初二数学不等式测试题
初二数学上册不等式练习题

初二数学上册不等式练习题一、基础练习1. 解下列不等式,并将解表示在数轴上:a) 3x + 7 < 10b) 2 - 5x ≥ 12. 计算下列不等式组成的区间的并集,并用数轴表示出来:a) 1 < x ≤ 3b) -4 ≤ x < -13. 如果 x + 2 < x - 3,问该不等式是否有解,为什么?4. 解下列不等式,并将解表示在数轴上:a) |x - 4| < 2b) -3x + 5 > 2x + 15. 解下列关于 x 的不等式,并将解表示在数轴上:a) x(x - 2) > 0b) (x - 3)(x - 5) ≤ 0二、综合练习1. 解下列关于 x 的不等式组,并将解表示在数轴上:a) (x - 3)(x - 4) > 0b) (2x - 3)(x + 1) ≥ 0c) x(x - 2)(x + 1) ≤ 02. 某校初二年级共有 180 名学生,已知男生人数超过女生人数的40%,求男生人数的范围。
3. 某公司的年收入是 300 万元以上,假设每年收入增长不少于 10% ,求 n 年后的最小年收入。
4. 已知两个不等式:2x - 3 < y ≤ 5x + 1 和 3y + 2 > 4x + 5,解该不等式组。
三、应用题1. 小明买了一辆自行车,已知原价为 2000 元,商场正在搞促销活动,每天降价 10%,问过了多少天后,自行车价格降到 1000 元以下?2. 某公交车站至某大厦,全程约 20 公里。
已知 7:00 时公交车从车站发车,每分钟行驶速度为 3 公里,而 7:30 时某早班车从大厦出发,每分钟行驶速度为 4 公里。
问早班车何时追上公交车?3. 某航班 8:00 从 A 市起飞,前往 B 市,航程 800 公里。
同时,一列动车列车 8:05 从 B 市开往 A 市,时速为 180 公里/小时。
问几点钟两车相遇?4. 甲、乙两人玩掷骰子游戏,假设出现的点数加起来是 x,已知甲的点数不能小于 3 ,乙的点数不能大于 9 。
初二下册数学不等式练习题及答案

初二下册数学不等式练习题及答案一.选择题1.下列是一元一次不等式的有x>0,<﹣1,2x<﹣2+x,x+y>﹣3,x=﹣1,x2 >3,.2.若是一元一次不等式,则m值为5.要使代数式的值是负数,则x的取值范围是7.关于x的方程的解是非负数,则正整数m的是9.已知方程组的解满足x>2y,那么a的取值范围是 2二.填空题 11.若x|m﹣1|﹣3>6是关于x的一元一次不等式,则m= _________ .12.若﹣3x2m+7+5>6是一元一次不等式,则m=.13.对于任意数我们规定:14.若代数式的值不小于代数式的值,则x的取值范围是=ad﹣bc,若<5,则x的取值范围是三.解答题15.解不等式:x+1≥+2,并把解集在数轴上表示出来. 16.解不等式4+3≥3x,并把解集在数轴上表示出来. 17.解不等式:,并把解集表示在数轴上.18.解不等式2﹣3<1,并把它的解集在数轴上表示出来.19.解下列不等式:2x﹣5≤220.解不等式21.解不等式22.解不等式23.已知方程组24.解不等式25.解不等式26.解不等式x﹣227.解不等式,并将解集在数轴上表示出来.<1.,并把它的解集在数轴上表示出来.的解满足条件x+y<0,求m的取值范围.,并把它的解集在数轴上表示出来.,并把它的解集在数轴上表示出来,并把它的解集在数轴上表示出来.≤,并把它的解集在数轴上表示出来.28.解下列不等式,并把解集表示在数轴上:x﹣4≤ 29.解不等式≥﹣1,并把它的解集在数轴上表示出来.30.解下列不等式,并把解集在数轴上表示出来..数学2.4习题精选1参考答案与试题解析一.选择题1.下列是一元一次不等式的有x>0,<﹣1,2x<﹣2+x,x+y>﹣3,x=﹣1,x>3, 2.2.若是一元一次不等式,则m值为5.要使代数式的值是负数,则x的取值范围是7.关于x的方程的解是非负数,则正整数m的是第一章不等式学习1 不等关系基础练习1.