量积公式的运用及向量的模;注意:三角形的内角与向量的夹角的关系.8.【答案】D【解析】【分析】本题考查了向量垂直的充要条件,向量的坐标运算,属于基础题.求出向量a⃗+b⃗ 的坐标,根据向量垂直的充要条件,得到关于m的方程,求解即可.【解答】解:∵向量a⃗=(1,m),b⃗ =(3,−2),∴a⃗+b⃗ =(4,m−2),又∵(a⃗+b⃗ )⊥b⃗ ,∴(a⃗+b⃗ )·b⃗ =12−2(m−2)=0,解得m=8.故选D.9.【答案】D【解析】【分析】本题主要考查的知识点是充分条件,必要条件的判断,涉及向量的数量积与模的概念,属于基础题.根据|a⃗+b⃗ |=|a⃗−b⃗ |⇔a⃗·b⃗ =0,从而可以判断“|a⃗|=|b⃗ |”是“|a⃗+b⃗ |=|a⃗−b⃗ |”的既不充分也不必要条件.【解答】解:因为|a⃗+b⃗ |=|a⃗−b⃗ |,所以|a⃗+b⃗ |2=|a⃗−b⃗ |2,则a⃗2+b⃗ 2+2a⃗·b⃗ =a⃗2+b⃗ 2−2a⃗·b⃗ ,即a⃗·b⃗ =0,由|a⃗|=|b⃗ |⇏a⃗·b⃗ =0,a⃗·b⃗ =0⇏|a⃗|=|b⃗ |,故“|a⃗|=|b⃗ |”是“|a⃗+b⃗ |=|a⃗−b⃗ |”的既不充分也不必要条件.故选D.10.【答案】C【解析】【分析】本题考查向量的夹角,向量垂直的条件,是基础题.根据两个向量垂直,数量积为零,把式子变化出现只含向量夹角余弦的方程,解出夹角的余弦值,根据角的范围,得到结果.【解答】解:若|a ⃗ |=1,|b ⃗ |=2,c ⃗ =a ⃗ +b ⃗ , 设向量a ⃗ 与b ⃗ 的夹角为θ, ∵c ⃗ ⊥a ⃗ ,c ⃗ =a ⃗ +b ⃗ , ∴(a ⃗ +b ⃗ )⋅a ⃗ =0,则|a ⃗ |2+|a ⃗ |⋅|b ⃗ |cosθ=0, ∴cosθ=−|a ⃗ |2|a ⃗ ||b⃗ |=−12,又0°≤θ≤180°,∴θ=120°. 故选C .11.【答案】D【解析】【分析】本题考查了向量模的坐标运算,即把点的坐标代入,利用两角和与差的余弦公式进行化简求值.属于基础题. 根据向量模的坐标表示,把已知两个点的坐标代入,利用两角和与差的余弦公式进行化简,进而求出向量模. 【解答】解:∵A(cos80°,sin80°),B(cos20°,sin20°),=√2−2cos600=1. 故选D .12.【答案】C【解析】【分析】本题考查平面向量的数量积的运算,向量加减的坐标运算,考查计算能力,属基础题. 利用已知条件表示所求数量积的两个向量,然后利用数量积的运算法则求解即可. 【解答】在平行四边形ABCD 中,AB//CD ,AB ⃗⃗⃗⃗⃗ =(2,−2),AD ⃗⃗⃗⃗⃗⃗ =(2,1), AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ =(4,−1),DB ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗⃗ =(0,−3), 则AC ⃗⃗⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =4×0+(−1)(−3)=3. 故选:C .13.【答案】C【解析】【分析】本题考查了平面向量的运算,数量积的运用,考查了数形结合的思想,关键是向量的分解,表示. 根据图形得出AM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +34BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +34AD ⃗⃗⃗⃗⃗⃗ ,AN ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ +23DC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ +23AB ⃗⃗⃗⃗⃗ ,AM ⃗⃗⃗⃗⃗⃗ ⋅NM ⃗⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ ·(AM ⃗⃗⃗⃗⃗⃗ −AN ⃗⃗⃗⃗⃗⃗ )=AM ⃗⃗⃗⃗⃗⃗ 2−AM ⃗⃗⃗⃗⃗⃗ ⋅AN ⃗⃗⃗⃗⃗⃗ ,结合向量的数量积求解即可. 【解答】解:∵四边形ABCD 为平行四边形,点M 、N 满足BM ⃗⃗⃗⃗⃗⃗ =3MC ⃗⃗⃗⃗⃗⃗ ,DN ⃗⃗⃗⃗⃗⃗ =2NC⃗⃗⃗⃗⃗⃗ ,∴根据图形可得:AM ⃗⃗⃗⃗⃗⃗=AB ⃗⃗⃗⃗⃗ +34BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +34AD ⃗⃗⃗⃗⃗⃗ , AN⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ +23DC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ +23AB ⃗⃗⃗⃗⃗ , 又NM ⃗⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ −AN⃗⃗⃗⃗⃗⃗ , ∴AM ⃗⃗⃗⃗⃗⃗ ⋅NM ⃗⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ ·(AM ⃗⃗⃗⃗⃗⃗ −AN ⃗⃗⃗⃗⃗⃗ )=AM ⃗⃗⃗⃗⃗⃗ 2−AM ⃗⃗⃗⃗⃗⃗ ⋅AN⃗⃗⃗⃗⃗⃗ , 又AM ⃗⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ 2+32AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗⃗ +916AD ⃗⃗⃗⃗⃗⃗ 2, AM ⃗⃗⃗⃗⃗⃗ ⋅AN ⃗⃗⃗⃗⃗⃗ =23AB ⃗⃗⃗⃗⃗ 2+34AD ⃗⃗⃗⃗⃗⃗ 2+32AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗⃗ , |AB ⃗⃗⃗⃗⃗ |=6,|AD⃗⃗⃗⃗⃗⃗ |=4, ∴AM ⃗⃗⃗⃗⃗⃗ ⋅NM ⃗⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ 2−316AD⃗⃗⃗⃗⃗⃗ 2=12−3=9 故选:C .14.【答案】A【解析】【分析】本题考查了向量的数量积、必要条件、充分条件与充要条件的判断,属于基础题.m ⃗⃗⃗ ,n ⃗ 为非零向量,存在负数λ,使得m ⃗⃗⃗ =λn ⃗ ,则向量m ⃗⃗⃗ ,n ⃗ 共线且方向相反,可得m ⃗⃗⃗ ·n ⃗ <0.而非零向量m ⃗⃗⃗ ,n ⃗ 的夹角为钝角,满足m ⃗⃗⃗ ·n ⃗ <0,但m ⃗⃗⃗ =λn ⃗ 不成立.则答案可得. 【解答】解:m⃗⃗⃗ ,n ⃗ 为非零向量,存在负数λ,使得m ⃗⃗⃗ =λn ⃗ , 则向量m⃗⃗⃗ ,n ⃗ 共线且方向相反,可得m ⃗⃗⃗ ·n ⃗ <0. 反之不成立,非零向量m⃗⃗⃗ ,n ⃗ 的夹角为钝角,满足m ⃗⃗⃗ ·n ⃗ <0,而m ⃗⃗⃗ =λn ⃗ 不成立. ∴m ⃗⃗⃗ ,n ⃗ 为非零向量,则“存在负数λ,使得m ⃗⃗⃗ =λn ⃗ ”是m ⃗⃗⃗ ·n ⃗ <0”的充分不必要条件. 故选A .15.【答案】C【解析】【分析】本题考查充分条件、必要条件、充要条件的判断,考查向量等基础知识,考查推理能力与计算能力,属于中档题.“AB⃗⃗⃗⃗⃗ 与AC ⃗⃗⃗⃗⃗ 的夹角为锐角”⇒“|AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ |>|BC ⃗⃗⃗⃗⃗ |”,“|AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ |>|BC ⃗⃗⃗⃗⃗ |”⇒“AB ⃗⃗⃗⃗⃗ 与AC ⃗⃗⃗⃗⃗ 的夹角为锐角”,由此能求出结果. 【解答】解:点A ,B ,C 不共线,若“AB ⃗⃗⃗⃗⃗ 与AC ⃗⃗⃗⃗⃗ 的夹角为锐角”,则AB ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ >0, |AB⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ |2=|AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ |2+4AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =|BC ⃗⃗⃗⃗⃗ |2+4AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ >|BC ⃗⃗⃗⃗⃗ |2,∴“AB ⃗⃗⃗⃗⃗ 与AC ⃗⃗⃗⃗⃗ 的夹角为锐角”⇒“|AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ |>|BC ⃗⃗⃗⃗⃗ |”, 若|AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ |>|BC ⃗⃗⃗⃗⃗ |,则|AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ |2>|AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ |2, 化简得AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ >0,即AB ⃗⃗⃗⃗⃗ 与AC ⃗⃗⃗⃗⃗ 的夹角为锐角, ∴“|AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ |>|BC ⃗⃗⃗⃗⃗ |”⇒“AB ⃗⃗⃗⃗⃗ 与AC⃗⃗⃗⃗⃗ 的夹角为锐角”, ∴设点A ,B ,C 不共线,则“AB ⃗⃗⃗⃗⃗ 与AC ⃗⃗⃗⃗⃗ 的夹角为锐角”是“|AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ |>|BC ⃗⃗⃗⃗⃗ |”的充分必要条件. 