初二数学下册不等式及不等式组习题.docx
(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测(含答案解析)(4)

一、选择题1.不等式251x -+≥的解集在数轴上表示正确的是( ) A . B . C .D .2.若0m n <<,则下列结论中错误的是( ) A .99m n -<-B .m n ->-C .11n m> D .1m n> 3.不等式组211x x ≥-⎧⎨>-⎩的解集是( )A .1x >-B .12x >-C .21x ≥-D .112x -<≤-4.某校组织10名党员教师和38名优秀学生团干部去某地参观学习.学校准备租用汽车,学校可选择的车辆(除司机外)分别可以乘坐4人或6人,为了安全每辆车上至少有1名教师,且没有空座,那么可以选择的方案有( ) A .2种B .3种C .4种D .5种5.如图,已知AB 是线段MN 上的两点,MN =12,MA =3,MB >3,以A 为中心顺时针旋转点M ,以点B 为中心顺时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,当△ABC 为直角三角形时AB 的长是( )A .3B .5C .4或5D .3或516.若关于x 的不等式6234x x a x x +<+⎧⎪⎨+>⎪⎩有且只有四个整数解,则实数a 的取值范围是( )A .67a <≤B .1821a <≤C .1821a ≤<D .1821a ≤≤7.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b <+的解集为( )A .0x >B .0x <C .1x >-D .1x <-8.若不等式组010a x x ->⎧⎨+>⎩无解,则a 的取值范围是( )A .a≤-1B .a≥-1C .a<-1D .a>-19.运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A .7B .8C .9D .1010.不等式-3<a≤1的解集在数轴上表示正确的是( ) A . B . C .D .11.下列各数是不等式271x -≥的解的是( ). A .4 B .3 C .2 D .1 12.已知a ,b 均为实数,且a ﹣1>b ﹣1,下列不等式中一定成立的是( )A .a <bB .3a <3bC .﹣a >﹣bD .a ﹣2>b ﹣2二、填空题13.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____.14.一次函数1y ax b 与2y mx n =+的部分自变量和对应函数值如下表:x⋅⋅⋅0 1 2 3⋅⋅⋅1y⋅⋅⋅232112⋅⋅⋅x⋅⋅⋅0123⋅⋅⋅2y⋅⋅⋅-3-113⋅⋅⋅则关于x的不等式ax b mx n+>+的解集是______.15.已知a为整数,且340218a<+<,则a的值为____________.16.如图,已知一次函数y=kx+b的图象与正比例函数y=mx的图象相交于点P(﹣3,2),则关于x的不等式mx﹣b≥kx的解集为_____.17.不等式组112251xx⎧-≤⎪⎨⎪+>⎩的最大整数解是__________.18.不等式-3x-1≥-10的正整数解为______________19.一张试卷共20道题,做对一题得5分,做错或不做一题扣1分,小明做了全部试题,若要成绩优秀(注:70分及以上成绩为优秀),那么小明至少要做_________道题.20.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成ABC.设AB=x,若ABC为直角三角形,则x=__.三、解答题21.如图,已知有甲、乙两个长方形,它们的边长如图所示(m.为正整数....),面积分别为1S、2S.(1)请比较1S与2S的大小:1S_____2S;(2)若一个正方形与甲的周长相等.①求该正方形的边长(用含m 的代数式表示);②若该正方形的面积为3S ,试探究:3S 与1S 的差(即31S S -)是否为常数?若为常数,求出这个常数:如果不是,请说明理由;(3)若满足条件120n S S <<-的整数n 有且只有8个,直接写出m 的值.22.解不等式组68491153x x x x +>+⎧⎪+⎨≤-⎪⎩,并把不等式组的解在数轴上表示出来.23.已知一次函数y x b =+的图像经过点(1,3)A -. (1)求该函数的表达式; (2)x 取何值时,0y >?24.某水果店购买某种水果的进价为18元/千克,在销售过程中有10%的水果损耗,该水果店以a 元/千克的标价出售该种水果. (1)为避免亏本,求a 的最小值.(2)若该水果店以标价销售了70%的该种水果,在扣除10%损耗后,剩下的20%水果按10元/千克的价格售完.为确保销售该种水果所得的利润率不低于20%,求a 的最小值. 25.某商场销售A 、B 两种型号的计算器,两种计算器的进货价格分别为每台15元,20元.商场销售5台A 型号和1台B 型号计算器,可获利润38元;销售6台A 型号和3台型号计算器,可获利润6元.(1)求商场销售A 、B 两种型号计算器的销售价格分别是多少元?(2)商场准备用不多于1250元的资金购进A 、B 两种型号计算器共70台,且全部售出后至少获利460元.问:最少需要购进A 型号的计算器多少台?最多可购进A 型号的计算器多少台? 26.计算: (1)01(4)2π--- (2)231352x x-+-【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】解出不等式,在进行判断即可; 【详解】251x -+≥,24x -≥-, 2x ≤,解集表示为:;故答案选C . 【点睛】本题主要考查了一元一次不等式的解集表示,准去计算是解题的关键.2.C解析:C 【分析】分析各个选项是由m <n<0如何变化得到的,根据不等式的性质即可进行判断. 【详解】A 、由m <n ,根据不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立.两边减去9,得到:m-9<n-9;成立;B 、两边同时乘以不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.两边同时乘以-1得到-m >-n ;成立;C 、m <n <0,若设m=-2 n=-1验证11n m>不成立. D 、由m <n ,根据两边同时乘以不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.两边同时除以负数n 得到1mn>,成立; 故选:C . 【点睛】利用特殊值法验证一些式子错误是有效的方法.不等式的性质运用时注意:必须是加上,减去或乘以或除以同一个数或式子;另外要注意不等号的方向是否变化.3.C解析:C 【分析】先求出2x≥-1的解集,再确定不等式组的解集即可. 【详解】 解:211x x ≥-⎧⎨>-⎩①②解不等式①得,21x ≥-, 解不等式②得,x>-1,∴不等式组的解集为:21x ≥- 故选:C . 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.B解析:B 【分析】设4人车租x 辆,6人车租y 辆,根据没有空座列出方程,结合至少有1名教师列出不等式,求解即可. 【详解】解:设4人车租x 辆,6人车租y 辆, ∵不得有空座, 则461038x y +=+ ∴283y x =-又∵每辆车上至少有1名教师, ∴10x y +≤ 把283y x =-代入10x y +≤得, 28103x x +-≤ ∴6x ≤ ∵x 、y 都是整数,由283y x =-知x 是3的倍数, 因此,当x=0时,y=8; 当x=3时,y=6; 当x=6时,y=4; 故有3种方案, 故选:B . 【点睛】此题主要考查了二元一次方程与一元一次不等式的应用,关键是根据题目所提供的等量关系和不等量关系,列出方程和不等式求解.5.C解析:C 【分析】设AB =x ,则BC =9-x ,根据三角形两边之和大于第三边,得到x 的取值范围,再利用分类讨论思想,根据勾股定理列方程,计算解答. 【详解】解:∵在△ABC 中,AC =AM =3, 设AB =x ,BC =9-x ,由三角形两边之和大于第三边得:3939x xx x +-⎧⎨+-⎩>>, 解得3<x <6,①AC 为斜边,则32=x 2+(9-x )2,即x 2-9x +36=0,方程无解,即AC 为斜边不成立,②若AB 为斜边,则x 2=(9-x )2+32,解得x =5,满足3<x <6, ③若BC 为斜边,则(9-x )2=32+x 2,解得x =4,满足3<x <6, ∴x =5或x =4; 故选C . 【点睛】本题考查三角形的三边关系,勾股定理等,分类讨论和方程思想是解答的关键.6.B解析:B 【分析】此题可先根据一元一次不等式组解出x 的取值,再根据不等式组只有四个整数解,求出实数a 的取值范围. 