用“>”或“<”填空:0 ―1;?23?.42.用适当的符号表示下列关系m比—2大. x的一半比它与6的差小. a与b的差不大于a与b的和.3.“—x不大于—2”用不等式表示为.—x≥——x ≤——x >—2—x <—.下列按条件列出的不等式中,正确的是. a不是负数,则a>0 a与3的差不等于1,则a—3<1 a是不小于0的数,则a>0 a与 b 的和是非负数,则a+b≥05.已知—1<a<0,下列各式正确的是.112—a<?<?a aa1122?<?a<—a?<—a<?aaa?a<—a<?26.对于x+1和x,下列结论正确的是.x+1≥xx+1≤xx+1>x x+1<x提高练习8.有理数a与b在数轴上的位置如图1—1,用“>”或“<”填空: a 0;b 0;a b;a +b 0;图1—1 a-b 0.9.一个两位数的十位数字是x,个位数字比十位数字小3,并且这个两位数小于40,用不等式表示数量关系. 10.一个工程队原定在10天内至少要挖掘600m3的土方,在前两天共完成了120 m3后,又要求提前2天完成掘土任务,问以后每天至少要挖多少土方?11.爸爸为小明存了一个3年期教育储蓄,3年后希望取得5400元以上,他至少要存如多少元?a- b-2;3a b;1122ab;-ab;433-10a -10b; ac2b c2.2.若x>y,则ax>ay,那么a一定为.a≥0 a≤0a >0 a<03.若m<n,则下列各式中正确的是m-3>n-m>3n -3m>-3nm3?1>n3?1.下列各题中,结论正确的是若a>0,b<0,则 ba>0若a>b,则a-b>0若a<0,b<0,则ab<0若a>b,a<0,则ba<05.下列变形不正确的是若a>b,则b<a 若-a>-b,则b>a由-2x>a,得x>?12a由12x>-y,得x>-2y .下列不等式一定能成立的是 a +c>a-ca2+c>c a>-aa10<a.将下列不等式化成“x>a”或“x<a”的形式:x-17<-5;?12x>-3;?23x>11; 145x?3>?5x?3.8.已知-x+1>-y+1,试比较5x-4与5y-4的大小...)..)))9.a一定大于-a吗?为什么?10.已知将不等式mx>m的两边都除以m,得x<1,则m应满足什么条件?3不等式的解集基础练习1.在数轴上表示下列不等式的解集:x≥3; x<0;2.写出图1—5和图1—6所表示的不等式的解集:图1—5图1—63.下列不等式的解集中,不包括-3的是x≥-x ≤-x >-.下列说法正确的是 x=4不是不等式2x>7的一个解x=4是不等式x>的解集不等式x>的解集是x>4 不等式x>的解集是x>725.下列说法中,错误的是不等式 x <5的正整数解有无数多个不等式 x >-的负整数解有有限个不等式-2x>的解集是x<--40是不等式x<-的一个解6.如果不等式ax ≤2的解集是x≥-4,则a的值为a=?1a ≤?11a >?2.D)x <-...D)a<12不等式3x>-9的解集是.不等式x+2<1的解集是.如xn?1<2是一元一次不等式,则n如y+3<4是一元一次不等式,则m=..解下列不等式,并把它们的解集分别表示在数轴上.3x+1>4; x?12x?13≥5;≥;;23提高练习3.a取什么值时,代数式4a+3的值:大于1?等于1?小于1?4.求不等式1-2x 5.三个连续正奇数的和小于21,这样的正奇数组共有多少组?把它们都写出来.,6.一个工程队原定在8天内至少要挖土600m3,在前两天一共完成了150 m3由于整个工程调整工期,要求提前两天完成挖土任务.问以后几天内,平均每天至少要挖土多少m3?7.已知y=2-2x ,试求当x为何值时,y>0;当y 为何值时,x≤-1.4一元一次不等式1.填空题.不等式x>-3的负整数解是.不等式x<4的自然数解是.2.不等式21-5x>4的正整数解的个数有.2个3个4个个3.四个连续的自然数的和小于34,这样的自然数组有.5组6组7组组.