故选C .16.【答案】A【解析】解:由a ⃗ =(2,4),b ⃗ =(−1,1),得: 2a ⃗ −b ⃗ =2(2,4)−(−1,1)=(4,8)−(−1,1)=(5,7). 故选:A .直接利用平面向量的数乘及坐标减法运算得答案.本题考查平面向量的数乘及坐标减法运算,是基础的计算题.17.【答案】D【解析】【分析】本题主要考查平面向量的数量积以及向量加法法则的运用,属于中档题.由向量的加法结合AD ⊥AB 可得AC ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )·AD ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗⃗ =√3BD ⃗⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗⃗ =√3(BA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ )·AD ⃗⃗⃗⃗⃗⃗ ,由此可求解. 【解答】解:由题意可得,AD ⊥AB ,BC ⃗⃗⃗⃗⃗ =√3BD ⃗⃗⃗⃗⃗⃗ ,|AD ⃗⃗⃗⃗⃗⃗ |=1, 则AC ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )·AD⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ·AD⃗⃗⃗⃗⃗⃗=BC ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗⃗ =√3BD ⃗⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗⃗ =√3(BA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ )·AD⃗⃗⃗⃗⃗⃗ =√3AD ⃗⃗⃗⃗⃗⃗ 2=√3, 故选D .18.【答案】A【解析】【分析】考查充分条件,必要条件,及充分不必要条件的概念,以及判断方法与过程,数量积的计算公式,向量共线的定义,向量夹角的定义,属于中档题.由a ⃗ ⋅b ⃗ =|a ⃗ ||b ⃗ |便可得到a ⃗ ,b ⃗ 夹角为0,从而得到a ⃗ //b ⃗ ,而a ⃗ //b ⃗ 并不能得到a ⃗ 夹角为0,从而得不到a ⃗ ⋅b ⃗ =|a ⃗ ||b ⃗ |,这样根据充分条件、必要条件的概念即可找出正确选项. 【解答】解:(1)a ⃗ ⋅b ⃗ =|a ⃗ ||b ⃗ |cos <a ⃗ ,b ⃗ >; ∴a ⃗ ⋅b ⃗ =|a ⃗ ||b ⃗ |时,cos <a ⃗ ,b ⃗ >=1; ∴<a ⃗ ,b ⃗ >=0; ∴a ⃗ //b ⃗ ;∴“a ⃗ ⋅b ⃗ =|a ⃗ ||b ⃗ |”是“a ⃗ //b ⃗ ”的充分条件; (2)a ⃗ //b ⃗ 时,a ⃗ ,b ⃗ 的夹角为0或π; ∴a ⃗ ⋅b ⃗ =|a ⃗ ||b ⃗ |,或−|a ⃗ ||b ⃗ |; 即a ⃗ //b ⃗ 得不到a ⃗ ⋅b ⃗ =|a ⃗ ||b ⃗ |;∴“a ⃗ ⋅b ⃗ =|a ⃗ ||b ⃗ |”不是“a ⃗ //b ⃗ ”的必要条件;∴总上可得“a ⃗ ⋅b ⃗ =|a ⃗ ||b ⃗ |”是“a ⃗ //b ⃗ ”的充分不必要条件. 故选:A .19.【答案】C【解析】【分析】本题考查必要条件、充分条件与充要条件的判断,向量垂直的判断,属于中档题. 根据题意,分别验证充分条件、必要条件即可. 【解答】解:若“|a ⃗ −3b ⃗ |=|3a ⃗ +b ⃗ |”, 则|a ⃗ |2+9|b ⃗ |2−6a ⃗ ·b ⃗ =9|a ⃗|2+|b ⃗ |2+6a ⃗ ·b ⃗ ,又∵a ⃗ ,b ⃗ 均为单位向量,即|a⃗ |=|b ⃗ |=1,∴a⃗·b⃗ =0,即a⃗⊥b⃗ ,∴“|a⃗−3b⃗ |=|3a⃗+b⃗ |”是“a⃗⊥b⃗ ”的充分条件;若a⃗⊥b⃗ ,则a⃗·b⃗ =0,a⃗,b⃗ 均为单位向量,即|a⃗|=|b⃗ |=1,∵|a⃗−3b⃗ |2=|a⃗|2+9|b⃗ |2−6a⃗·b⃗ =1+9×1−6×0=10,|3a⃗+b⃗ |2=9|a⃗|2+|b⃗ |2+6a⃗·b⃗ =9×1+1+6×0=10,∴|a⃗−3b⃗ |2=|3a⃗+b⃗ |2,则|a⃗−3b⃗ |=|3a⃗+b⃗ |,∴“|a⃗−3b⃗ |=|3a⃗+b⃗ |”是“a⃗⊥b⃗ ”的必要条件;综上,则“”是“a⃗⊥b⃗ ”的充要条件,故选C.20.【答案】10【解析】【分析】本题考查了向量的数量积公式,属于基础题.利用向量的模、夹角形式的数量积公式求出即可.【解答】解:∵a⃗=(−2,−6),∴|a⃗|=√(−2)2+(−6)2=2√10,∴a⃗⋅b⃗ =|a⃗||b⃗ |cos<a⃗,b⃗ >.故答案为10.21.【答案】8【解析】【分析】本题考查了平面向量的数量积与垂直的关系,属基础题.a⃗⊥b⃗ 则a⃗⋅b⃗ =0,代入a⃗,b⃗ ,解方程即可.【解答】解:由向量a⃗=(−4,3),b⃗ =(6,m),且a⃗⊥b⃗ ,得a⃗⋅b⃗ =−24+3m=0,∴m=8.故答案为8.22.【答案】5【解析】解:向量a⃗=(1,−1),b⃗ =(m+1,2m−4),若a⃗⊥b⃗ ,则a⃗⋅b⃗ =m+1−(2m−4)=−m+5=0,则m=5,故答案为:5根据向量垂直的条件可得关于m的方程,解之可得结果.本题考查了向量的垂直的条件和向量数量积的运算,属于基础题.23.【答案】√22【解析】解:∵向量a⃗,b⃗ 为单位向量,且a⃗,b⃗ 的夹角为45°,∴a⃗⋅b⃗ =|a⃗|⋅|b⃗ |cos45°=1×1×√22=√22,又k a⃗−b⃗ 与a⃗垂直,∴(k a⃗−b⃗ )⋅a⃗=k|a⃗|2−a⃗⋅b⃗ =0,即k−√22=0,则k=√22.故答案为:√22.由已知求得a⃗⋅b⃗ ,再由k a⃗−b⃗ 与a⃗垂直,可得(k a⃗−b⃗ )⋅a⃗=0,展开即可求得k值.本题考查平面向量的数量积运算,考查向量垂直与数量积的关系,是基础题.24.【答案】π3【解析】解:设向量a⃗,b⃗ 的夹角为θ,平面向量a⃗,b⃗ ,|a⃗|=1,|b⃗ |=2,a⃗⋅b⃗ =1,可得1×2×cosθ=1,可得cosθ=12,所以θ=π3.故答案为:π3.直接利用向量的数量积列出方程求解即可.本题考查向量的数量积的应用,向量的夹角的求法,是基本知识的考查.25.【答案】4【解析】【分析】本题主要考查了向量的数量积,属于基础的计算题,|a ⃗ +b ⃗ |2=(a ⃗ +b ⃗ )2=a ⃗ 2+b ⃗ 2+2a ⃗ ·b ⃗ =|a ⃗ |2+|b ⃗ |2+2|a ⃗ ||b ⃗ |cos120°即得9+|b ⃗|2−3|b ⃗ |=13,即可解得|b ⃗ |, 【解答】解:因为|a ⃗ +b ⃗ |=√13, 所以|a ⃗ +b ⃗ |2=(a ⃗ +b ⃗ )2=a ⃗ 2+b ⃗ 2+2a ⃗ ·b ⃗=|a ⃗ |2+|b ⃗ |2+2|a ⃗ ||b ⃗ |cos120°, 所以9+|b ⃗ |2−3|b ⃗ |=13, 解得|b ⃗ |=4, 故答案为4.26.【答案】−3【解析】解:向量a ⃗ =(2,1),b ⃗ =(1,−2),若m a ⃗ +n b ⃗ =(9,−8) 可得{2m +n =9m −2n =−8,解得m =2,n =5,∴m −n =−3. 故答案为:−3.直接利用向量的坐标运算,求解即可.本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.27.【答案】−1【解析】【分析】本题考查向量的数量积的应用,向量的垂直条件的应用,考查计算能力. 利用向量的坐标运算,以及向量的垂直,列出方程求解即可. 【解答】解:向量a⃗ =(1,0),b ⃗ =(−1,m). m a ⃗ −b ⃗ =(m +1,−m). ∵a ⃗ ⊥(m a ⃗ −b ⃗ ),∴m+1=0,解得m=−1.故答案为−1.28.【答案】12【解析】【分析】本题考查实数值的解法,考查平面向量平行的条件及应用,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.利用向量平行的条件直接求解即可.【解答】解:∵向量a⃗,b⃗ 不平行,向量λa⃗+b⃗ 与a⃗+2b⃗ 平行,∴λa⃗+b⃗ =t(a⃗+2b⃗ )=t a⃗+2t b⃗ ,∴{λ=t1=2t,解得实数λ=12.故答案为12.29.【答案】π6【解析】【分析】本题考查平面向量的夹角公式,属于基础题.根据已知中向量的坐标,代入向量夹角公式,可得答案,【解答】解:∵向量a⃗=(1,√3),b⃗ =(√3,1),∴a⃗与b⃗ 夹角θ满足,cosθ=a⃗ ⋅b⃗|a⃗ |⋅|b⃗|=2√32×2=√32,又∵θ∈[0,π],∴θ=π6,故答案为π6.30.【答案】√5【解析】解:设a⃗=(x,y).∵向量a⃗,b⃗ 满足|a⃗|=1,b⃗ =(2,1),且λa⃗+b⃗ =0⃗(λ∈R),∴λa ⃗ +b ⃗ =λ(x,y)+(2,1)=(λx +2,λy +1), ∴{√x 2+y 2=1λx +2=0λy +1=0,化为λ2=5. 解得|λ|=√5. 故答案为:√5.设a ⃗ =(x,y).由于向量a ⃗ ,b ⃗ 满足|a ⃗ |=1,b ⃗ =(2,1),且λa ⃗ +b⃗ =0⃗ (λ∈R),可得{√x 2+y 2=1λx +2=0λy +1=0,解出即可. 本题考查了向量的坐标运算、向量的模的计算公式、零向量等基础知识与基本技能方法,属于基础题.31.【答案】−15【解析】 【分析】本题考查线性规划中的最值问题,向量的投影,属于中档题.