【详解】解:6234x x a x x +<+⎧⎪⎨+>⎪⎩①②解①得x >2, 解②得x <13a , ∴2<x <13a , ∵不等式组有且只有四个整数解,即3,4,5,6;∴6<13a≤7,即18<a≤21. 故选:B . 【点睛】此题考查的是一元一次不等式的解法和一元一次方程的解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了7.C【分析】由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x<k1x+b解集.【详解】两条直线的交点坐标为(-1,2),且当x>-1时,直线l2在直线l1的下方,故不等式k2x<k1x+b的解集为x>-1.故选:C.【点睛】此题考查一次函数的图象,解一元一次不等式,解题关键在于掌握两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.8.A解析:A【分析】要求出a的值,首先分别求出这两个不等式解,最后根据不等式组无解的情况来确定a的值.【详解】解:10a xx->⎧⎨+>⎩①②解不等式①,得x<a,解不等式②,得x>-1∵原不等式组无解,∴a≤-1故答案为:A.【点睛】本题考查了解一元一次不等式组,关键是知道不等式组的解集是由这两个不等式的解集的公共部分构成的,题目无解说明这两个不等式的解集没有公共部分这是关键.9.D解析:D【分析】根据程序操作进行了1次后就停止,即可得出关于x的一元一次不等式,解之即可得出x 的取值范围,再取其中最小的整数值即可得出结论.【详解】依题意,得:3126x->,解得:9x>.∵x为整数,∴x的最小值为10.【点睛】本题考查了一元一次不等式的应用,找准等量关系,正确列出一元一次不等式是解题的关键.10.A解析:A【分析】根据在数轴上表示不等式解集的方法求解即可.【详解】解:∵-3<a≤1,∴1处是实心原点,且折线向左.故选:A.【点睛】本题考查了在数轴上表示不等式的解集,掌握“小于向左,大于向右”是解题的关键.11.A解析:A【分析】先求出不等式的解集,再选项进行判断即可.【详解】x-≥,271≥,x+217x≥28x≥.解得,4故选:A.【点睛】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.12.D解析:D【分析】根据不等式的性质进行判断.【详解】解:因为a,b均为实数,且a﹣1>b﹣1,可得a>b,所以3a>3b,﹣a<﹣b,a﹣2>b﹣2,故选D.【点睛】本题考查了不等式的性质,掌握在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.13.1≤x<4【分析】分别求出每一个不等式的解集再找到公共部分即可得【详解】解:解不等式①得x<4解不等式②得x≥1所以不等式组的解集为:1≤x<4故答案为:1≤x<4【点睛】此题主要考查了求一元一次不解析:1≤x<4.【分析】分别求出每一个不等式的解集,再找到公共部分即可得.【详解】解:217?311?2xxx-<⎧⎪⎨+-≥⎪⎩①②解不等式①得,x<4,解不等式②得,x≥1,所以,不等式组的解集为:1≤x<4.故答案为:1≤x<4.【点睛】此题主要考查了求一元一次不等式组的解集,正确求出每一个不等式解集是解答此题的关键.14.【分析】根据统计表确定两个函数的增减性以及函数的交点然后根据增减性判断【详解】根据表可得y1=kx+b中y随x的增大而减小;y2=mx+n中y随x 的增大而增大且两个函数的交点坐标是(21)则当x<2解析:2x<【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】根据表可得y1=kx+b中y随x的增大而减小;y2=mx+n中y随x的增大而增大.且两个函数的交点坐标是(2,1).则当x<2时,kx+b>mx+n,故答案为:x<2.【点睛】本题考查了一次函数与一元一次不等式,函数的性质,正确确定增减性以及交点坐标是关键.15.2【分析】先根据无理数的估算得出和的取值范围再解一元一次不等式组即可得【详解】即即即解得又为整数故答案为:2【点睛】本题考查了无理数的估算解一元一次不等式组熟练掌握无理数的估算方法是解题关键解析:2【详解】274064<<,<34<<,161825<<,<,即45<<,3402a <+<325a ∴<+<<,即325a <+<,解得13a <<,又a 为整数,2a ∴=,故答案为:2.【点睛】本题考查了无理数的估算、解一元一次不等式组,熟练掌握无理数的估算方法是解题关键.16.x≥﹣3【分析】根据图象得出P 点横坐标为﹣3观察函数图象得在P 点右侧y=mx 的函数在y=kx+b 的函数图象上方由此得到不等式mx ﹣b≥kx 的解集为x≥﹣3【详解】由图象可知:P 点横坐标为﹣3当x≥﹣解析:x≥﹣3【分析】根据图象得出P 点横坐标为﹣3,观察函数图象得在P 点右侧,y=mx 的函数在y=kx+b 的函数图象上方,由此得到不等式mx ﹣b≥kx 的解集为x≥﹣3.【详解】由图象可知:P 点横坐标为﹣3,当x≥﹣3时,y=mx 的函数在y=kx+b 的函数图象上方,即mx ﹣b≥kx ,所以关于x 的不等式mx ﹣b≥kx 的解集是x≥﹣3.故答案为:x≥﹣3【点睛】本题主要考查对一次函数与一元一次不等式的理解和掌握,能根据图象得出当x≥﹣3时mx ﹣b≥kx 是解此题的关键.17.【分析】先解不等式组再求整数解的最大值【详解】解不等式①得解不等式②得故不等式组的解集是所以整数解是:-101最大是1故答案为【点睛】考核知识点:求不等式组的最大整数值解不等式组是关键解析:1x =【分析】先解不等式组,再求整数解的最大值.112251x x ⎧-≤⎪⎨⎪+>⎩①②解不等式①,得32x ≤解不等式②,得2x >- 故不等式组的解集是322x -<≤所以整数解是:-1,0,1最大是1故答案为1x =【点睛】考核知识点:求不等式组的最大整数值.解不等式组是关键. 18.123【分析】先求出不等式的解集再求出不等式的正整数解即可【详解】解:-3x-1≥-10-3x≥-10+1-3x≥-9x≤3∴不等式-3x-1≥-10的正整数解为123故答案为123【点睛】本题考查解析:1,2,3【分析】先求出不等式的解集,再求出不等式的正整数解即可.【详解】解:-3x -1≥-10,-3x≥-10+1,-3x≥-9,x≤3,∴不等式-3x -1≥-10的正整数解为1,2,3.故答案为1,2,3【点睛】本题考查了解一元一次不等式和不等式的整数解.求出不等式的解集是解题的关键. 19.15【分析】设小明做对x 道题则做错或不做(20−x )道题根据总分=5×做对题目数−1×做错或不做题目数结合总分不少于70分即可得出关于x 的一元一次不等式解之即可得出x 的取值范围再取其中的最小整数值即解析:15【分析】设小明做对x 道题,则做错或不做(20−x )道题,根据总分=5×做对题目数−1×做错或不做题目数,结合总分不少于70分,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,再取其中的最小整数值即可得出结论.【详解】解:设小明做对x 道题,则做错或不做(20−x )道题,依题意,得:5x−(20−x )≥70,解得:x≥15,∴小明至少要做对15道题.故答案为:15.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.20.或【分析】根据三角形的三边关系:两边之和大于第三边即可得到关于x 的不等式组求出x 的取值范围再根据勾股定理即可列方程求解【详解】解:∵在△ABC 中AC=1AB=xBC=3-x 解得1<x <2;①∵1<x 解析:43或53【分析】 根据三角形的三边关系:两边之和大于第三边,即可得到关于x 的不等式组,求出x 的取值范围,再根据勾股定理,即可列方程求解.【详解】解:∵在△ABC 中,AC=1,AB=x ,BC=3-x .1313x x x x +>-⎧∴⎨+->⎩, 解得1<x <2;①∵1<x ,∴AC 不能为斜边,②若AB 为斜边,则x 2=(3-x )2+1,解得x=53,满足1<x <2, ③若BC 为斜边,则(3-x )2=1+x 2,解得x=43 ,满足1<x <2, 故x 的值为:43或53, 故答案为:43或53. 【点睛】本题主要考查了三角形的三边关系以及勾股定理,正确理解分类讨论是解题的关键. 三、解答题21.(1)<;(2)①m+4.5;②为常数,0.25;(3)m=8【分析】(1)根据矩形的面积公式计算即可;(2)①根据矩形和正方形的周长公式即可得到结论;②根据矩形和正方形的面积公式即可得到结论;(3)根据题意得出关于m 的不等式,解之即可得到结论.【详解】解:(1)图甲中长方形的面积S 1=(m+5)(m+4)=m 2+9m+20,图乙中长方形的面积S 2=(m+7)(m+3)=m 2+10m+21,∵S 1-S 2=-m-1,m 为正整数,∴-m-1<0,∴S 1<S 2.