解下列不等式.10-3 ≤1; x?2x?42x?1x>4-;-4<-.2235.已知代数式14?x的值不小于,求x的正整数解.36.一个钝角三角形的一个锐角是另一个锐角的4倍,求较小锐角的取值范围.8.某城市平均每天产生垃圾700吨,由甲乙两个垃圾处理厂处理.已知甲厂每小时可处理垃圾55吨,每吨需费用10元;乙厂每小时可处理垃圾45吨,每吨需费用11元.如果规定该城市每天用于处理垃圾的费用不超过7370元,甲厂每天处理垃圾至少需多少小时?数学2.3习题精选一.选择题 1.不等式组的解集是2.关于x的不等式﹣2x+a≥2的解集如图所示,a的值是5.不等式组的解集情况为8.不等式组的解集是9.已知关于x的不等式组无解,则a的取值范围是12.若关于x的一元一次不等式组13.如果不等式组无解,则a的取值范围是无解,那么m的取值范围是,则a的取值范围是14.不等式x>1的解集是15.如果不等式组的解集是x>2,则a的取值范围是17.不等式组的解集在数轴上表示为18.某不等式组的解集在数轴上表示如图,则这个不等式组可能是19.把不等式组的解集表示在数轴上,正确的是二.填空题1.写一个解集是x>2的不等式:.22.若不等式﹣3x+n>0的解集是x<2,则不等式﹣3x+n<0的解集是.23.对于一次函数y=x﹣,若﹣2≤x≤2,则y的取值范围是24.如图,数轴上所表示的不等式组的解集是:.25.写出如图所表示的某不等式组的解集.26.如果关于x的一元一次不等式组的解集在数轴上的表示如图所示,那么该不等式组的解集为.27.若关于x的不等式x﹣a≤﹣3的解集如下图所示,则a的值是28.关于x的某个不等式组的解集在数轴上表示如图所示,则该不等式组的解集为29.如图,用不等式表示公共部分x的范围30.关于x的不等式3x﹣2a<﹣2的解集如图所示,则a=.数学2.3习题精选参考答案与试题解析一.选择题 1.不等式组的解集是2.关于x的不等式﹣2x+a≥2的解集如图所示, a的值是5.不等式组的解集情况为。
初二数学不等式练习题

初二数学不等式练习题不等式是数学中常见的一种数学表达式形式,它可以表示数值大小的关系。
在初二数学学习中,不等式是一个重要的知识点。
本文将提供一些初二数学不等式练习题,帮助同学们巩固和提升自己的不等式解题能力。
1. 简单的不等式练习题1.1 解下列不等式,给出解集:a) 2x + 3 > 5b) 4y - 1 < 7c) 3z + 2 ≥ 101.2 比较大小,填入符号“>”、“<”或“=”:a) 3 + 2 ______ 6b) 2 × 5 ______ 3 × 4c) 10 - 2 ______ 4 + 62. 复杂的不等式练习题2.1 解下列不等式,并给出解集的图示:a) 2x + 3 < 5x - 2b) 4y - 1 ≥ 2y + 7c) 3z + 2 ≠ 8 - z2.2 解不等式组,并给出解集的图示:a) {2x - 1 > x + 3, x < 4}b) {3y - 2 ≤ 5, 2y + 4 > 10}3. 利用不等式解实际问题3.1 问题一:小明买了一张演唱会的门票和两份纪念品,总共花费不得超过300元。
门票的价格为x元,纪念品的总价为y元。
写出不等式表示小明的购买情况,求解小明能够购买的门票和纪念品的价格范围。
3.2 问题二:某航空公司推出优惠机票,乘客购票人数达到200人以上时,优惠票价为1000元/人;购票人数不足200人时,票价为1500元/人。
已经有120人购票,请问还需多少人购票,航空公司的收入才能达到最低要求?在解答以上练习题和实际问题时,可以使用代数方法、图示法等多种解题方法,根据具体题目的要求选择合适的解题方法。
通过完成上述练习题,我们可以对初二数学不等式的解题方法和技巧有更深入的理解。
不等式是数学中应用广泛的概念,在实际生活中也有很多应用场景。
通过不断练习和巩固,我们可以提高数学解题的能力,为今后的学习和应用打下坚实的基础。