根据题意,可得OP ⃗⃗⃗⃗⃗ 在OA ⃗⃗⃗⃗⃗ 方向上的投影为OP⃗⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗⃗ |OA⃗⃗⃗⃗⃗⃗ |=15(3x −4y ),作出不等式组{x −y ≥0x +y −2≤0y ≥0对应的平面区域,数形结合,进行求解即可. 【解答】解:∵P(x,y),A(3,−4), 则OP ⃗⃗⃗⃗⃗ 在OA ⃗⃗⃗⃗⃗ 方向上的投影为OP⃗⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗⃗ |OA ⃗⃗⃗⃗⃗⃗ |=15(3x −4y ),设z =3x −4y ,得y =34x −z4,作出不等式组{x −y ≥0x +y −2≤0y ≥0对应的平面区域,如图中阴影部分所示,平移直线y =34x −z4,由图象可知,当直线y =34x −z4经过点B(1,1)时,直线y =34x −z4的截距最大,此时z 取得最小值, 所以z min =3−4=−1,则OP ⃗⃗⃗⃗⃗ 在OA ⃗⃗⃗⃗⃗ 方向上投影的最小值为−15. 故答案为−15.32.【答案】2【解析】解:∵已知正方形ABCD 的边长为2,E 为CD 的中点,则AB ⃗⃗⃗⃗⃗ ⋅AD⃗⃗⃗⃗⃗⃗ =0, 故AE ⃗⃗⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =(AD ⃗⃗⃗⃗⃗⃗ +DE ⃗⃗⃗⃗⃗⃗ )⋅(BA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ )=(AD ⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ )⋅(AD ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=AD ⃗⃗⃗⃗⃗⃗ 2−AD ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗ 2=4+0−0−12×4=2,故答案为2.根据两个向量的加减法的法则,以及其几何意义,可得要求的式子为(AD ⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ )⋅(AD ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ),再根据两个向量垂直的性质,运算求得结果.本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量垂直的性质,属于中档题.33.【答案】√2+√3【解析】【分析】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.设A(x 1,y 1),B(x 2,y 2),OA ⃗⃗⃗⃗⃗ =(x 1,y 1),OB ⃗⃗⃗⃗⃗⃗ =(x 2,y 2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB 为等边三角形,AB =1,11√222√2的几何意义为点A ,B 两点到直线x +y −1=0的距离d 1与d 2之和,由此可求最大值. 【解答】解:设A(x 1,y 1),B(x 2,y 2), OA ⃗⃗⃗⃗⃗ =(x 1,y 1),OB⃗⃗⃗⃗⃗⃗ =(x 2,y 2), 由x 12+y 12=1,x 22+y 22=1,x 1x 2+y 1y 2=12,可得A ,B 两点在圆x 2+y 2=1上,且OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =1×1×cos∠AOB =x 1x 2+y 1y 2=12, 即有∠AOB =60°,即三角形OAB 为等边三角形,AB =1,11√222√2的几何意义为点A ,B 两点到直线l:x +y −1=0的距离d 1与d 2之和,设AB 中点为M ,则距离d 1与d 2之和等于M 到直线l 的距离的两倍,圆心到线段AB中点M的距离d=√32,圆心到直线l的距离d′=√2=√22,∴M到直线l的距离的最大值为d+d′=√32+√22,即11√222√2的最大值为√2+√3,故答案为:√2+√3.34.【答案】0【解析】解:由题意知b⃗ ⋅(2a⃗+b⃗ )=2a⃗⋅b⃗ +b⃗ 2=2×4×4cos120°+42=0.故答案为0.由向量数量积公式进行计算即可.本题考查向量数量积运算公式.35.【答案】2【解析】解:∵向量a⃗=(1,2),b⃗ =(4,2),c⃗=m a⃗+b⃗ (m∈R),∴c⃗=m(1,2)+(4,2)=(m+4,2m+2).∴c⃗⋅a⃗=m+4+2(2m+2)=5m+8,c⃗⋅b⃗ =4(m+4)+2(2m+2)=8m+20.|a⃗|=√5,|b⃗ |=√42+22=2√5.∵c⃗与a⃗的夹角等于c⃗与b⃗ 的夹角,∴c⃗ ⋅a⃗|c⃗ | |a⃗ |=c⃗ ⋅b⃗|c⃗ | |b⃗|,∴√5=2√5,化为5m+8=4m+10,解得m=2.故答案为:2.利用向量的坐标运算、数量积运算、向量的夹角公式即可得出.本题考查了向量的坐标运算、数量积运算、向量的夹角公式,属于基础题.36.【答案】解:(1)由a⃗⊥b⃗ 得,2x+3−x2=0,即(x−3)(x+1)=0,解得x=3或x=−1;(2)由a⃗//b⃗ ,则2x2+3x+x=0,即2x2+4x=0,得x=0或x=−2.当x=0时,a⃗=(1,0),b⃗ =(3,0),∴a⃗−b⃗ =(−2,0),此时|a ⃗ −b ⃗ |=2;当x =−2时,a ⃗ =(1,−2),b ⃗ =(−1,2), 则a ⃗ −b ⃗ =(2,−4).故|a ⃗ −b⃗ |=√22+(−4)2=2√5.【解析】本题主要考查平面向量的坐标运算以及向量共线,垂直的充要条件. (1)利用两个向量互相垂直,可以求出x 的值; (2)由两个向量的互相平行先求出x 的值,再求模长.37.【答案】解:(Ⅰ)依题意,点P 的轨迹是以M ,N 为焦点的双曲线的右支,所求方程为:x 22−y 22=1(x >0)(Ⅱ)当直线AB 的斜率不存在时,设直线AB 的方程为x =x 0,此时A(x 0,√x 02−2),B(x 0,−√x 02−2),OA ⃗⃗⃗⃗⃗⋅OB ⃗⃗⃗⃗⃗⃗ =2, 当直线AB 的斜率存在时,设直线AB 的方程为y =kx +b , 代入双曲线方程x 22−y 22=1中,得:(1−k 2)x 2−2kbx −b 2−2=0依题意可知方程1°有两个不相等的正数根,设A(x 1,y 1),B(x 2,y 2), 则{ Δ=4k 2b 2−4(1−k 2)⋅(−b 2−2)>0x 1+x 2=2kb1−k 2>0x 1x 2=b 2+2k 2−1>0, 解得|k|>1又OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2 =x 1x 2+(kx 1+b)(kx 2+b) =(1+k 2)x 1x 2+kb(x 1+x 2)+b 2 =2k 2+2k 2−1=2+4k 2−1>2 综上可知OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ 的最小值为2.【解析】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用. (Ⅰ)依题意,点P 的轨迹是以M ,N 为焦点的双曲线的右支,由此能求出其方程.(Ⅱ)当直线AB 的斜率不存在时,设直线AB 的方程为x =x 0,此时A(x 0,√x 02−2),B(x 0,−√x 02−2),OA ⃗⃗⃗⃗⃗⋅OB ⃗⃗⃗⃗⃗⃗ =2,当直线AB 的斜率存在时,设直线AB 的方程为y =kx +b ,代入双曲线方程x 22−y 22=1中,得(1−k 2)x 2−2kbx −b 2−2=0.依题意可知方程有两个不相等的正数根,由此入手能求出OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗⃗ 的最小值. 38.【答案】解:(Ⅰ)∵抛物线C :y 2=2px 经过点P(1,2),∴4=2p ,解得p =2,由题意,直线l 的斜率存在且不为0, 设过点(0,1)的直线l 的方程为y =kx +1, 设A(x 1,y 1),B(x 2,y 2) 联立方程组可得{y 2=4xy =kx +1,消y 可得k 2x 2+(2k −4)x +1=0, ∴Δ=(2k −4)2−4k 2>0,且k ≠0, 解得k <1,且k ≠0, 则x 1+x 2=−2k−4k 2,x 1x 2=1k 2,又∵PA 、PB 要与y 轴相交,∴直线l 不能经过点(1,−2),即k ≠−3,故直线l 的斜率的取值范围是(−∞,−3)∪(−3,0)∪(0,1); (Ⅱ)证明:设点M(0,y M ),N(0,y N ), 则QM ⃗⃗⃗⃗⃗⃗⃗ =(0,y M −1),QO ⃗⃗⃗⃗⃗⃗ =(0,−1), 因为QM⃗⃗⃗⃗⃗⃗⃗ =λQO ⃗⃗⃗⃗⃗⃗ ,所以y M −1=−λ, 故λ=1−y M ,同理μ=1−y N ,直线PA 的方程为y −2=2−y11−x 1(x −1)=2−y 11−y 124(x −1)=42+y 1(x −1),令x =0,得y M =2y 12+y 1,同理可得y N =2y22+y 2,第21页,共21页 因为1λ+1μ=11−y M +11−y N =2+y 12−y 1+2+y 22−y 2=8−2y 1y 2(2−y 1)(2−y 2) =8−2(kx 1+1)(kx 2+1)1−k(x 1+x 2)+k 2x 1x 2=8−[k 2x 1x 2+k(x 1+x 2)+1]1−k(x 1+x 2)+k 2x 1x 2=8−2(1+4−2k k +1)1−4−2k k +1=4−2×4−2k k 2−4−2k k =2,∴1λ+1μ=2,∴1λ+1μ为定值.【解析】本题考查直线与抛物线的位置关系,考查计算能力,属于难题. (Ⅰ)根据题意,利用直线与抛物线的位置关系进行求解即可;(Ⅱ)求得λ=1−y M ,μ=1−y N ,带入韦达定理化简即可.。