故答案为:<;(2)①2(m+5+m+4)÷4=m+4.5;②S 3-S 1=(m+4.5)2-(m 2+9m+20)=0.25,故S 3与S 1的差(即S 3-S 1)是常数;(3)由(1)得|S 1-S 2|=m+1,且m 为正整数,∵0<n <|S 1-S 2|,∴0<n <m+1,由题意得8<m+1≤9,解得:7<m≤8,∵m 为正整数,∴m=8.【点睛】本题主要考查列代数式,整式的混合运算,解题的关键是掌握多项式乘多项式、长方形的性质、正方形的性质等知识.22.12<x≤1,数轴见详解 【分析】 首先解每个不等式,然后在数轴上表示出来,两个不等式的解集的公共部分就是不等式组的解集.【详解】6849...115...3x x x x +>+⎧⎪⎨+≤-⎪⎩①②, 解①得:x >12, 解②得:x≤1,数轴上表示如下:∴不等式组的解是:12<x≤1. 【点睛】 本题考查了不等式组的解法,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.23.(1)4y x =+;(2)4x >-【分析】(1)利用待定系数法求出b 的值,即可得出结果;(2)求得直线与x 轴的交点,然后根据一次函数的性质即可求解.【详解】解:(1)一次函数y =x +b 的图象经过点A (−1,3).∴3=−1+b ,∴b =4,∴该一次函数的解析式为y =x +4;(2)令y =0,则x +4=0,解得x =−4,∵k =1,∴y 随x 的增大而增大,∴x >−4时,y >0.【点睛】本题考查了待定系数法求一次函数的解析式及一次函数与一元一次不等式的关系,熟练掌握一次函数的图象与性质是解题的关键.24.(1)a 的最小值为20;(2)28a ≥.【分析】(1)根据只能售出所进商品的110%-,且销售额大于等于进价即可列出不等式,求解即可;(2)根据70%按照标价a 元/千克出售,20%水果按10元/千克出售,且销售额应该大于等于(120%)18+⨯列出不等式求解即可.【详解】解:(1)由题意得:(110%)18a -≥,解得20a ≥,即a 的最小值为20;(2)由题意得:70%20%10(120%)18a ⋅+⨯≥+⨯,解得28a ≥.【点睛】本题考查一元一次不等式的应用.熟记商品销售时所用的常用公式是解题关键.注意本题与销售了多少千克无关.25.(1)A 、B 两种型号计算器的销售价格分别为21元、28元;(2)最少需要购进A 型号的计算器30台,最多可购进A 型号的计算器50台【分析】(1)设A 种型号计算器的销售价格是x 元,B 种型号计算器的销售价格是y 元,根据题意可等量关系:①5台A 型号和1台B 型号计算器,可获利润38元;②销售6台A 型号和3台B 型号计算器,可获利润6元,由①②等量关系列出方程组,解方程即可; (2)根据题意表示出所用成本,进而得出不等式组求出即可.【详解】(1)设A 种型号计算器的销售价格是x 元,B 种型号计算器的销售价格是y 元,由题意得:551520386361532060x y x y +-⨯-=⎧⎨+-⨯-⨯=⎩, 解得:2128x y =⎧⎨=⎩答:A 、B 两种型号计算器的销售价格分别为21元、28元;(2)设购进A 型号的计算器z 台,则B 种计算器为(70-z )台,依题意得:1520(70)1250(2115)(2820)(70)460z z z z +-≤⎧⎨-+--≥⎩ , 解得:3050z ≤≤,∴最少需要购进A 型号的计算器30台,最多可购进A 型号的计算器50台.答:最少需要购进A 型号的计算器30台,最多可购进A 型号的计算器50台.【点睛】考查了二元一次方程组和一元一次不等式组的应用,解题关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式组求解.26.(1)12-;(2)21x ≤- 【分析】(1)由绝对值的意义,算术平方根,零指数幂的运算法则进行计算,即可得到答案; (2)由解一元一次不等式的运算法则进行计算,即可得到答案.【详解】解:(1)01(4)2π--=1212-+ =12-; (2)231352x x -+-, ∴302(23)5(1)x x --≤+, ∴304655x x -+≤+,∴21x ≤-.【点睛】本题考查了解一元一次不等式,零指数幂,绝对值的意义,算术平方根,解题的关键是熟练掌握运算法则进行计算.。
初二不等式组练习题及答案

初二不等式组练习题及答案不等式是数学中重要的概念之一,对于初中学生来说,掌握不等式的性质和解不等式的方法是十分关键的。
为了帮助大家巩固和提高对不等式的理解和应用能力,以下是一些初二不等式组的练习题及答案,希望对大家的学习有所帮助。
题目一:解下列不等式组,并将解的结果表示在数轴上。
1. {x < 3, x ≥ -2}2. {-1 < x ≤ 5, x > 2}3. {x + 3 ≥ 5, x - 2 < 8}4. {-3 < x ≤ 1, x ≥ -4}题目二:解下列不等式组,并用集合的形式表示出来。
1. {x > 3, x < 7}2. {x ≤ 5, x ≥ -3}3. {2 ≤ x < 5, x ≥ 3}4. {x > -1, x < 3, x > 2}题目三:解下列不等式组,并将解的结果表示在坐标平面上。
1. {x > 2, y < 4}2. {x ≤ 3, y ≥ -2}3. {x ≥ -1, y > 1}4. {x > -2, y ≤ 3}题目四:解下列不等式组,并用不等式表示出来。
1. {x < 3, y > 4}2. {x ≤ -3, y < -2}3. {x > 2, y ≤ 1}4. {x ≥ -1, y > 2}解答如下:题目一:1. x < 3 表示实数x小于3,取等号的原因是x可能等于3;x ≥ -2 表示实数x大于等于-2。
将两个不等式合并得到 -2 ≤ x < 3。
在数轴上标记-2和3,用一个实心圆表示-2,一个空心圆表示3,对应的数轴上的点即为-2 ≤ x < 3 的解。
2. -1 < x ≤ 5 表示实数x大于-1,小于等于5;x > 2 表示实数x大于2。
将两个不等式合并得到2 < x ≤ 5。
在数轴上标记2和5,用一个空心圆表示2,一个实心圆表示5,对应的数轴上的点即为2 < x ≤ 5 的解。
初二数学不等式组练习题

初二数学不等式组练习题在初二的数学学习中,不等式组是一个非常重要的概念。
通过解不等式组,我们可以进一步巩固和拓展对不等式的理解,提高解决实际问题的能力。
下面是一些初二数学不等式组的练习题,供同学们进行巩固和提高。
1. 解不等式组:① 2x - 4 > 8, 3x + 5 < 20② 4y + 3 ≥ 15, 6y - 2 < 202. 解不等式组,并表示出解的范围:① 2x - 5 > 3, x + 2 < 7② 3y + 4 < 10, 7y - 2 ≥ 283. 解不等式组:① 2a + 3 ≥ 11, 3a - 1 < 8② 4b - 5 > 7, 2b + 1 ≤ 54. 解不等式组,并表示出解的范围:① 3x - 1 < 8, 2x + 5 > 3② 5y + 6 ≤ 13, 4y - 3 ≥ 75. 解不等式组:① 2a + 7 > 15, 3a - 5 ≤ 16② 4b + 5 < 9, 2b - 3 > 46. 解不等式组,并表示出解的范围:① 5x + 2 ≤ 17, 4x - 3 > 5② 3y - 4 < 10, 2y + 5 ≥ 137. 解不等式组:① 2a - 3 ≤ 5, a + 4 > 10② 5b + 7 ≥ 24, 3b - 2 < 138. 解不等式组,并表示出解的范围:① 4x - 5 > 3x + 2, 2x + 4 < 6x - 1② 3y + 6 ≤ 15, 5y - 4 ≥ 179. 解不等式组:① 2a + 5 < 9, 3a - 4 ≤ 10② 4b - 3 ≥ 5, 2b + 2 > 910. 解不等式组,并表示出解的范围:① 5x - 3 > 4x + 2, 2x + 6 < 7x - 5② 5y + 4 ≤ 8, 3y - 2 ≥ 7以上是一些初二数学不等式组的练习题。
最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组同步练习试题(含详细解析)