初二数学不等式解集练习题

初二数学不等式解集练习题1. 解下列不等式,并给出解集的数轴表示形式:a) 3x + 4 > 10b) 2x - 5 ≤ 32. 解下列不等式,并给出解集的数轴表示形式:a) 2(x + 3) > 8b) 5(x - 2) ≤ 7 - 3x3. 解下列不等式,并给出解集的数轴表示形式:a) 5 - 2x ≥ 7x - 3b) 4x + 2 ≤ 3x - 54. 解下列不等式,并给出解集的数轴表示形式:a) 4(x - 2) - 2x > 6b) 2(x + 1) + 3(x - 4) ≥ 2(3x - 1)5. 解下列不等式,并给出解集的数轴表示形式:a) -3(x + 1) + 2 ≤ -6b) 4(x + 2) + 2 < 2(x - 3)6. 解下列不等式,并给出解集的数轴表示形式:a) 2(x + 1) - 3(2x - 4) > 5b) 3(x - 1) + 4 < 2x + 57. 解下列不等式,并给出解集的数轴表示形式:a) 2(x - 3) + 4(x + 1) ≤ 1b) -4(x - 3) - 2(5 - 3x) > 108. 解下列不等式,并给出解集的数轴表示形式:a) 3(2x - 1) + 4(3 - x) < 13b) -2(3 - 4x) - 3(x + 2) ≥ -5(2 - x)9. 解下列不等式,并给出解集的数轴表示形式:a) 5 - 3x + 2(1 - 2x) > 0b) -4(x + 1) + 3(2x - 3) ≥ 1 + 2(x + 4)10. 解下列不等式,并给出解集的数轴表示形式:a) -3(x - 2) + 4 < -2x + 3b) 5(2 - 3x) + 3(x + 1) > -4(1 + 2x)(以下是题目的解答部分,分小节论述)解答:1.a) 3x + 4 > 10首先,将常数移到一边得到 3x > 10 - 4,即 3x > 6.的方向,得到 x > 2.解集的数轴表示形式为:(2, +∞)。
初二数学一元一次不等式试题答案及解析

初二数学一元一次不等式试题答案及解析1.用适当的符号表示a是非负数:_________.【答案】a≥0.【解析】由于非负数即大于等于0,所以a≥0.故答案是:a≥0.【考点】.由实际问题抽象出一元一次不等式2.解不等式组,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集.【答案】不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2【解析】先将不等式组中每一个不等式的解集求出,然后再在数轴上表示,写出满足条件的非负整数解即可试题解析:解不等式①得,x≥-1;解不等式②得,x<3;所以原不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2.【考点】1、解不等式组;2、不等式组的整数解3. 2013年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?【答案】(1)有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)选择(1)中的方案一租车,才能使所付的费用最少,最少费用是20700元.【解析】(1)设租用甲种货车x辆,表示出租用乙种货车为(16﹣x)辆,然后根据装运的粮食和副食品数不少于所需要运送的吨数列出一元一次不等式组,求解后再根据x是正整数设计租车方案;(2)分别求出三种方案的燃油费用,比较即可得解.试题解析:(1)设租用甲种货车x辆,租用乙种货车为(16﹣x)辆,根据题意得,,由①得,x≥5,由②得,x≤7,∴,5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)当x=5时,16﹣5=11,5×1500+11×1200=20700元;当x=6时,16﹣6=10,6×1500+10×1200=21000元;当x=7时,16﹣7=9,7×1500+9×1200=21300元;答:选择(1)中的方案一租车,才能使所付的费用最少,最少费用是20700元.