专题14 平面向量-2020年高考数学(文)母题题源解密(全国Ⅰ专版)(原卷版)

专题14 平面向量-2020年高考数学(文)母题题源解密(全国Ⅰ专版)(原卷版)

专题14 平面向量【母题来源一】【2020年高考全国Ⅰ卷文数】设向量(1,1),(1,24)m m =-=+-a b ,若⊥a b ,则m = .【答案】5【解析】由a b ⊥可得0a b ⋅=,又因为(1,1),(1,24)a b m m =-=+-,所以1(1)(1)(24)0a b m m ⋅=⋅++-⋅-=,即5m =,故答案:5.【点睛】本题考查有关向量运算问题,涉及到的知识点有向量垂直的坐标表示,属于基础题目.【母题来源二】【2019年高考全国I 卷文数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3 C .2π3 D .5π6 【答案】B 【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3, 故选B .【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.【母题来源三】【2018年高考全国I 卷文数】在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 【答案】A 【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+, 所以3144EB AB AC =-.故选A.【名师点睛】该题考查的是有关平面向量的基本问题,涉及的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.【母题来源四】【2017年高考全国I 卷文数】已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________.【答案】7【解析】由题得(1,3)m +=-a b ,因为()0+⋅=a b a ,所以(1)230m --+⨯=,解得7m =. 故答案为7.【名师点睛】如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ⊥b 的充要条件是x 1x 2+y 1y 2=0.【命题意图】高考对本部分的考查主要涉及平面向量的数量积和向量的线性运算,以运算求解和数形结合为主,重点掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系,掌握向量加法、减法、数乘的运算及其几何意义等,注重转化与化归思想的应用.【命题规律】1.平面向量的数量积一直是高考的一个热点,尤其是平面向量的数量积,主要考查平面向量的数量积的运算、向量的几何意义、模与夹角、两向量的垂直等问题.题型一般以选择题、填空题为主.2.平面向量的基本定理及坐标表示是高考中的一个热点内容,尤其是用坐标表示的向量共线的条件是高考考查的重点内容,一般是通过向量的坐标表示,将几何问题转化为代数问题来解决,多以选择题或填空题的形式呈现,有时也作为解答题中的条件,应用向量的平行或垂直关系进行转换.【方法总结】(一)平面向量线性运算问题的求解策略:(1)进行向量运算时,要尽可能地将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量,三角形的中位线及相似三角形对应边成比例等性质,把未知向量用已知向量表示出来.(2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在线性运算中同样适用.(3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.(二)用平面向量基本定理解决问题的一般思路:(1)先选择一组基底,并运用平面向量基本定理将条件和结论表示成该基底的线性组合,再进行向量的运算.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便,另外,要熟练运用线段中点的向量表达式.(三)平面向量数量积的类型及求法:(1)平面向量数量积有两种计算公式:一是夹角公式⋅=a b ||||cos θa b ;二是坐标公式⋅=a b 1212x x y y +.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.(3)两个应用:①求夹角的大小:若a ,b 为非零向量,则由平面向量的数量积公式得cos θ=||||⋅a b a b (夹角公式),所以平面向量的数量积可以用来解决有关角度的问题.②确定夹角的范围:数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.(四)平面向量的模及其应用的类型与解题策略:(1)求向量的模.解决此类问题应注意模的计算公式||==a ,或坐标公式||=a 的应用,另外也可以运用向量数量积的运算公式列方程求解.(2)求模的最值或取值范围.解决此类问题通常有以下两种方法:①几何法:利用向量加减法的平行四边形法则或三角形法则,结合模的几何意义求模的最值或取值范围;②代数法:利用向量的数量积及运算法则转化为不等式或函数求模的最值或取值范围.(3)由向量的模求夹角.对于此类问题的求解,其实质是求向量模方法的逆运用.(五)向量与平面几何综合问题的解法:(1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.(2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程来进行求解.1.(湖北省黄冈中学2020届高三下学期6月第三次模拟考试数学试题)已知向量a,b 满足a 1=,a b 1⋅=-,则a (2a b)⋅-=A .4B .3C .2D .02.(黑龙江省大庆市第四中学2020届高三上学期第一次检测数学试题)已知向量a ,b 的夹角为2π3,a b ⋅=-3,|b |=2,则|a |=A .32-B .3-23.(西藏日喀则市2020届高三上学期学业水评测试(模拟)数学试题)已知向量(,3)a x =,(2,2)b =- ,且a b ⊥,则a b +=A .5BC .D .104.(黑龙江省大庆市第四中学2020届高三上学期第二次检测数学试题)已知向量a ,b 满足1a =,2b =,()()28a b a b +⋅-=-,则a 与b 的夹角为A .2πB .3πC .4πD .6π 5.(山东省聊城市2019届高三三模数学试题)在正方形ABCD 中,E 为DC 的中点,若AE AB AC λμ=+,则λμ+的值为A .12-B .12C .1-D .1 6.(广东省深圳市宝安区2021届高三上学期期末调研(9月开学考试)数学试题)在ABC ∆中,60BAC ∠=︒,3AB =,4AC =,点M 满足2B M M C =,则AB AM ⋅等于A .10B .9C .8D .77.(2020届河北省唐山市高三第二次模考数学试题)已知向量a ,b 满足1a =,()()3a b a b -⊥-,则a 与b 的夹角的最大值为A .30B .60︒C .120︒D .150︒ 8.(四川省德阳市2020届高三高考数学三诊试题)设向量()2,1a =-,(),3a b m +=-,()3,1c =,若()a b c +⊥,设a 、b 的夹角为θ,则cos θ=55C D . 9.(安徽省安庆七中2020届高三下学期高考模拟冲刺卷(一)数学试题)已知向量,a b 的夹角为45°,且1,2a b ==,则a b -=__________10.(甘肃省武威市第十八中学2020届高三上学期期末考试数学试题)已知向量(1,2)a =,(2,1)b =,(1,)c n =,若(23)a b c -⊥,则n =_____11.(安徽省宣城市郎溪县2020届高三下学期仿真模拟考试(最后一卷)数学试题)已知向量(4,3),(2,1)a b ==-,如果向量a b λ+与b 垂直,则2a b λ-的值为____.12.(内蒙古呼和浩特市2019届高三3月第一次质量普查调研考试数学试题)已知2,a b =是单位向量,且a 与b 夹角为60,则()-a a b ⋅ 等于_____. 13.(2020届广西梧州市蒙山县蒙山中学高三上学期第一次测试数学)已知向量(2,1)a =,10a b ⋅=,52a b +=,则b =________. 14.(山东省2020年普通高等学校招生统一考试数学必刷卷(七))已知非零向量a ,b 满足|2|7||a b a +=,(2)a a b ⊥-,则向量a ,b 的夹角为______. 15.(2020届山西省太原市第五中学高三第二次模拟(6月)数学试题)已知向量非零向量a 、b 的夹角为23π,且满足2a =,3b =,则2a b +=______. 16.(陕西省商洛市洛南中学2020届高三下学期第十次模拟数学试题)已知点(2,0)A ,(1,2)B ,(2,2)C ,AP AB AC =-,O 为坐标原点,则AP =______,OP 与OA 夹角的取值范围是______.。

专题07 2020版平面向量(解析版)

专题07 2020版平面向量(解析版)

(1,
3)

结合向量数量积的定义式,
可知 AP AB 等于 AB 的模与 AP 在 AB 方向上的投影的乘积,
所以
AP
AB
的取值范围是
(2,
6)

故选:A.
【点睛】该题以正六边形为载体,考查有关平面向量数量积的取值范围,涉及到的知识点有向量数量积 的定义式,属于简单题目.
3.【2020 年高考全国Ⅰ卷理数】设 a, b 为单位向量,且| a b | 1,则| a b | ______________.
2.【2020 年新高考全国Ⅰ卷】已知 P 是边长为 2 的正六边形 ABCDEF 内的一点,则 AP AB 的取值范围是
A. (2, 6)
B. (6, 2)
C. (2, 4)
D. (4, 6)
【答案】A 【解析】如图,
1
AB 的模为 2,根据正六边形的特征,
可以得到
AP

AB
方向上的投影的取值范围是
a
b
0
且不反向共线,
a
b
2
3t
0
,得
t
2
.
3
向量
a
2,
t

b
1,
3
共线时,
2
3
t
,得
t
6
.此时
a
2b
.
所以 t 2 且 t 6 . 3
故选 C.
【点睛】
本题主要考查了利用数量积研究向量的夹角,当为钝角时,数量积为 0,容易忽视反向共线时,属于易
A.−8
B.−6
C.6
D.8
【答案】D
【解析】∵

专题13 平面向量-2020年高考数学(理)(全国Ⅱ专版)(原卷版)

专题13 平面向量-2020年高考数学(理)(全国Ⅱ专版)(原卷版)

,则 a 与 b
夹角的余弦值为
A. 1
B. 4
1
C.
4
D.
3
5
3
5
7.(2020·四川省阆中中学高三二模)已知向量
a
1,
m ,b
3,
2
,且
(a
b)
b
,则
m=()
A.−8
B.−6
C.6
D.8
8.(2020·黑龙江省哈尔滨市第六中学校高三三模)已知向量
a
(1,
2)

r b
(m,1)
.若向量
a

a
(
x
1,
x)

b
(1,
2)
,若
a
/
/b
,则
x
A. 3
B.-1
2
C.
3
D.
2
3
2
2.(2020·福建省福州第一中学高三)已知平面向量
a
(1,
x)
,b
(2,
3)
,若向量
2a
b
与向量
b
共线,则
x
A. 7
5
B.
C. 3
D. 1
2
2
3.(2020·湖北省高三)若向量 a 和 b 满足
a
2 2,
2
,AE
2EB
,AF
FC

设 BF 与 CE 交于 G,则 cos AG, AE
A. 10 10
B. 3 10 10
3
C.
5
4
D.
5
29 .( 2020· 福 建
省福州第一

2020高考数学(理数)题海集训21平面向量的线性运算(30题含答案)

2020高考数学(理数)题海集训21平面向量的线性运算(30题含答案)

24. 在矩形 ABCD中,若 AB=3,BC=2,则 | AB + BC |=__________.
25. 已知 |O→A|=|O→B |= 2 ,且∠ AOB=120°,则 |O→A+ O→B|=________.
26. 在直角梯形 ABCD中,∠ A=90°,∠ B=30°, AB=2 3, BC=2,点 E 在线段 CD上,
=|z| 2=
17. B
18. D∵

. 故选: A. ,∴
,∴
,当

,∴
趋近于射线
时,由平行四边形法则可知

,∴
,因此
的取值范围是
,展开得 时,
.当 ,此时 ,故选 D.
19. 答案为: D;
20. C
21. 答案为: 3 ;
14. 答案为: 2
22. 答案为: 30° 23. 答案为:①②③④;
B.
①③
C.
②③
D.
①②③
―→ ―→ ―→
2. 已知点 O为△ ABC外接圆的圆心,且 OA + OB + CO=0,则△ ABC的内角 A 等于 (
)
A.30° B .45°
C .60° D .90°
3. 与向量 d (12,5) 平行的单位向量为(

A.
12 (
,5)
B.
13
12 5
12 5
23. 给出下列命题: ①若 O→D+ O→E=→OM,则 O→M- O→E=→OD; ②若 O→D+ O→E=→OM,则 O→M+→DO=O→E; ③若 O→D+ O→E=→OM,则 O→D- E→O=→OM; ④若 O→D+ O→E=→OM,则 D→O+→EO=M→O. 其中所有正确命题的序号为 ________.