第二章一元一次不等式和一元一次不等式组同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣42、下列选项正确的是( )A .a 不是负数,表示为0a >B .a 不大于3,表示为3a <C .x 与4的差是负数,表示为40x -<D .x 不等于34,表示为34x > 3、如图,一次函数y =kx +b (k ,b 为常数,k ≠0)经过点A (-3,2),则关于x 的不等式中k (x -1)+b <2的解集为( )A .x >-2B .x <-2C .x >-3D .x <-34、不等式3+2x ≥1的解在数轴上表示正确的是( )A .B .C .D .5、设m 为整数,若方程组3131x y m x y m +=-⎧⎨-=+⎩的解x 、y 满足175x y +>-,则m 的最大值是() A .4 B .5 C .6 D .76、若m <n ,则下列各式正确的是( )A .﹣2m <﹣2nB .33m n> C .1﹣m >1﹣n D .m 2<n 27、下列变形中,错误的是( )A .若3a +5>2,则3a >2-5B .若213x ->,则23x <-C .若115x -<,则x >﹣5 D .若1115x >,则511x >8、若a >b ,则下列不等式一定成立的是( )A .﹣2a <﹣2bB .am <bmC .a ﹣3<b ﹣3D .3a+1<3b+19、一次函数y =kx +b (k ≠0)的图象如图所示,当x >2时,y 的取值范围是( )A .y <0B .y >0C .y <3D .y >310、已知一次函数y 1=kx +1和y 2=x ﹣2.当x <1时,y 1>y 2,则k 的值可以是( )A .-3B .-1C .2D .4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)14≥-的解集是_________.2、已知关于x 的一元一次不等式20212021x a x +>的解集为2021x <,那么关于y 的一元一次不等式12021(1)2021y y a -<-+的解集为___________. 3、如图直线y =x +b 和y =kx +4与x 轴分别相交于点A (﹣4,0),点B (2,0),则040x b kx +>⎧⎨+>⎩解集为_____________.4、若关于x 的不等式组9210x x a ->-⎧⎨-≥⎩的整数解共有5个,则a 的取值范围_________. 5、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____. 三、解答题(5小题,每小题10分,共计50分)1、解不等式(组)(1)3(1)5x x -≤+(2)4614312163x x x x +>-⎧⎪++⎨-≤⎪⎩2、解不等式3x﹣1≤x+3,并把解在数轴上表示出来.3、某校为了丰富学生的业余生活,组织了一次棋类的比赛,准备购买若干跳棋和军棋作为奖品,若购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元.(1)求购买一副跳棋和一副军棋各需要多少钱?(2)学校准备购买跳棋与军棋共80副作为奖品,根据规定购买的总费用不能超过600元,则学校最多可以购买多少副军棋?4、下列各式哪些是不等式2(2x+1)>25的解?哪些不是?(1)x=1.(2)x=3.(3)x=10.(4)x=12.5、某公司销售A、B两种型号教学设备,每台的销售成本和售价如表:已知每月销售两种型号设备共20台,设销售A种型号设备x台,A、B两种型号设备全部售完后获得毛利润y万元(毛利润=售价-成本)(1)求y关于x的函数关系式(不要求写自变量的取值范围);(2)若销售两种型号设备的总成本不超过80万元,那么公司如何安排销售A、B两种型号设备,售完后毛利润最大?并求出最大毛利润.-参考答案-一、单选题1、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.2、C【分析】由题意先根据非负数、负数及各选项的语言表述列出不等式,再与选项中所表示的进行比较即可得出答案.【详解】解:A .a 不是负数,可表示成0a ,故本选项不符合题意;B .a 不大于3,可表示成3a ,故本选项不符合题意;C .x 与4的差是负数,可表示成40x -<,故本选项符合题意;D .x 不等于34,表示为34x ≠,故本选项不符合题意; 故选:C .【点睛】本题考查不等式的定义,解决本题的关键是理解负数是小于0的数,不大于用数学符号表示是“≤”.3、A【分析】根据一次函数图象平移规律可得函数y =kx +b 图像向右平移1个单位得到平移后的解析式为y =k (x -1)+b ,即可得出点A 平移后的对应点,根据图象找出一次函数y=k (x -1)+b 的值小于2的自变量x 的取值范围,据此即可得答案.【详解】解:∵函数y =kx +b 图像向右平移1个单位得到平移后的解析式为y =k (x -1)+b ,∴A (−3,2)向右平移1个单位得到对应点为(−2,2),由图象可知,y 随x 的增大而减小,∴关于x 的不等式(1)2k x b 的解集为2x >-,故选:A .【点睛】本题考查一次函数的性质、一次函数图象的平移及一次函数与不等式,正确理解函数的性质、会观察图象,熟练掌握平移规律是解题的关键.4、B【分析】不等式移项,合并同类项,把x 系数化为1求出解集,表示在数轴上即可.【详解】解:不等式3+2x ≥1,移项得:2x ≥1﹣3,合并同类项得:2x ≥﹣2,解得:x ≥﹣1,数轴表示如下:.故选:B .【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.不等式的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.5、B【分析】先把m 当做常数,解一元二次方程,然后根据175x y +>-得到关于m 的不等式,由此求解即可 【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①② 把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=, 把25m x -=代入①得6315m y m -+=-,解得125m y --=, ∵175x y +>-, ∴21217555m m ---+>-,即131755m ->-, 解得6m <,∵m 为整数,∴m 的最大值为5,故选B .【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.6、C【分析】根据不等式的基本性质逐项判断即可.【详解】解:A :∵m <n ,∴﹣2m >﹣2n ,∴不符合题意;B :∵m <n , ∴33m n <, ∴不符合题意;C :∵m <n ,∴﹣m >﹣n ,∴1﹣m >1﹣n ,∴符合题意;D : m <n ,当10m n =-=,时,m 2>n 2, ∴不符合题意;故选:C .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.7、B【分析】根据不等式的两边都加(或减)同一个数(或同一个整式),不等号的方向不变;不等式的两边都乘以同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、不等式的两边都减5,不等号的方向不变,故A 不符合题意;B 、不等式的两边都乘以32-,不等号的方向改变得到32x <-,故B 符合题意; C 、不等式的两边都乘以(﹣5),不等号的方向改变,故C 不符合题意;D 、不等式的两边都乘以同一个正数,不等号的方向不变,故D 不符合题意;故选:B .【点睛】本题考查了不等式的性质,熟记不等式的性质并根据不等式的性质计算式解题.8、A【分析】由题意直接依据不等式的基本性质对各个选项进行分析判断即可.【详解】解:A .∵a >b ,∴﹣2a <﹣2b ,故本选项符合题意;B .a >b ,当m >0时,am >bm ,故本选项不符合题意;C .∵a >b ,∴a ﹣3>b ﹣3,故本选项不符合题意;D .∵a >b , ∴33a b >, ∴1133ab +>+,故本选项不符合题意;故选:A .【点睛】本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.9、A【分析】观察图象得到直线与x 轴的交点坐标为(2,0),根据一次函数性质得到y 随x 的增大而减小,所以当x >2时,y <0.【详解】∵一次函数y =kx +b (k ≠0)与x 轴的交点坐标为(2,0),∴y 随x 的增大而减小,∴当x >2时,y <0.故选:A .【点睛】本题考查了一次函数的性质:一次函数y =kx +b (k 、b 为常数,k ≠0)的图象为直线,当k >0,图象经过第一、三象限,y 随x 的增大而增大;当k <0,图象经过第二、四象限,y 随x 的增大而减小;直线与x 轴的交点坐标为(,0)b k-.10、B【分析】先求出不等式的解集,结合x <1,即可得到k 的取值范围,即可得到答案.【详解】解:根据题意,∵y 1>y 2,∴12kx x +>-,解得:(1)3k x ->-,∴10k -<,∴1k <;31x k <--, ∵当x <1时,y 1>y 2, ∴311k -<- ∴2k >-,∴21k -<<;∴k 的值可以是-1;故选:B .【点睛】本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.