【考点】1.一次函数的应用2.一元一次不等式组的应用.4.关于x的不等式组有四个整数解,则a的取值范围是 [ ].A.B.C.D.【答案】B.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可.由(1)得x>8;由(2)得x<2-4a;其解集为8<x<2-4a,因不等式组有四个整数解,为9,10,11,12,则解得-≤a<-.故选B.考点: 一元一次不等式组的整数解.5.若(x+2)(x-3)>0,则x的取值范围是________.【答案】x>3,或x<-2.【解析】根据同号得正,异号得负列出不等式组即可求解.试题解析:由题意得:或解得:x>3,或x<-2.考点: 解一元一次不等式组.6.随着教育改革的不断深入,素质教育的全面推进,某市中学生利用假期参加社会实践活动的越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月产量范围.【答案】16000≤x≤18000.【解析】下个月的产量为x件,根据“劳动时间”和“预计下月市场对J牌产品需求量为16000件”可列不等式组求解.试题解析:设下个月的产量为x件,根据题意得,解得:16000≤x≤18000答:下个月的产量不少于16000件,不多于18000件.考点: 一元一次不等式组的应用.7.如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()【答案】C【解析】根据第四象限内横坐标为正,纵坐标为负可得,解得再根据在数轴上表示不等式的解集时,小于向左,大于向右,含等号实心,不含等号空心,可得x的取值范围在数轴上可表示为C选项.【考点】解不等式组8.若>a对任意实数x恒成立,则a的取值范围是。
初二数学不等式组练习题

初二数学不等式组练习题在初二的数学学习中,不等式组是一个非常重要的概念。
通过解不等式组,我们可以进一步巩固和拓展对不等式的理解,提高解决实际问题的能力。
下面是一些初二数学不等式组的练习题,供同学们进行巩固和提高。
1. 解不等式组:① 2x - 4 > 8, 3x + 5 < 20② 4y + 3 ≥ 15, 6y - 2 < 202. 解不等式组,并表示出解的范围:① 2x - 5 > 3, x + 2 < 7② 3y + 4 < 10, 7y - 2 ≥ 283. 解不等式组:① 2a + 3 ≥ 11, 3a - 1 < 8② 4b - 5 > 7, 2b + 1 ≤ 54. 解不等式组,并表示出解的范围:① 3x - 1 < 8, 2x + 5 > 3② 5y + 6 ≤ 13, 4y - 3 ≥ 75. 解不等式组:① 2a + 7 > 15, 3a - 5 ≤ 16② 4b + 5 < 9, 2b - 3 > 46. 解不等式组,并表示出解的范围:① 5x + 2 ≤ 17, 4x - 3 > 5② 3y - 4 < 10, 2y + 5 ≥ 137. 解不等式组:① 2a - 3 ≤ 5, a + 4 > 10② 5b + 7 ≥ 24, 3b - 2 < 138. 解不等式组,并表示出解的范围:① 4x - 5 > 3x + 2, 2x + 4 < 6x - 1② 3y + 6 ≤ 15, 5y - 4 ≥ 179. 解不等式组:① 2a + 5 < 9, 3a - 4 ≤ 10② 4b - 3 ≥ 5, 2b + 2 > 910. 解不等式组,并表示出解的范围:① 5x - 3 > 4x + 2, 2x + 6 < 7x - 5② 5y + 4 ≤ 8, 3y - 2 ≥ 7以上是一些初二数学不等式组的练习题。
八年级数学不等式的解集测试