2020年高考数学(理)二轮专项复习专题06 平面向量(含答案)

2020年高考数学(理)二轮专项复习专题06 平面向量(含答案)

2020年高考数学(理)二轮专项复习专题06 平面向量平面向量是工具性的知识,向量的坐标化使得向量具有代数和几何两种形式,它把“数”和“形”很好地结合在一起,体现了重要的数学思想方法,在高考中,除了对向量本身的概念与运算的知识进行考察外,向量还与平面几何、三角几何、解析几何、立体几何等知识综合在一起考查,本专题应该掌握向量的基本概念、向量的运算方法与公式以及向量的应用.§6-1 向量的概念与运算【知识要点】1.向量的有关概念与表示(1)向量:既有方向又有大小的量,记作向量c b a ,,,自由向量:数学中所研究的向量是可以平移的,与位置无关,只要是长度相等,方向相同的向量都看成是相等的向量.(2)向量的模:向量的长度,记作:|||,|a AB向量的夹角:两个非零向量a ,b ,作b a ==OB OA ,,则(AOB 称为向量a ,b 的夹角,记作:〈a ,b 〉 零向量:模为0,方向任意的向量,记作:0单位向量:模为1,方向任意的向量,与a 共线的单位向量是:)0(||=/±a a a(3)相等向量:长度相等,且方向相同的向量叫相等向量. 相反向量:长度相等,方向相反的向量.向量共线:方向相同或相反的非零向量是共线向量,零向量与任意向量共线;共线向量也称为平行向量.记作a ∥b向量垂直;〈a ,b )=90°时,向量a 与b 垂直,规定:0与任意向量垂直. 2.向量的几何运算(注意:运算法则、运算律)(1)加法:平行四边形法则、三角形法则、多边形法则. (2)减法:三角形法则. (3)数乘:记作:λ a .它的长度是:|λ a |=|λ |·|a | 它的方向:①当λ >0时,λ a 与a 同向 ②当λ <0时,λ a 与a 反向 ③当λ =0时,λ a =0 (4)数量积:①定义:a ·b =|a ||b |cos 〈a ,b 〉其物理背景是力在位移方向所做的功. ②运算律:1.(交换律)a ·b =b ·a2.(实数的结合律)λ (a ·b )=(λ a )·b =a ·(λ b ) 3.(分配律)(a +b )·c =a ·c +b ·c ③性质:设a ,b 是非零向量,则: a ·b =0⇔a ⊥ba 与b 同向时,a ·b =|a |·|b |a 与b 反向时,a ·b =-|a |·|b | 特殊地:a ·a =|a |2或a a a ⋅=||夹角:||||,cos b a ba b a ⋅>=<|a ·b |≤|a | |b |3.向量的坐标运算若在平面直角坐标系下,a =(x 1,y 1),b =(x 2,y 2) (1)加法:a +b =(x 1+x 2,y 1+y 2) (2)减法:a -b =(x 1-x 2,y 1-y 2) (3)数乘:λ a =(λ x 1,λ y 1) (4)数量积:a ·b =x 1x 2+y 1y 2 (5)若a =(x ,y ),则22||y x +=a(6)若a =(x 1,y 1),b =(x 2,y 2),则222221212121||||,cos yx yx y y x x +++=>=<⋅⋅b a ba b a(7)若A (x 1,y 1),B (x 2,y 2),则221221)()(||y y x x AB -+-=(8)a 在b 方向上的正射影的数量为22222121||,cos ||y x y y x x ++=>=<⋅b b a b a a 4.重要定理(1)平行向量基本定理:若a =λ b ,则a ∥b ,反之:若a ∥b ,且b ≠0,则存在唯一的实数λ 使得a =λ b (2)平面向量基本定理:如果e 1和e 2是平面内的两个不共线的向量,那么该平面内的任一向量a ,存在唯一的一对实数a 1,a 2使a =a 1e 1+a 2e 2(3)向量共线和垂直的充要条件:若在平面直角坐标系下,a =(x 1,y 1),b =(x 2,y 2) 则:a ∥b ⇔x 1y 2-x 2y 1=0,a ⊥b ⇔x 1x 2+y 1y 2=0(4)若a =(x 1,y 1),b =(x 2,y 2),则⎪⎩⎪⎨⎧==⇔=2121y y x x b a【复习要求】1.准确理解相关概念及表示,并进行简单应用;2.掌握向量的加法、减法、数乘运算的方法、几何意义和坐标运算,了解向量的线性运算的法则、性质;会选择合适的方法解决平面向量共线等相关问题;3.熟练掌握向量的数量积的运算、性质与运算律,会利用向量的数量积解决有关长度、角度、垂直、平行等问题.【例题分析】例1 向量a 、b 、c 是非零的不共线向量,下列命题是真命题的个数有( )个 (1)(b ·c )a -(c ·a )b 与c 垂直, (2)若a ·c =b ·c ,则a =b , (3)(a ·b )c =a (b ·c ), (4)a ·b ≤|a ||b |A .0B .1C .2D .3【分析】(1)真命题,注意:向量的数量积是一个实数,因此[(b ·c )a -(c ·a )b ]·c =(b ·c )(a ·c )-(c ·a )(b ·c )=0,所以c (b ·c )a -(c ·a )b 与c 垂直;(2)假命题.a ·c =b ·c ≠a =b ;即向量的数量积不能两边同时消掉相同的向量,比如:向量a 与向量b 都是与向量c 垂直且模长不等的向量,可以使得左边的式子成立,但是a 、b 这两个向量不相等;(3)假命题.(a ·b )c ≠a (b ·c ),实际上(a ·b )c 是与向量c 方向相同或相反的一个向量,a (b ·c )是与a 方向相同或相反的一个向量,向量a 、c 的方向可以不同,左右两边的向量就不等;(4)真命题.a ·b =|a ||b |cos 〈a ,b 〉,且cos 〈a ,b 〉≤1,所以a ·b ≤|a ||b |. 解答:选C .【评析】(1)我们在掌握向量的有关概念时要力求准确和完整,比如平行向量(共线向量)、零向量等,注意积累像这样的容易错误的判断并纠正自己的认识;(2)向量的加减运算与数乘运算的结果仍然是一个向量,而向量的数量积运算结果是一个实数,要熟练掌握向量的运算法则和性质.例2 已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( )A .)37,97(B .)97,37(--C .)97,37(D .)37,97(--【分析】知道向量的具体坐标,可以进行向量的坐标运算;向量的平行与垂直的关系也可以用坐标体现,因此用待定系数法通过坐标运算求解.解:不妨设c =(m ,n ),则a +c =(1+m ,2+n ),a +b =(3,-1),对于(c +a )∥b ,则有-3(1+m )=2(2+n );又c ⊥(a +b ),则有3m -n =0,则有37,97-=-=n m 故选择D 【评析】平面向量的坐标运算,通过平面向量的平行和垂直关系的考查,很好地体现了平面向量的坐标运算在解决具体问题中的应用.此外,待定系数法是在解决向量的坐标运算中常用的方法.例3 (1)已知向量)10,(),5,4(),12,(k k -===,且A 、B 、C 三点共线,求实数k 的值. (2)已知向量a =(1,1),b =(2,-3),若k a -2b 与a 垂直,求实数k 的值. 【分析】(1)向量a 与b (b ≠0)共线⇔存在实数m 使a =m b . 当已知向量的坐标时,a ∥b ⇔x 1y 2-x 2y 1=0.(2)利用向量的数量积能够巧妙迅速地解决有关垂直的相关问题. a ·b =0⇔a ⊥b ⇔x 1x 2+y 1y 2=0解:(1)∵)10,(),5,4(),12,(k OC OB k OA -===, ∴)5,4(),7,4(-+=--=k CB k AB , ∵A 、B 、C 三点共线,∴//,即(4-k )(-5)-(4+k )(-7)=0,解得:⋅-=32k (2)由(k a -2b )⊥a ,得(k a -2b )·a =k a 2-2b ·a =2k -2·(2-3)=0,所以k =-1. 【评析】①向量a 与b (b ≠0)共线的充要条件是存在实数m 使a =m b ;当已知向量的坐标时,a ∥b ⇔x 1y 2-x 2y 1=0.若判断(或证明)两个向量是否共线,只要判断(或证明)两个向量之间是否具有这样的线性关系即可;反之,已知两个向量具有平行关系时,也有线性等量关系成立.②利用向量的共线定理来解决有关求参数、证明点共线或线段平行,以及利用向量的数量积解决垂直问题等是常见的题型,注意在解题过程中适当选择方法、正确使用公式,并注意数形结合.例4 已知:|a |=2,|b |=5,〈a ,b 〉=60°,求:①a ·b ;②(2 a +b )·b ;③|2a +b |;④2 a +b 与b 的夹角θ 的余弦值【分析】利用并选择合适的公式来求数量积、模、夹角等:a ·b =|a ||b |cos 〈a ,b 〉=x 1x 2+y 1y 2a a a a a a ⋅⋅=⇒=||||2,若a =(x ,y ),则22||y x +=a222221212121||||,cos yx yx y y x x +++=>=<⋅⋅b a ba b a解:①∵|a |=2,|b |=5,〈a ,b 〉=60°,∴a ·b =|a ||b |cos 〈a ,b 〉=5; ②(2a +b )·b =2a ·b +b ·b =10+25=35; ③;6125201644)2(|2|222=++=++=+=+⋅⋅b b a a b a b a④⋅==++=++>=+<⋅⋅⋅⋅6161756135||)2()2(|||2|)2(,2cos 2b b a b b a b b a b b a b b a【评析】向量的数量积是一个非常好的工具,利用向量的数量积可以解决求长度、角度、距离等相关问题,同时用向量的数量积解决垂直相关问题也是常见的题型,注意使用正确的公式.例5 已知向量a =(sin θ ,cos θ -2sin θ ),b =(1,2). (Ⅰ)若a ∥b ,求tan θ 的值;(Ⅱ)若|a |=|b |,0<θ <π,求θ 的值.【分析】已知向量的坐标和平行关系与模长,分别用坐标公式刻画. 解:(Ⅰ)因为a ∥b ,所以2sin θ =cos θ -2sin θ ,于是4sin θ =cos θ ,故41tan =θ. (Ⅱ)由|a |=|b |知,sin 2θ +(cos θ -2sin θ )2=5,所以1-2sin2θ +4sin 2θ =5. 从而-2sin2θ +2(1-cos2θ )=4,即sin2θ +cos2θ =-1, 于是22)4π2sin(-=+θ又由0<θ <π知,49π4π24π<+<θ,所以45π4π2=+θ,或47π4π2=-θ 因此2π=θ,或43π=θ.例6 设a 、b 、c 是单位向量,且a ·b =0,则(a -c )·(b -c )的最小值为( ) (A)-2(B)22-(C)-1(D)21-【分析】由向量的模长以及夹角,考虑从数量积的运算寻找解决问题的突破口解:∵a ,b ,c 是单位向量,∴(a -c )·(b -c )=a ·b -(a +b )·c +c 221〉,〈cos 121-≥+-=⋅⋅c b a故选D .