二、填空题1、≤x 【分析】根据不等式的性质进行求解,根据二次根式的运算法则进行化简即可.【详解】4≥-4≥-,4x ≥-,x≤x故答案为:≤x【点睛】本题考查了解一元一次不等式,二次根式的混合运算,熟练掌握相关运算法则是解本题的关键. 2、2022y <【分析】设1,x y =-则20212021x a x +>化为:()120211,2021y a y -+->整理可得:12021(1)2021y y a -<-+,从而可得12021(1)2021y y a -<-+的解集是不等式12021y -<的解集,从而可得答案. 【详解】解: 关于x 的一元一次不等式20212021x a x +>的解集为2021x <, 设1,x y =- 则20212021x a x +>化为:()120211,2021y a y -+-> 两边都乘以1-得:()120211,2021y a y ---< 即12021(1)2021y y a -<-+ ∴ 12021(1)2021y y a -<-+的解集为:12021y -<的解集, 2022.y ∴<故答案为:2022.y <【点睛】本题考查的是求解一元一次不等式的解集,掌握“整体法求解不等式的解集”是解本题的关键. 3、42x -<<【分析】观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,从而得到0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,从而得到40kx +> 的解集为2x <,即可求解.【详解】解:观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,∴0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,∴40kx +> 的解集为2x <,∴040x b kx +>⎧⎨+>⎩解集为42x -<<. 故答案为:42x -<<【点睛】本题主要考查了一次函数与不等式的关系,观察图象得到当4x >- 时,y x b =+的图象位于x 轴的上方,当2x < 时,4y kx =+的图象位于x 轴的上方是解题的关键.4、﹣1<a ≤0【分析】先求出不等式组的解集,再根据已知条件得出−1<a ≤0即可.【详解】解:9210x x a --⎧⎨-≥⎩>①②, 解不等式①,得x <5,解不等式②,得x ≥a ,所以不等式组的解集是a ≤x <5,∵关于x 的不等式组9210x x a ->-⎧⎨-≥⎩的整数解共有5个, ∴−1<a ≤0,故答案为:−1<a ≤0.【点睛】本题考查了解一元一次不等式组的整数解和解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.5、0【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键.三、解答题1、(1)4x ≤;(2)1x >-【分析】(1)根据解不等式的基本步骤求解即可;(2)先求得每一个不等式的解集,后确定出解集即可.【详解】(1)∵3(1)5x x -≤+ ,∴335x x -≤+,∴28x ≤,∴4x ≤;(2)4614312163x x x x +>-⎧⎪⎨++-≤⎪⎩①②由①:1x >-,由②:4x ≥-,1x ∴>-.【点睛】本题考查了一元一次不等式和一元一次不等式组的解法,熟练掌握解题的基本步骤是解题的关键.2、x ≤2;数轴表示见解析.【分析】按移项、合并同类项、系数化为1的步骤求得不等式的解集,然后在数轴上表示出来即可.【详解】解:313x x -≤+,移项,得331x x -≤+,合并同类项,得24x ≤,系数化为1,得x ≤2,把解集在数轴上表示如图所示:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的基本步骤以及在数轴上表示解集的方法是解题的关键.3、(1)购买一副跳棋和一副军棋各需要6元、10元;(2)学校最多可以买30副军棋【分析】(1)设购买一副跳棋和一副军棋各需要x 元、y 元,然后根据购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元,列出方程求解即可;(2)设购买m 副军棋,则购买()80m -副跳棋,然后根据购买的总费用不能超过600元,列出不等式求解即可.【详解】解:(1)设购买一副跳棋和一副军棋各需要x 元、y 元,由题意得:2342540x y x y +=⎧⎨+=⎩, 解得610x y =⎧⎨=⎩, ∴购买一副跳棋和一副军棋各需要6元、10元,答:购买一副跳棋和一副军棋各需要6元、10元;(2)设购买m 副军棋,则购买()80m -副跳棋,由题意得:()68010600m m -+≤,即4480600m +≤,解得30m ≤,∴学校最多可以买30副军棋,答:学校最多可以买30副军棋.【点睛】本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意,列出式子求解.4、(1)不是(2)不是(3)是(4)是【分析】把未知数的值代入计算,比较后,判断即可(1)把x=1代入不等式2(2x+1)>25,因为:左边=2×(2×1+1)=6<25,所以x=1不是不等式2(2x+1)>25的解.(2)把x=3代入不等式2(2x+1)>25,因为:左边=2×(2×3+1)=14<25,所以x=3不是不等式2(2x+1)>25的解.(3)把x=10代入不等式2(2x+1)>25,因为:左边=2×(2×10+1)=42>25,所以x=10是不等式2(2x+1)>25的解.(4)把x=12代入不等式2(2x+1)>25,因为:左边=2×(2×12+1)=50>25,所以x=12是不等式2(2x+1)>25的解.【点睛】本题考查了不等式的解即使不等式左右两边成立的未知数的值,正确理解不等式的解是解题的关键.5、(1)y=-2x+60;(2)公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元.【分析】(1)设销售A种品牌设备x台,B种品牌设备(20-x)台,算出每台的利润乘对应的台数,再合并在一起即可求出总利润;(2)由“生产两种品牌设备的总成本不超过80万元”,列出不等式,再由(1)中的函数的性质得出答案.【详解】解:(1)设销售A种型号设备x台,则销售B种型号设备(20-x)台,依题意得:y=(4-3)x+(8-5)×(20-x),即y=-2x+60;(2)3x+5×(20-x)≤80,解得x≥10.∵-2<0,∴当x=10时,y最大=40万元.故公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元.【点睛】本题考查了一次函数的应用,一元一次不等式的应用,注意题目蕴含的数量关系,正确列式解决问题.。
八年级数学下册 第2章 一元一次不等式与一元一次不等式组2.4.2一元一次不等式的实际应用习

解:嘉嘉所列方程为 101-x=2x, 解得 x=3323. 又∵x 为整数,∴x=3323不合题意. ∴淇淇的说法不正确.
(2)据工作人员透露:B品牌球比A品牌球至少多28个,试
通过列不等式的方法说明A品牌球最多有几个. 解:∵A 品牌乒乓球有 x 个,
∴B 品牌乒乓球有(101-x)个.
依题意得
(1)求每支A种型号的毛笔和每支B种型号的毛笔各多少元; 解:设每支 A 种型号的毛笔 x 元,每支 B 种型号的毛笔 y 元. 由题意得32xx+ +y3=y=222, 4,解得xy==46., 答:每支 A 种型号的毛笔 6 元,每支 B 种型号的毛笔 4 元.
(2)君辉中学决定购买以上两种型号的毛笔共80支,总费用 不超过420元,那么该中学最多可以购买多少支A种型号 的毛笔? 解:设该中学可以购买a支A种型号的毛笔. 由题意得6a+4(80-a)≤420, 解得a≤50. 答:该中学最多可以购买50支A种型号的毛笔.
3 【2021·常德】某汽车贸易公司销售A,B两种型号的 新能源汽车,A型车进货价格为每台12万元,B型车进 货价格为每台15万元.该公司销售2台A型车和5台B型 车,可获利3.1万元;销售1台A型车和2台B型车,可 获利1.3万元.
(1)求销售一台A型、一台B型新能源汽车的利润各是多少 万元; 解:设销售一台 A 型新能源汽车的利润是 x 万元,销售 一台 B 型新能源汽车的利润是 y 万元. 依题意得2xx++25y=y=13.3.1,,解得xy==00..53., 答:销售一台 A 型新能源汽车的利润是 0.3 万元,销售 一台 B 型新能源汽车的利润是 0.5 万元.
(1)求《西游记》和《水浒传》每本的售价分别是多少元; 解:设《西游记》每本的售价为 x 元,《水浒传》每本 的售价为 y 元. 依题意得5400xx+ +6300yy= =64 620000, ,解得xy==6600., 答:《西游记》每本的售价为 60 元,《水浒传》每本的 售价为 60 元.