反比例函数一、选择题1、下列函数中,反比例函数是( ) (A ) 1)1(=-y x (B ) 11+=x y (C ) 21xy =(D ) xy 31=2、某村的粮食总产量为a (a 为常数)吨,设该村的人均粮食产量为y 吨,人口数为x ,则y 与x 之间的函数关系式的大致图像应为( )3、若y 与-3x 成反比例,x 与z4成反比例,则y 是z 的( )(A )正比例函数 (B )反比例函数 (C )一次函数 (D )不能确定 4、若反比例函数22)12(--=m x m y 的图像在第二、四象限,则m 的值是( )(A )-1或1 (B )小于21 的任意实数 (C ) -1 (D) 不能确定5、已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过( ) (A )(-a ,-b ) (B )(a ,-b ) (C )(-a ,b ) (D )(0,0)6、若M(12-,1y )、N(14-,2y )、P(12,3y )三点都在函数k y x=(k>0)的图象上,则1y 、2y 、3y 的大小关系是( )(A )132y y y >> (B )312y y y >> (C ) 213y y y >> (D )123y y y >>7、如图,A 为反比例函数k y x=图象上一点,AB 垂直x 轴于B 点,若AOB S ∆=5,则k的值为( ) (A ) 10 (B ) 10-(C ) 5- (D )25-8、在同一直角坐标系中,函数y=kx-k 与(0)k y k x=≠的图像大致是( )9、如图是三个反比例函数312,,k k k y y y x x x===,在x 轴上方的图像,由此观察得到k l 、k 2、k 3的大小关系为( )(A ) k 1>k 2>k 3 (B ) k 3>k 1>k 2 (C ) k 2>k 3>k 1 (D )k 3>k 2>k 110、在同一直角坐标平面内,如果直线1y x k =与双曲线2k y x=没有交点,那么1k 和2k 的关系一定是( )(A) 1k 、2k 异号 (B) 1k 、2k 同号 (C) 1k >0, 2k <0 (D) 1k <0, 2k >0二、填空题11、已知22)1(--=a xa y 是反比例函数,则a=____ .12、在函数13x -中自变量x 的取值范围是_________.13、.已知圆柱的侧面积是π102cm ,若圆柱底面半径为r cm ,高为h cm ,则h 与r 的函数关系式是 。
初二不等式练习题附答案

初二不等式练习题附答案初二时代是学习数学的关键时期,不等式作为数学知识的重要一环,需要我们掌握和熟练运用。
为了帮助同学们更好地巩固不等式的知识,以下是一些初二不等式练习题及其答案,供大家参考和练习。
一、填空题1. 若 x + 3 > 7,求 x 的取值范围。
解答:x > 7 - 3,即 x > 4。
2. 若 2y - 5 < 13,求 y 的取值范围。
解答:2y < 13 + 5,即 2y < 18;又因为 2 > 0(正数),所以当 2y < 18 时,y 的取值范围为 y < 9。
3. 若 4x - 7 ≥ 5,求 x 的取值范围。
解答:4x ≥ 5 + 7,即4x ≥ 12;又因为 4 > 0,所以当4x ≥ 12 时,x的取值范围为x ≥ 3。
二、选择题1. 下列不等式中,与 x > 2 等价的不等式是:A) x < 2B) x ≥ 2C) x ≤ 2D) x ≠ 2解答:B) x ≥ 22. 若不等式 3 - 2x > 7 的解集为 S,下列解集中符合不等式的是:A) S = {x | x > 2}B) S = {x | x < -2}C) S = {x | x < 2}D) S = {x | x > -2}解答:B) S = {x | x < -2}三、简答题1. 解不等式 5x - 9 > 6 的过程。
解答:首先将不等式化简为 5x > 6 + 9,即 5x > 15。