例7 在△ABC ,已知23||.||32BC ==⋅,求角A ,B ,C 的大小. 【分析】熟悉向量的数量积的形式,再结合三角公式来解决问题 解:设BC =a ,AC =b ,AB =c由||||32AC AB AC AB ⋅⋅=得bc A bc 3cos 2=,所以23cos =A 又A ∈(0,π),因此6π=A由23||||3BC =⋅得23a bc =,于是43sin 3sin sin 2==⋅A B C 所以43)sin 23cos 21(sin ,43)6π5sin(sin =+=-⋅⋅C C C C C ,因此 02cos 32sin ,3sin 32cos sin 22=-=+⋅C C C C C ,即0)3π2sin(=-C由6π=A 知6π50<<C ,所以34π3π2,3π<--C ,从而03π2=-C ,或π3π2=-C ,即6π=C ,或32π=C ,故 6π,32π,6π===C B A ,或⋅===32π,6π,6πC B A【评析】向量往往是一步工具性的知识应用,继而转化为三角函数、不等式、解三角形等知识,因此,熟练准确掌握向量的基本概念、基本运算法则、性质,以及灵活选择合适的公式非常必要.练习6-1一、选择题1.平面向量a ,b 共线的充要条件是( ) A .a ,b 方向相同B .a ,b 两向量中至少有一个为零向量C .∃λ ∈R ,b =λ aD .存在不全为零的实数λ 1,λ 2,λ 1a +λ 2b =02.已知平面向量a =(1,-3),b =(4,-2),λ a +b 与a 垂直,则λ 是( ) A .-1 B .1 C .-2 D .2 3.已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且2=,则顶点D 的坐标为( ) A .)27,2(B .)21,2(-C .(3,2)D .(1,3)4.设△ABC 的三个内角A ,B ,C ,向量)cos 3,(cos ),sin ,sin 3(A B B A ==n m ,若m ·n =1+cos(A +B ),则C =( ) A .6π B .3π C .32π D .65π 二、填空题5.设a =(2k +2,4),b =(8,k +1),若a 与b 共线,则k 值为______. 6.已知向量),3(),2,1(m OB OA =-=,若AB OA ⊥,则 m =______. 7.已知M (3,-2),N (-5,-1),MN MP 21=,则P 点坐标为______. 8.已知a 2=1,b 2=2,(a -b )·a =0,则a 和b 的夹角是______. 三、解答题9.已知向量a =(x +3,x 2-3x -4)与AB 相等,其中A (1,2),B (3,2),求实数x 的值.10.已知向量a 与b 同向,b =(1,2),a ·b =10.(1)求向量a 的坐标;(2)若c =(2,-1),求(b ·c )a .11.若向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,求向量a 的模.§6-2 向量的应用【知识要点】1.向量的基本概念与运算与平面几何联系解决有关三角形的形状、解三角形的知识; 2.以向量为载体考查三角函数的知识;3.在解析几何中用向量的语言来表达平行、共线、垂直、中点以及定比分点等信息,实际上还是考查向量的运算方法与公式. 【复习要求】会用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力.例1若·==⋅⋅,求证三角形ABC 是正三角形, 【分析】给出的是一个连等的等式,考虑移项进行向量的运算,进而得到正三角形的某些判定的结论. 证明0)()(=+=-=-⋅⋅⋅⋅,即与BC 边上的中线垂直,所以AB =AC ,同理BC =BA ,可以得到该三角形是等边三角形;例2 已知四边形ABCD 中,若⋅⋅⋅⋅===,判断四边形ABCD 的形状. 【分析】已知向量的数量积的对称式,可以从运算和几何意义上分别研究. 解答1从几何意义上设k ====⋅⋅⋅⋅若k >0,则∠ABC ,∠BCD ,∠CDA ,∠DAB 都是钝角,与四边形内角和为360°矛盾,舍;同理k <0时,也不可能,故k =0,即四边形ABCD 为矩形.解答2从运算上,0)()(=+=-=-⋅⋅⋅⋅ 同理;0)()(=+=-=-⋅⋅⋅⋅ 于是BC AD //,同理CD AB //,得到四边形ABCD 是平行四边形;∴02)()(==+=-=-⋅⋅⋅⋅⋅ ∴BC AB ⊥,∴四边形ABCD 为矩形.【评析】利用数量积解决三角形的形状时,常常涉及向量的夹角问题,注意向量的数量积的正负对向量夹角的约束,另外,一些对称式告诉我们几何图形应该具有一个规则的形状,不因为改变字母而变化形状,我们可以直观判断形状.例3 已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量)1,3(-=m ,n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,求角A ,B 的大小.【分析】在三角形中,借助垂直向量的条件可以得到A 角的三角方程,从而求出三角形的内角A ,已知的等式左右两边是边的齐次式,可以借助三角形的正弦定理、三角公式等知识求三角形的其余内角.解:∵ 0sin cos 3=-=⊥⋅∴A A n m n m ,即3tan =A ,∴三角形内角;3π=A ∵a cosB +b cos A =c sinC ,∴sin A cos B +sin B cos A =sin 2C ,即sin(A +B )=sin 2C ,sin C =1,,2π=C ∴⋅=6πB 【评析】向量的知识经常被用在三角形或者解析几何等知识里,结合相关的知识点进行考查,常见的有中点的表达(比如221OBOA OM AB AM 、MB AM +===、等都说明M 是AB 中点)、定比分点的表达、平行(或共线)或垂直的表达等,要注意分析并积累向量语言表达的信息.例4 已知△ABC 的三个顶点的直角坐标分别为A (3,4)、B (0,0)、C (c ,0).(1)若0=⋅,求c 的值;(2)若c =5,求sin ∠A 的值.【分析】(1)利用点的坐标求向量的坐标,利用向量数量积的坐标公式转化为代数问题进行运算求解即可.(2)向量的数量积有代数和几何两种运算公式,为我们沟通了更多的等量关系,我们不仅可以数形结合,还可以利用解三角形的其他知识,如①利用数量积⋅求出cos A 进而求sin A ;②余弦定理正弦定理解:(1))4,3(),4,3(--=--=c 由0=⋅AC AB 可得-3(c -3)+16=0解得325=c (2)[法一]当c =5时,可得AB =5,52=AC ,BC =5,△ABC 为等腰三角形, 过B 作BD ⊥AC 交AC 于D ,可求得52=BD 故,552sin ==ABBD A[法二].cos ||||),4,2(),4,3(AC AB A AC AB AC AB ⋅=-=--=⋅=∈=+-=⨯∴∴∴552sin ],π,0[,55cos 166cos 525A A A A 【评析】向量的数量积有代数和几何两种运算公式,为我们沟通了更多的等量关系,使用时不仅可以数形结合,还可以和解三角形的其他知识——余弦定理、正弦定理一起来解决有关三角形的问题.例5 若等边△A B C 的边长为32,平面内一点M 满足3261+=,则 =⋅______.解析:建立直角坐标系,因为三角形是正三角形,故设C (0,0),)3,3(),0,32(B A ,利用向量坐标运算,求得)21,233(M ,从而求得)25,23(),21,23(--=-=,运用数量积公式解得为-2.另外,还可以通过向量的几何运算求解.解:),3265()6131()()(--=--=⋅⋅⋅ 660cos 3232,32||||=⨯===⋅⋅ ,得到.2-=⋅【评析】注意向量有两套运算公式,有坐标时用代数形式运算,没有坐标时用向量的几何形式运算,同时注意向量在解三角形中的几何运用,以及向量的代数化手段的重要性.例6 已知向量a =(cos a ,sin a ),b =(cos β ,sin β ),c =(-1,0) (Ⅰ)求向量b +c 的长度的最大值;(Ⅱ)设4π=α,且a ⊥(b +c ),求cos β 的值. 【分析】关于向量的模一方面有坐标的计算公式和平方后用向量的数量积运算的公式,另一方面有几何意义,可以数形结合;解:(1)解法1:b +c =(cos β -1,sin β ),则 |b +c |2=(cos β -1)2+sin 2β =2(1-cos β ).∵-1≤cos β ≤1,∴0≤|b +c |2≤4,即0≤|b +c |≤2.当cos β =-1时,有|b +c |=2,所以向量b +c 的长度的最大值为2. 解法2:∵|b |=1,|c |=1,|b +c |≤|b |+|c |=2 当cos β =-1时,有|b +c |=(-2,0),即|b +c |=2, b +c 的长度的最大值为2.(2)解法1:由已知可得b +c =(cos β -1,sin β ),a ·(b +c )=cos α cos β +sin α sin β -cos α =cos(α -β )-cos α . ∵a ⊥(b +c ),∴a ·(b +c )=0,即cos(α -β )=cos α .由4π=α,得4πcos )4πcos(=-β,即).(4ππ24πZ ∈±=-k k β ∴4ππ2+=k β或β =2k π,(k ∈Z ),于是cos β =0或cos β =1.解法2:若4π=α,则)22,22(=a ,又由b =(cos β ,sin β ),c =(-1,0)得,22sin 22cos 22)sin ,1(cos )22,22()(-+=-⋅=+⋅ββββc b a ∵a ⊥(b +c ),∴a ·(b +c )=0,即cos β (cos β -1)=0∴sin β =1-cos β ,平方后sin 2β =(1-cos β )2=1-cos 2β ,化简得cos β (cos β -1)=0 解得cos β =0或cos β =1,经检验,cos β =0或cos β =1即为所求例7 已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角,3π=C 求△ABC 的面积. 【分析】已知向量的坐标和位置关系,考虑用坐标运算入手,结合三角形的条件解决问题 证明:(1)∵m ∥n ,∴a sin A =b sin B , 即Rbb R a a 22⋅⋅=,其中R 是三角形ABC 外接圆半径,a =b , ∴△ABC 为等腰三角形.