(完整word)八年级下册数学不等式专题.doc

八年级下册数学不等式专题一、选择题 1.如果 a 、 b 表示两个负数,且 a < b ,则 ( ).(A) a1(B) a< 1(C) 11 (D) ab < 1bbab2.a 、b 是有理数,下列各式中成立的是( ).(A) 若 a > b ,则 a 2> b 2 (B) 若 a 2> b 2 ,则 a > b(C) 若 a ≠ b ,则| a |≠ |b| (D) 若| a |≠ |b|,则 a ≠ b3.| a |+ a 的值一定是 ( ).(A) 大于零 (B) 小于零 (C)不大于零(D) 不小于零4.若由 x < y 可得到 ax > ay ,应满足的条件是 ().(A) a ≥ 0 (B) a ≤ 0 (C)a > 0(D) a < 05.若不等式 (a + 1)x >a + 1 的解集是 x <1,则 a 必满足 ().(A) a < 0(B) a >- 1(C)a <- 1(D) a < 16.九年级 (1) 班的几个同学,毕业前合影留念,每人交 0.70 元.一张彩色底片 0.68 元,扩印一张相片 0.50 元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有(). (A)2 人(B)3 人(C)4 人(D)5 人7.某市出租车的收费标准是:起步价7 元,超过 3km 时,每增加 1km 加收 2.4 元(不足 1km 按 1km 计 ).某人乘这种 出租车从甲地到乙地共支付车费 19 元,设此人从甲地到乙地经过的路程是xkm ,那么 x 的最大值是 () .(A)11(B)8 (C)7(D)58.1 x 2,有解,则 k 的取值范围是 (). 若不等式组kx(A) k < 2(B) k ≥ 2 (C)k < 1(D)1 ≤ k < 2 9.x 9 5x 1,).不等式组m1 的解集是 x > 2,则 m 的取值范围是 (x(A) m ≤ 2(B) m ≥ 2(C)m ≤ 1(D) m ≥ 110. 对于整数 a , b , c , d ,定义a b 1 b ,则 b + d 的值为 _________.dac bd ,已知 1d 3c411.如果 a 2x > a 2y(a ≠ 0).那么 x______y . 12. 若 x 是非负数,则1 3 2x的解集是 ______.513. 已知 (x - 2)2+| 2x - 3y - a |= 0,y 是正数,则 a 的取值范围是 ______ .14. 6 月 1 日起,某超市开始有偿 提供可重复使用的三种环保购物袋,每只售价分别为 1 元、 2 元和 3 元,这三种环保..购物袋每只最多分别能装大米3 千克、 5 千克和 8 千克. 6 月 7 日,小星和爸爸在该超市选购了 3 只环保购物袋用 来装刚买的 20 千克散装大米,他们选购的 3 只环保购物袋至少 应付给超市 ______元...15. 若 m >5,试用 m 表示出不等式 (5- m)x > 1- m 的解集 ______.16. 乐天借到一本 72 页的图书,要在 10 天之内读完,开始两天每天只读 5 页,那么以后几天里每天至少要读多少页 ?设以后几天里每天要读x 页,列出的不等式为 ______.x y 2k, 17. k 满足 ______时,方程组y 中的 x 大于 1, y 小于 1.x 4二、解下列不等式第 1 页 共 6 页18. 2(2x -3)< 5(x - 1).10- 3(x + 6)≤ 1.19. x x 2 y 1 y 1 y 1 153263220.1 12 0.4 x 0.90.03 0.02.xx 5 x[ x( x 1)]( x 1).0.0322230.5三、解不等式组3x 3 2x 1x 3 1 x, 2 3x, 5 x x 5 21.,12(x3)] 1.2[ xx2x422 4x 3x 7,22. 解不等式组 6x 3 5x 4,3x 7 2x 3.四、变式练习23. 若 m 、n 为有理数,解关于x 的不等式 (- m 2-1)x >n .3x 2 y p 1, 24. .已知关于 x , y 的方程组3y p 的解满足 x > y ,求 p 的取值范围.4x12x y 1 3m, 25. 已知方程组x 2 y 1 m① 的解满足 x + y <0,求 m 的取值范围. ②第 2 页 共 6 页26.适当选择 a 的取值范围,使 1.7< x< a 的整数解:(1)x 只有一个整数解;(2)x 一个整数解也没有.10 k k (x 5)27. 当2(k 3) 时,求关于 x 的不等式x k 的解集.3 428.已知 A= 2x2+3x+ 2, B= 2x2- 4x- 5,试比较 A 与 B 的大小.3x 5 y k ,29.(类型相同)当k 取何值时,方程组的解x,y都是负数.2x y 5x 2 y4k,30.(类型相同)已知中的x,y满足0<y-x<1,求k的取值范围.2x y 2k 13x 4a,31.已知a是自然数,关于x 的不等式组的解集是x>2,求a的值.x 20x a0,32.关于x的不等式组的整数解共有 5 个,求 a 的取值范围.3 2x 133.(类型相同)k 取哪些整数时,关于x 的方程 5x+ 4= 16k- x 的根大于2 且小于 10? 第 3 页共 6 页34. (类型相同)已知关于x y2m 7, m 的取值范围.x, y 的方程组y 4m的解为正数,求x 3x 15x 3,235. 若关于 x 的不等式组只有 4 个整数解,求a 的取值范围.2x 2 x a3五、解答题36. 一个工程队原定在 10 天内至少要挖掘 600m3的土方.在前两天共完成了120m3后,接到要求要提前 2 天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?37.某城市平均每天产生垃圾700 吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55 吨,需花费550 元;乙厂每小时处理45 吨,需花费495 元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150 元,问甲厂每天至少要处理多少吨垃圾?38.若干名学生,若干间宿舍,若每间住4 人将有 20 人无法安排住处;若每间住8 人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间 ?39.某零件制造车间有20 名工人,已知每名工人每天可制造甲种零件 6 个或乙种零件 5 个,且每制造一个甲种零件可获利 150 元,每制造一个乙种零件可获利260 元.在这 20 名工人中,车间每天安排x 名工人制造甲种零件,其余工人制造乙种零件.(1)若此车间每天所获利润为y(元 ),用 x 的代数式表示y.(2)若要使每天所获利润不低于24000 元,至少要派多少名工人去制造乙种零件?第 4 页共 6 页40.某单位要印刷一批宣传资料,在需要支付制版费600 元和每份资料0.3 元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000 份的,超过部分的印刷费可按9 折收费;乙印刷厂提出:凡印刷数量超过3000 份的,超过部分印刷费可按8 折收费.(1)若该单位要印刷2400 份宣传资料,则甲印刷厂的费用是______,乙印刷厂的费用是______.(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?41.2008 年 5 月 12 日,汶川发生了里氏 8.0 级地震,给当地人民造成了巨大的损失.某中学全体师生积极捐款,其中九年级的 3 个班学生的捐款金额如下表:老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700 元;信息二:二班的捐款金额比三班的捐款金额多300 元;信息三:一班学生平均每人捐款的金额大于48 元,小于51 元.....请根据以上信息,帮助老师解决:(1) 二班与三班的捐款金额各是多少元?(2) 一班的学生人数是多少 ?42.某学校计划组织385 名师生租车旅游,现知道出租公司有42 座和 60 座客车, 42 座客车的租金为每辆320 元, 60座客车的租金为每辆460 元.(1)若学校单独租用这两种客车各需多少钱?(2)若学校同时租用这两种客车8 辆(可以坐不满 ),而且比单独租用一种车辆节省租金,请选择最节省的租车方案.43. 在“ 5· 12 大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.某灾民安置点计划用该企业生产的这批板材搭建 A , B 两种型号的板房共400 间,在搭建过程中,按实际需要调运这两种板材.已知建一间 A 型板房和一间 B 型板房所需板材及能安置的人数如下表所示:板房型号甲种板材乙种板材安置人数A 型板房54 m2 26 m2 5B 型板房78 m2 41 m2 8问:这 400 间板房最多能安置多少灾民?x 2的解集是 x 2 ,则a的取值范围为x 22 ,则a( 1)若不等式组a (2)若不等式组的解集时 a xx x a 第 5 页共 6 页的取值范围为( 3)若不等式组x2x 无解,则 a 的取值范围为ax 0 1、 2 和 3,则 a 的取值范围为;2. 若不等式组只含有三个整数x ax 0 1、 2 和 3,则 a 的取值范围为;变式 1:若不等式组只含有三个整数x ax a,变式 2:关于 x 的不等式组;1 x 只有 3 个整数解,则 a 的取值范围是1 x 2). A . m<2 B . m ≥2 C . m<1 D . 1≤m<23.若不等式组有解,则 m 的取值范围是( x m4. 不等式 a ≤ x ≤ 3 只有 5 个整数解,则 a 的范围是x a5、已知 0b a ,那么下列不等式组中有解的是()A .B .x bx 16、已知不等式组无解,则 a 的取值范围是( ) A. a ≤ 1B .x axa x a x ax bC .bD .bxxa ≥1C.a <1D . a >17、已知关于 x 的不等式组x a >0 的整数解共有 5 个,求 a 的取值范围。
初二数学不等式组练习题

初二数学不等式组练习题在初二数学学习中,不等式组是一个重要的概念。
通过解不等式组,可以帮助我们更好地理解数学中的不等式运算,并且提高解决实际问题的能力。
以下是一些初二数学不等式组练习题,通过这些题目的训练,可以帮助同学们巩固对不等式组的理解和运用。
1. 已知不等式组:{ x + y ≥ 5{ 2x - y ≥ 1解这个不等式组,写出解集。
2. 解不等式组:{ x + 2y ≤ 8{ x - y > 3写出这个不等式组的解集。
3. 解不等式组:{ 3x + 2y > 6{ x - y < 1写出这个不等式组的解集。
4. 解不等式组:{ 2x + 3y ≥ -4{ 2x - y > 1写出这个不等式组的解集。
5. 解不等式组:{ 2x - y < 1{ x + 3y > 5写出这个不等式组的解集。
6. 解不等式组:{ x + y < -2{ 3x - 2y > 6{ x - y ≤ 4写出这个不等式组的解集。
7. 解不等式组:{ x - y > 2{ x + y ≤ 4写出这个不等式组的解集。
8. 解不等式组:{ 2x - y > 1写出这个不等式组的解集。
9. 解不等式组:{ x + y > 4{ x - 2y ≥ 3写出这个不等式组的解集。
10. 解不等式组:{ x - y < 0{ 2x + 3y ≥ 5写出这个不等式组的解集。
通过以上的练习题,我们可以进一步熟悉不等式组的解法和解集的表示方法。
在解不等式组时,我们可以通过图像法或代数法来求解。
无论是哪一种方法,都需要准确地理解和运用数学中的不等式运算规则,并且进行适当的推理和计算。
通过反复练习,我们可以提高解决不等式组问题的能力,为数学学习打下坚实的基础。
新北师大版八年级数学下册第2章《一元一次不等式与一元一次不等式组 》综合练习题含答案解析 (24)

(共25题)一、选择题(共10题)1. 若关于 x 的不等式组 {2x −6+m <0,4x −m >0 有解,则在其解集中,整数的个数不可能是 ( )A . 1B . 2C . 3D . 42. 如图表示下列四个不等式组中其中一个的解集,这个不等式组是 ( )A . {x ≥2,x >−3B . {x ≤2,x <−3C . {x ≥2,x <−3D . {x ≤2,x >−33. 把不等式组 {2x +3>1,3x +4≥5x的解集表示在数轴上如图,正确的是 ( )A .B .C .D .4. 若 a >b ,则下列不等式成立的是 ( ) A . a −1<b −1 B . −8a <−8b C . 4a <4bD . ac >bc5. 若 x <y 成立,则下列不等式成立的是 ( ) A . x −2<y −2 B . −x <−y C . x +1>y +1D . −3x <−3y6. 不等式 x −1>0 的解集是 ( ) A . x >1B . x <1C . x >−1D . x <−17. 不等式组{5x +2>3(x −1)12x −1≤7−32x的所有非负整数解的和是( ) A .10 B .7 C .6 D .08. 已知 a >b ,则下列不等关系中正确的是 ( ) A . ac >bcB . a +c >b +cC . a −1>b +1D . ac 2>bc 29. 不等式组 {x +9<5x +1,x ≥2x −3 的解集是 ( )A .x >2B .x ≤3C .2<x ≤3D .x ≥310. 不等式 2x ≥x −1 的解集在数轴上表示正确的是 ( )A .B .C .D .二、填空题(共7题)11. 在平面直角坐标系中,点 P (m,m −2) 在第一象限内,则 m 的取值范围是12. 已知关于 x 的不等式组 {x −a <0,9−2x ≤3 有且只有 2 个整数解,且 a 为整数,则 a 的值为 .13. 定义新运算:对于任意实数 a ,b 都有:a ⊕b =a (a −b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2−5)+1=2×(−3)+1=−5,那么不等式 3⊕x <13 的解集为 .14. 当 x 满足条件 时,代数式 6−3x 5的值不大于零.15. 对于有理数 m ,我们规定 [m ] 表示不大于 m 的最大整数,例如 [1.2]=1,[3]=3,[−2.5]=−3,若 [x+23]=−5,则整数 x 的取值是 .16. 一元一次不等式需满足的三个条件是:① ,② ,③ ,这样的不等式叫做一元一次不等式.17. 如图,周长为 a 的圆上仅有一点 A 在数轴上,点 A 所表示的数为 1.该圆沿着数轴向右滚动一周后点 A 对应的点为点 B ,且滚动中恰好经过 3 个整数点(不包括 A ,B 两点),则 a 的取值范围为 .三、解答题(共8题)18. 已知不等式 18x −2>x 与 ax −3>2x 的解集相同,求 a 的值.19. 解不等式组 {2x−13−5x+12≤1,5x −1<3(x +1), 并写出该不等式组的整数解.20. 列方程解应用题.(1) 某车间 32 名工人生产螺母和螺钉,每人每天平均生产螺钉 1500 个或螺母 5000 个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉?(2) 一家游泳馆每年 6∼8 月份出售夏季会员证,每张会员证 80 元,只限本人使用凭证购入场券每张 1 元,不凭证购入场卷每张 3 元,请用所学数学知识分析,什么情况下购会员证更合算?21. 解不等式组 {3x ≥4x −4, ⋯⋯①5x −11≥−1. ⋯⋯②请结合题意填空,完成本题的解答. (1) 解不等式 ①,得 . (2) 解不等式 ②,得 .(3) 把不等式 ① 和 ② 的解集在数轴上表示出来:(4) 原不等式组的解集为 .22. 已知两个语句:①式子 2x −1 的值比 1 大; ②式子 2x −1 的值不小于 1. 请回答下列问题:(1) 两个语句表达的意思是否一样?(不用说明理由)(2) 把两个语句分别用数学式子表示出来,并选择一个求其解集.23. 解方程组:{x +3>5 ⋯⋯①2x −3<x +2 ⋯⋯②24. 解不等式组:{4x >2x −6,x−13≤x+19, 并把解集在数轴上表示出来.25. 解不等式:x−52+1>x −3.答案一、选择题(共10题)1. 【答案】C【解析】解不等式2x−6+m<0,得x<6−m2,解不等式4x−m>0,得x>m4,∵不等式组有解,∴m4<6−m2,解得m<4,如果m=2,则不等式组的解集为12<x<2,整数解为x=1,有1个;如果m=0,则不等式组的解集为0<x<3,整数解为x=1,2,有2个;如果m=−1,则不等式组的解集为−14<x<72,整数解为x=0,1,2,3,有4个.故选C.【知识点】含参一元一次不等式组2. 【答案】D【知识点】常规一元一次不等式组的解法3. 【答案】B【解析】解不等式2x+3>1,得:x>−1,解不等式3x+4≥5x,得:x≤2,则不等式组的解集为−1<x≤2,故选:B.【知识点】常规一元一次不等式组的解法4. 【答案】B【知识点】不等式的性质5. 【答案】A【解析】A、不等式的两边都减去2,不等号的方向不变,故本选项正确;B、不等式的两边都乘以−1,不等号的方向改变,故本选项错误;C、不等式的两边都加上1,不等号的方向不变,故本选项错误;D、不等式的两边都乘以−3,不等号的方向改变,故本选项错误.【知识点】不等式的性质6. 【答案】A【知识点】常规一元一次不等式的解法7. 【答案】A【解析】【分析】分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.【解析】解:{5x +2>3(x −1)①12x −1≤7−32x②, 解不等式①得:x >−2.5, 解不等式②得:x ≤4,∴不等式组的解集为:−2.5<x ≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10, 故选:A .【点评】本题主要考查解一元一次不等式组的基本技能,准确求出每个不等式的解集是解题的根本,确定不等式组得解集及其非负整数解是关键. 【知识点】常规一元一次不等式组的解法8. 【答案】B【解析】A .不等式两边都乘以 c ,当 c <0 时,不等号的方向改变,原变形错误,故此选项不符合题意;B .不等式两边都加上 c ,不等号的方向不变,原变形正确,故此选项符合题意;C .不等式的两边一边加 1 一边减 1,不等号的方向不确定,原变形错误,故此选项不符合题意;D .不等式的两边都乘以 c 2,当 c =0 时,变为等式,原变形错误,故此选项不符合题意. 【知识点】不等式的性质9. 【答案】C【解析】{x +9<5x +1, ⋯⋯①x ≥2x −3, ⋯⋯②解不等式 ①,得 x >2, 解不等式 ②,得 x ≤3, ∴ 不等式组的解集为 2<x ≤3. 【知识点】常规一元一次不等式组的解法10. 【答案】C【知识点】常规一元一次不等式的解法二、填空题(共7题) 11. 【答案】 m >2【知识点】常规一元一次不等式组的解法12. 