解(2)由题意可知m ⊥p ,m ·p =0,即a (b -2)+b (a -2)=0,∴a +b =ab ,由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab , 即(ab )2-3ab -4=0,∴ab =4(舍去ab =-1) ∴33πsin 421sin 21===⋅⋅C ab S 例8 已知向量)2sin ,2(cos ),23sin ,23(cos xx x x -==b a ,其中].2π,0[∈x(1)求a ·b 及|a +b |;(2)若f (x )=a ·b -2λ |a +b |的最小值是23-,求λ 的值. 【分析】只要借助向量的数量积以及模的坐标公式代入,继而转化为三角函数与函数的有关知识. 解:(1)x xx x x 2cos 2sin 23sin2cos 23cos =-=⋅b a ]2π,0[,cos 22cos 22)(||2∈=+=+=+x x x b a b a或]2π,0[,cos 22cos 22)2sin 23(sin )2cos 23(cos||22∈=+=-++=+x x x x x x x b a (2)f (x )=a ·b -2λ |a +b |=cos2x -4λ cos x =2cos 2x -4λ cos x -1=2(cos x -λ )2-2λ 2-1 ∵],1,0([cos ]2π,0[x x ∴∈①当λ ≤0时;f (x )的最小值是-1,不可能是23-,舍; ②当0<λ <1时,f (x )的最小值是23122-=--λ,解得;21=λ③当λ ≥1时,f (x )的最小值是2341-=-λ,解得185<=λ,舍;∴⋅=21λ【评析】向量的知识经常和三角函数、函数、不等式等的知识联系在一起进行考查,向量仅仅是一步坐标运算,继而转化为其他知识,因此使用公式时要准确,为后续解题做好准备.练习6-2一、选择题1.若为a ,b ,c 任意向量,m ∈R ,则下列等式不一定成立的是( ) A .(a +b )+c =a +(b +c ) B .(a +b )·c =a ·c +b ·c C .m (a +b )=m a +m b D .(a ·b )c =a (b ·c ) 2.设)31,(cos ),sin ,23(αα==b a ,且a ∥b ,则α 的值是( ) A .)(,4ππ2Z ∈+=k k α B .)(,4ππ2Z ∈-=k k α C .)(,4ππZ ∈+=k k α D .)(,4ππZ ∈-=k k α3.在△ABC 中,b a ==,,且a ·b >0,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等腰直角三角形4.已知:△ABC 的三个顶点A 、B 、C 及平面内一点P ,且=++,则点P 与△ABC 的位置关系是( )A .P 在△ABC 内部B .P 在△ABC 外部 C .P 在AB 边上或其延长线上D .P 在AC 边上二、填空题5.若向量a ,b 满足|a |=1,|b |=2,且a 与b 的夹角为3π,则|a +b |=______. 6.已知向量a =(cos θ ,sin θ ),向量)1,3(-=b ,则|2a -b |的最大值是______. 7.若)1,2(),3,1(x ==b a ,且(a +2b )⊥(2a -b ),则x =______.8.已知向量)5,3(),6,4(==OB OA ,且OB AC OA OC //,⊥,则向量=______ 三、解答题9.平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,求|a +2b |.10.P 在y 轴上,Q 在x 轴的正半轴上,H (-3,0),M 在直线PQ 上,,0=⋅23-=.当点P 在y 轴移动时,求点M 的轨迹C 方程.11.已知向量a =(sin θ ,1),2π2π),cos ,1(<<-=θθb (1)若a ⊥b ,求θ ;(2)求|a +b |的最大值.习题6一、选择题1.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2 a +3b =( ) A .(-5,-10) B .(-4,-8) C .(-3,-6) D .(-2,-4) 2.给出下列五个命题: ①|a |2=a 2;②aba b a 2=⋅;③(a ·b )2=a 2·b 2; ④(a -b )2=a 2-2a ·b +b 2;⑤若a ·b =0,则a =0或b =0;其中正确命题的序号是( ) A .①②③ B .①④ C .①③④ D .②⑤3.函数y =2x +1的图象按向量a 平移得到函数y =2x +1的图象,则( ) A .a =(-1,-1) B .a =(1,-1) C .a =(1,1) D .a =(-1,1) 4.若a 2=1,b 2=2,(a -b )·a =0,则a 与b 的夹角为( ) A .30° B .45° C .60° D .90° 5.已知在△ABC 中,,⋅⋅⋅==则O 为△ABC 的( ) A .内心B .外心C .重心D .垂心二、填空题6.已知p =(1,2),q =(-1,3),则p 在q 方向上的正射影长为______;7.如图,正六边形ABCDEF 中,有下列四个命题:①.2=+ ②.AF AB AD 22+= ③.AB AD AD AC ⋅⋅= ④.)()(EF AF AD EF AF AD ⋅=⋅其中真命题的代号是______(写出所有真命题的代号).8.给定两个长度为1的平面向量OA 和OB ,它们的夹角为120°.如图所示,点C 在以O 为圆心的圆弧AB 上变动.若OB y OA x OC +=,其中x ,y ∈R ,则x +y 的最大值是______.9.已知向量a =(2,4),b =(1,1),若向量b ⊥(a +λ b ),则实数λ 的值______;若b ba a a a c )(⋅⋅-=,则向量a 与c 的夹角为______;10.已知|a |=3,|b |=4,a ·b =-2,则|a +b |=______.三、解答题11.已知).1,3(),3,1(-==b a(1)证明:a ⊥b ;(2)若k a -b 与3a -k b 平行,求实数k ;(3)若k a -b 与k a +b 垂直,求实数k .12.设向量a =(cos23°,cos67°),b =(cos68°,cos22°),u =a +t b ,(t ∈R ).(1)求a ·b(2)求u 的模的最小值.13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,.73tan =C(1)求cos C ;(2)若25=⋅,且a +b =9,求c .14.已知函数f (x )=kx +b 的图象与x ,y 轴相交于点A ,B ,j i j i ,(22+=,分别是与x ,y 轴正半轴同方向的单位向量)函数g (x )=x 2-x -6,(1)求k ,b 的值;(2)当x 满足f (x )>g (x )时,求函数)(1)(x f x g +的最小值.15.已知向量a =(x 2,x +1),b =(1-x ,t ),若f (x )=a ·b 在区间(-1,1)上是增函数,求t 的取值范围.专题06 平面向量参考答案练习6-1一、选择题1.D 2.A 3.A 4.C二、填空题5.3或-5 6.4 7.)23,1(-- 8.45°三、解答题 9.由已知)0,2(==AB a ,所以⎩⎨⎧=--=+043232x x x ,得x =-1.10.(1)由已知设a =(λ ,2λ )且λ >0,a ·b =λ +4λ =10,λ =2,所以a =(2,4);(2)(b ·c )a =(2-2)a =0.11.6.练习6-2一、选择题1.D . 2.C . 3.C . 4.D .二、填空题5.7 6.4 7.-6或9 8.)214,72(-三、解答题9.32 由已知|a |=2,|a +2b |2=a 2+4a ·b +4b 2=4+4×2×1×cos60°+4=12 ∴32|2|=+b a .10.解答:设M (x ,y ),∵M 在直线PQ 上, ),0,32(),2,0(,23x Q y P --=∴ ∵)2,(),2,3(,0y y x y +=-==⋅ ∴02323.=-y y x ,即y 2=4x .(除原点.) 11.解:(Ⅰ)若a ⊥b ,则sin θ +cos θ =0,由此得)2π2π(1tan <<--=θθ,所以;4π-=θ (Ⅱ)由a =(sin θ ,1),b =(1,cos θ )得)cos (sin 23)cos 1()1(sin ||22θθθθ++=++=+b a,)4πsin(223++=θ 当1)4πsin(=+θ时,|a +b |取得最大值,即当4π=θ时,|a +b |最大值为.12+ 习题6一、选择题1.B 2.B 3.A 4.B 5.D二、填空题6.210 7.①、②、④ 8.2 9.λ =-3;90° 10.21三、解答题11.(2)k =±3;(3)k =±1.12.答案:(1)22=⋅b a ,(2)22||min =u 13.解答:(1)∵73tan =C ,∴73cos sin =C C ,又∵sin 2C +cos 2C =1 解得⋅±=81cos C ∵tan C >0,∴C 是锐角. ∴⋅=81cos C (2)∵20,25cos ,25===⋅∴∴ab C ab . 又∵a +b =9 ∴a 2+2ab +b 2=81.∴a 2+b 2=41.∴c 2=a 2+b 2-2ab cos C =36.∴c =6.14.略解:(1)由已知得)0,(k bA -,B (0,b ),则),(b k b AB =,于是.2,2==b kb ∴k =1,b =2. (2)由f (x )>g (x ),得x +2>x 2-x -6,即(x +2)(x -4)<0,得-2<x <4,521225)(1)(2-+++=+--=+x x x x x x f x g由于x +2>0,则3)(1)(-≥+x f x g ,其中等号当且仅当x +2=1,即x =-1时成立 ∴)(1)(x f x g +的最小值是-3. 15.略解:解法1:依定义f (x )=x 2(1-x )+t (x +1)=-x 3+x 2+tx +t ,则f '(x =-3x 2+2x +t .若f (x )在(-1,1)上是增函数,则在(-1,1)上可设f '(x )≥0.∴f '(x )≥0⇔t ≥3x 2-2x ,在区间(-1,1)上恒成立,考虑函数g (x )=3x 2-2x ,由于g (x )的图象是对称轴为31=x ,开口向上的抛物线,故要使t ≥3x 2-2x 在区间(-1,1)上恒成立⇔t ≥g (-1),即t ≥5.而当t ≥5时,f '(x )在(-1,1)上满足f ′(x )>0,即f (x )在(-1,1)上是增函数.故t 的取值范围是t ≥5. 解法2:依定义f (x )=x 2(1-x )+t (x +1)=-x 3+x 2+tx +t ,f '(x )=-3x 2+2x +t .若f (x )在(-1,1)上是增函数,则在(-1,1)上可设f '(x )≥0.∵f '(x )的图象是开口向下的抛物线,∴当且仅当f '(1)=t -1≥0,且f '(-1)=t -5≥0时,f '(x )在(-1,1)上满足f '(x )>0,即f (x )在(-1,1)上是增函数.