【答案】 5【解析】 {x −a <0,9−2x ≤3解得:{x <a,x ≥3,∴3≤x <a ,∵ 有且只有 2 个整数解, ∴4<a ≤5, ∵a 为整数, ∴a =5.【知识点】含参一元一次不等式组13. 【答案】 x >−1【解析】 ∵a ⊕b =a (a −b )+1,∴3⊕x =3(3−x )+1<13,解得 x >−1. 【知识点】常规一元一次不等式的解法14. 【答案】 x ≥2【知识点】常规一元一次不等式的解法15. 【答案】 −17 或 −16 或 −15【解析】 ∵[x+23]=−5,∴−5≤x+23<−4,∴−15≤x +2<−12, ∴−17≤x <−14,∴ 整数 x 的取值为 −17 或 −16 或 −15. 【知识点】常规一元一次不等式组的解法16. 【答案】只含有一个未知数;未知数的最高次数是 1 ;系数不等于 0【知识点】一元一次不等式的概念17. 【答案】 3<a ≤4【解析】根据题意可知,三个整数点表示的数为 2,3,4,所以 4<a +1≤5,所以 a 的取值范围为3<a≤4.【知识点】不等式的概念三、解答题(共8题)18. 【答案】解不等式18x−2>x得,x<−167;由不等式ax−3>2x得,(a−2)x>3,∵两不等式的解集相同,∴a−2<0,∴x<3a−2,∴3a−2=−167,解得:a=1116.故a的值为:1116.【知识点】含参一元一次方程的解法、常规一元一次不等式的解法19. 【答案】{2x−13−5x+12≤1, ⋯⋯①5x−1<3(x+1), ⋯⋯②解不等式①,得x≥−1,解不等式②,得x<2,∴不等式组的解集为−1≤x<2,∴不等式组的整数解为−1,0,1.【知识点】常规一元一次不等式组的解法20. 【答案】(1) 设为了使每天的产品刚好配套,应该分配x名工人生产螺钉,则(32−x)名工人生产螺母,根据题意得:1500x×2=5000(32−x),解得:x=20.则为了使每天的产品刚好配套,应该分配20名工人生产螺钉.(2) 假设游泳x次,则购证后花费为(80+x)元,不购证花费3x元,根据题意得:80+x<3x,解得:x>40.答:6∼8月游泳次数大于40的话,购证更划算.【知识点】和差倍分、一元一次不等式的应用21. 【答案】(1) x≤4(2) x≥2(3) 如图所示:(4) 2≤x≤4【解析】(1) 解不等式 ① 得 x ≤4. (2) 解不等式 ② 得 x ≥2.【知识点】常规一元一次不等式组的解法、常规一元一次不等式的解法、数轴的概念22. 【答案】(1) 两个语句表达的意思不一样.(2) ① 2x −1>1; 两边同加上 1,得 2x >2, 两边再同除以 2,得 x >1. ② 2x −1≥1;两边同加上 1,得 2x ≥2, 两边再同除以 2,得 x ≥1.【知识点】常规一元一次不等式的解法、一元一次不等式的概念、不等式的概念23. 【答案】解不等式①,得 x >2.解不等式②,得 x <5.所以,这个不等式组的解集是 2<x <5. 【知识点】常规一元一次不等式组的解法24. 【答案】{4x >2x −6, ⋯⋯①x−13≤x+19. ⋯⋯②解不等式①得:x >−3,解不等式②得:x ≤2.∴ 不等式组的解集为−3<x ≤2.在数轴上表示不等式组的解集为:【知识点】常规一元一次不等式组的解法25. 【答案】(x −5)+2>2(x −3),x −5+2>2x −6,x −2x >5−2−6,−x >−3,x <3.【知识点】常规一元一次不等式的解法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式及不等式组习题
一、选择题
1. 如果a 、b 表示两个负数,且a <b ,则( ). (A)1>b a (B)b a <1 (C)b
a 11< (D)a
b <1 2. a 、b 是有理数,下列各式中成立的是( ).
(A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b
(C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b
3. |a |+a 的值一定是( ).
(A)大于零 (B)小于零 (C)不大于零 (D)不小于零
4. 若由x <y 可得到ax >ay ,应满足的条件是( ).
(A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0
5. 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).
(A)a <0 (B)a >-1 (C)a <-1 (D)a <1
6. 九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ).
(A)2人 (B)3人 (C)4人 (D)5人
7. 某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ).
(A)11 (B)8 (C)7 (D)5
8. 若不等式组⎩
⎨⎧>≤<k x x ,21有解,则k 的取值范围是( ). (A)k <2 (B)k ≥2 (C)k <1 (D)1≤k <2
9. 不等式组⎩⎨⎧+>+<+1
,159m x x x 的解集是x >2,则m 的取值范围是( ).
(A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥1
10. 对于整数a ,b ,c ,d ,定义bd ac c d b a -=,已知3411<<d
b ,则b +d 的值为_________.
11. 如果a 2x >a 2y (a ≠0).那么x ______y .
12. 若x 是非负数,则5
231x -≤-的解集是______. 13. 已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______.
14. 6月1日起,某超市开始有偿..
提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少..
应付给超市
______元.
15. 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.
16. 乐天借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,
那么以后几天里每天至少要读多少页?设以后几天里每天要读x 页,列出的不等式为______.
17. k 满足______时,方程组⎩⎨⎧=-=+4
,2y x k y x 中的x 大于1,y 小于1.
三、解不等式组
18. ⎩⎨⎧≥-≥-.04,
012x x
⎩⎨⎧>+≤-.074,03x x
19. ⎪⎩⎪⎨⎧
+>-<-.
3342,121
x x x x
-
5<6-2x <3.
20、⎪⎩⎪⎨⎧⋅>-<-322,
352x
x x x
⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x x x
三、解答题。
21、已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-0
2,43x a x 的解集是x >2,求a 的值.
22、已知⎩⎨⎧+=+=+1
22,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.
23、若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 3
22,3215只有4个整数解,求a 的取值范围.
24、已知关于x ,y 的方程组⎩⎨⎧-=++=+1
34,123p y x p y x 的解满足x >y ,求p 的取值范围.
25、当k 取何值时,方程组⎩⎨⎧-=+=-5
2,53y x k y x 的解x ,y 都是负数.
四、应用题
26、某自行车厂今年生产销售一种新型自行车,现向你提供以下有关信息:(1)该厂去年已备有这种自行车车轮10000个,车轮车间今年平均每月可生产车轮1500个,每辆自行车需装配2个车轮。
(2)该厂装配车间(自行车最后一道工序的生产车间)每月至少可装配这种自行车1000辆,但不超过1200辆。
(3)该厂已收到各地客户今年定购这种自行车共14500辆的订货单。
(4)这种自行车出厂销售单价为500元/辆。
该厂今年这种自行车的销售金额为a万元,请你根据上述信息,求a的取值范围。
27、某自行车厂今年生产销售一种新型自行车,现向你提供以下有关信息:(1)该厂去年已备有这种自行车车轮10000个,车轮车间今年平均每月可生产车轮1500个,每辆自行车需装配2个车轮。
(2)该厂装配车间(自行车最后一道工序的生产车间)每月至少可装配这种自行车1000辆,但不超过1200辆。
(3)该厂已收到各地客户今年定购这种自行车共14500辆的订货单。
(4)这种自行车出厂销售单价为500元/辆。
该厂今年这种自行车的销售金额为a万元,请你根据上述信息,求a的取值范围。
28、某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元.在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.
(1)若此车间每天所获利润为y(元),用x的代数式表示y.
(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种
零件?。