故t 的取值范围是t ≥5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量单元测试一、选择题【共 12 道小题】1、下列说法中正确的是( )A. 两个单位向量的数量积为 1B. 若a·b=a·c 且a≠0, 则 b=cC. D.若b⊥c,则(a+c)·b=a·b2、设e 是单位向量,=2e,=-2e,||=2,则四边形ABCD 是( )A. 梯形B. 菱形C. 矩形D. 正方形3 、已知|a|=|b|=1 ,a 与 b 的夹角为90°,且c=2a+3b ,d=ka-4b, 若c⊥d,则实数 k 的值为( )A.6B.-6C.3D.-34、设0≤θ<2π,已知两个向量=(cosθ,sinθ),=(2+sinθ,2-cosθ),则向量长度的最大值是( )A. B. C. D.5、设向量 a=(1,-3),b=(-2,4),c=(-1,-2),若表示向量 4a、4b-2c、2(a-c)、d 的有向线段首尾相接能构成四边形,则向量 d 为( )A.(2,6)B.(-2,6)C.(2,-6)D.(-2,-6)6、已知向量 a=(3,4),b=(-3,1),a 与b 的夹角为θ,则ta nθ等于( )A. B.- C.3 D.-37 、向量a 与 b 不共线,=a+kb,=la+b(k 、l∈R),且与共线, 则 k 、l 应满足( )A.k+l=0B.k-l=0C.kl+1=0D.kl-1=08、已知平面内三点 A(-1,0),B(5,6),P(3,4),且AP=λPB,则λ的值为( )A.3B.2C.D.9、设平面向量 a1,a2,a3 的和a1+a2+a3=0,如果平面向量 b1,b2,b3 满足|bi|=2|ai|,且 ai 顺时针旋转30°后与 bi 同向,其中 i=1,2,3,则( )A.-b1+b2+b3=0B.b1-b2+b3=0C.b1+b2-b3=0 D.b1+b2+b3=010、设过点 P(x,y)的直线分别与 x 轴的正半轴和 y 轴的正半轴交于 A、B 两点,点 Q 与点P 关于y 轴对称,O 为坐标原点,若,且·=1,则P 点的轨迹方程是( )A.3x2+ y2=1(x>0,y>0)B.3x2 y2=1(x>0,y>0)1 / 10C. x2-3y2=1(x>0,y>0)D. x2+3y2=1(x>0,y>0)11 、已知△ABC中,点 D 在 BC 边上,且,若, 则 r+s 的值是( )A. B.0 C. D.-312 、定义a※b=|a||b|sinθ,θ 是向量 a 和 b 的夹角,|a|、|b| 分别为 a、b 的模,已知点A(-3,2)、B(2,3),O 是坐标原点,则※等于( )A.-2B.0C.6.5D.13二、填空题【共 4 道小题】1、已知a+b+c=0,且|a|=3,|b|=5,|c|=7,则向量a 与b 的夹角是.2、若=2e1+e2,=e1-3e2,=5e1+λe2,且B、C、D 三点共线,则实数λ=.3、已知e1、e2 是夹角为60°的两个单位向量,则a=2e1+e2 和b=2e2-3e1 的夹角是.4 、如图 2-1 所示,两射线 OA 与 OB 交于 O,则下列选项中向量的终点落在阴影区域内的是.图 2-1①②+ ③④+ ⑤-三、解答题【共 6 道小题】1、如图2-2 所示,在△ABC中,=c,=a,=b,且a·b=b·c=c·a,试判断△ABC的形状.图 2-22 / 102、如图2-3 所示,已知||=||=1,、的夹角为120°,与的夹角为45°,||=5,用,表示.(注:cos75°=)图 2-33、在四边形ABCD 中(A、B、C、D 顺时针排列),=(6,1),=(-2,-3).若有∥,又有⊥,求的坐标.4、已知平面向量a=( ,-1),b=( , ).(1)证明a⊥b;(2)若存在不同时为零的实数 k、t,使得 x=a+(t2-3)b,y=-ka+tb,且x⊥y,求函数关系式 k=f(t).3 / 105、已知 a、b、c 是同一平面内的三个向量,其中 a=(1,2).(1)若|c|=,且c∥a,求c 的坐标;(2)若|b|=,且a+2b 与2a-b 垂直,求a 与b 的夹角θ.6、如图2-4 所示,已知△AOB,其中=a,=b,而M、N 分别是△AOB的两边OA、OB 上的点,且=λa(0<λ<1),=μb(0<μ<1),设BM 与AN 相交于P,试将向量=p 用a、b 表示出来.图 2-44 / 10平面向量单元测试参考答案一、选择题1.参考答案与解析:解析:A 中两向量的夹角不确定;B 中若a⊥b,a⊥c,b与c 反方向则不成立;C 中应为;D 中b⊥c b·c=0,所以(a+c)·b=a·b+c·b=a·b.答案:D主要考察知识点:向量、向量的运算2.参考答案与解析:解析:,所以||=||,且AB∥CD,所以四边形ABCD 是平行四边形.又因为| |=||=2,所以四边形ABCD 是菱形.答案:B主要考察知识点:向量、向量的运算3.参考答案与解析:解析:∵c⊥d,∴c·d=(2a+3b)·(ka-4b)=0,即 2k-12=0,∴k=6.答案:A主要考察知识点:向量、向量的运算4.参考答案与解析:解析:=(2+sinθ-cosθ,2-cosθ-sinθ),所以| |=≤=.答案:C主要考察知识点:向量与向量运算的坐标表示5.参考答案与解析:解析:依题意,4a+4b-2c+2(a-c)+d=0,所以 d=-6a+4b-4c=(-2,-6).答案:D主要考察知识点:向量与向量运算的坐标表示6.参考答案与解析:解析:由已知得a·b=3×(-3)+4×1=-5,|a|=5,|b|=,所以cosθ=.由于θ∈[0,π],所以sinθ=.所以tanθ==-3.5 / 10答案:D主要考察知识点:向量与向量运算的坐标表示7. 参考答案与解析: 解析:因为与共线, 所以设=λ(λ∈R),即la+b=λ(a+kb)=λa+λkb,所以(l-λ)a+(1-λk)b=0.因为 a 与 b 不共线,所以 l-λ=0 且 1-λk=0,消去λ 得 1-lk=0,即 kl-1=0.答案:D主要考察知识点:向量、向量的运算8.参考答案与解析:解析:因为=λ,所以(4,4)=λ(2,2).所以λ=.答案:C主要考察知识点:向量与向量运算的坐标表示9.参考答案与解析:解析:根据题意,由向量的物理意义,共点的向量模伸长为原来的 2 倍,三个向量都顺时针旋转30°后合力为原来的 2 倍,原来的合力为零,所以由 a1+a2+a3=0,可得 b1+b2+b3=0. 答案:D主要考察知识点:向量、向量的运算10.参考答案与解析: 解析:设 P(x,y), 则 Q(-x,y). 设 A(xA),xA,B(0,yByB0,=(x,y-yB)=(xAx,-y).∵=2PA,∴x=2(xA,x),y-yB=2y,xA=x,yB=3y(x>0,y>0).又∵·=1,(-x,y)·(-xA,yB)=1,∴(-x,y)·( x,3y)=1,即x2+3y2=1(x>0,y>0).答案:D主要考察知识点:向量、向量的运算11.参考答案与解析:解析:△ABC中,= =( )= - ,故r+s=0.答案:B主要考察知识点:向量、向量的运算12.参考答案与解析:解析:由题意可知=(-3,2),=(2,3),计算得·=-3×2+2×3=0,另一方面·=||||cosθ,6 / 10∴cosθ=0,又θ∈(0,π),从而sinθ=1,∴※=||||sinθ=13.答案:D主要考察知识点:向量与向量运算的坐标表示二、填空题1.参考答案与解析:解析:由已知得 a+b=-c,两边平方得a2+2a·b+b2=c2,所以2a·b=72-32-52=15.设 a 与 b 的夹角为θ,则cosθ== = ,所以θ=60°.答案:60°主要考察知识点:向量、向量的运算2.参考答案与解析:解析:由已知可得=(e1-3e2)-(2e1+e2)=-e1-4e2,=(5e1+λe2)-(e1-3e2)=4e1+(λ+3)e2.由于B、C、D 三点共线,所以存在实数m 使得,即-e1-4e2=m[4e1+(λ+3)e2].所以-1=4m 且-4=m(λ+3),消去 m 得λ=13.答案:13主要考察知识点:向量、向量的运算3.参考答案与解析:解析:运用夹角公式cosθ=,代入数据即可得到结果.答案:120°主要考察知识点:向量、向量的运算4.参考答案与解析:解析:由向量减法法则可知③⑤不符合条件,①②显然满足,④不满足.答案:①②主要考察知识点:向量、向量的运算三、解答题1.参考答案与解析:解:∵a·b=b·c,∴b·(a-c)=0.又 b=-(a+c),∴-(a+c)·(a-c)=0,即 c2-a2=0.∴|c|=|a|.同理,|b|=|a|,故|a|=|b|=|c|,所以△ABC 为等边三角形.主要考察知识点:向量、向量的运算2.参考答案与解析:解:设=λ+μ,则·=(λ+μ)·=λ+μ·=λ+μcos120°=λμ.7 / 10又·=| || |cos45°=5cos45°=,∴λμ=,·=(λ+μ)·=λ·+μ=λcos120°+μ= λ+μ.又·=| |·||cos(120°-45°)=5cos75°=,∴λ+μ=.∴λ=,μ=.∴= + .主要考察知识点:向量、向量的运算3.参考答案与解析:解:设=(x,y),则=(6+x,1+y),=(4+x,y-2),=(-x-4,2-y),=(x-2,y-3).又∥及⊥,所以 x(2-y)-(-x-4)y=0, ① (6+x)(x-2)+(1+y)(y-3)=0. ②解得或∴=(-6,3)或(2,-1).主要考察知识点:向量与向量运算的坐标表示4.参考答案与解析:(1)证明:因为a·b=(,-1)·(,)=+(-1)×=0,所以a⊥b.(2)解:由已知得|a|= =2,|b|==1,由于x⊥y,所以x·y=0,即[a+(t2-3)b]·(-ka+tb)=0.所以-ka2+ta·b-k(t2-3)b·a+t(t2-3)b2=0.由于a·b=0,所以-4k+t(t2-3)=0.8 / 10所以k= t(t2-3).由已知k,t 不同时为零得k=t(t2-3)(t≠0).主要考察知识点:向量与向量运算的坐标表示5. 参考答案与解析 : 解: (1) 设 c=(x ,y),∵|c|= ,∴ , 即x2+y2=20, ①∵c∥a,a=(1,2),∴2x-y=0, 即y=2x. ②联立①②得或∴c=(2,4)或(-2,-4).(2)∵(a+2b)⊥(2a-b),∴(a+2b)·(2a-b)=0,即2a2+3a·b-2b2=0.∴2|a|2+3a·b-2|b|2=0. ①∵|a|2=5,|b|2=,代入①式得a·b=.∴cosθ==-1.又∵θ∈[0,π],∴θ=π.主要考察知识点:向量与向量运算的坐标表示6.参考答案与解析:解:由题图可知p=或p=,而=λa,设=m( )=m(b-λa),又∵=μb,设=n( )=n(a-μb),∴p= =λa+m(b-λa)=λ(1-m)a+mb,p==μb+n(a-μb)=na+μ(1-n)b.∵a、b 不共线,且表示方法唯一,∴解得9 / 10∴p=λ[]a+ ,即p=.主要考察知识点:向量、向量的运算10 / 10。

相关文档
最新文档