然后除以 5(注意 5 > 0),得到 x > 15/5,即 x > 3。
所以解集为 {x | x > 3}。
2. 解不等式 -2y + 4 ≤ 8 的过程。
解答:首先将不等式化简为 -2y ≤ 8 - 4,即 -2y ≤ 4。
然后除以 -2(注意 -2 < 0),得到y ≥ 4 / -2,即y ≥ -2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
o o
-1
1
-1
1-1
1
-1
1
D
C B A
o o 不等式(组)测试题 一、选择题
1、如果a >b ,那么下列不等式中不能成立的是( )
A 、a -3>b -3
B 、-3a >-3b
C 、3a >3b
D 、-a <-b 2、代数式
2
31x
-与代数式2+x 的差是负数,则( ) A 、5
3->x
B 、5
3-<x
C 、5
3>x
D 、5
3<x
3、不等式组⎪⎩⎪⎨⎧
-≥+>-x x x 23132
101的解集在数轴上表示为( )
4、如图,天平右盘中每个砝码的重量都是1g ,则图中显示出某药品A 重量的范围是( )
A 、大于2 g
B 、小于3 g
C 、大于2 g 且小于3g
D 、大于2 g 或小于3g
5、⎪⎩⎪
⎨⎧>>-a
x x 13
12的解集为2>x ,则( ) A 、 2<a B 、2=a C 、2>a D 、a ≤2
6、已知方程组⎩⎨
⎧=-=+0
242y x ky x 有正数解,则k 的取值范围是( )A 、4>k B 、k ≥4 C 、0>k D 、4->k
二、填空题:
7、若式子2
21x x -+的值是负数,则x 的取值范围是__________.
8、不等式2317>-x 的正整数解的个数是
9、已知三角形的三边长分别为2,2,x.则x 的取值范围是______________.
10、某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对 道题,成绩才能在60分以上.
11.某校在一次课外活动中,把学生编为9个小组,•若每个小组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生人数不到190人,•那么预定每小组学生有_______人. 三、解答题:
1、解下列不等式或不等式组
⑴)3(21)42(33+-<+-x x x ⑵2
4-x ≤32
25++x
⑶⎪⎩⎪⎨⎧+<-≤-213
4)2(3x x x x
⑷⎪⎩
⎪⎨⎧-≤--≥->-)10(3)13(28
271
32x x x x x
2、若代数式5
)53(2+x 的值不大于23
15-+x 的值,求x 的取值范围。
3、 娃哈哈矿泉水每瓶售价元,现甲、乙两家商场给出优惠政策:甲商场全部九折,乙商场20瓶以上的
部分八折.若你是消费者,选哪家商场比较合算?
4、有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每只猴子分5个,就都分得到桃子,但有一个猴子分得的桃子不足4个.请问有几只猴子,几个桃子?
5、 某人在鱼塘中放养了2000尾淡水鱼,现准备
打捞出售,为了估计鱼塘中这种鱼的总质量,
从鱼塘中捕捞了三次,得到数据如下表:
⑴鱼塘中这种鱼平均每条质量约是 千克, 鱼塘中这种鱼的总质量约是 千克;若将这 些鱼不分大小,按每千克元价格售出,此人约可收入 元。
⑵若鱼塘中这种鱼的总质量是⑴中估计的值,现将鱼塘中的鱼分大、小出售,大鱼每千克10元,小鱼每千克6元,要使此人收入不低于⑴中估计的收入,问鱼塘 中大鱼总质量应至少有多少千克?
附加题:某养鸡场计划购买甲、乙两种小鸡苗共2 000只进行饲养,已知甲种小鸡苗每只2元,乙种小鸡苗每只3元.
(1)若购买这批小鸡苗共用了4 500元,求甲、乙两种小鸡苗各购买了多少只? (2)若购买这批小鸡苗的钱不超过4 700元,问应选购甲种小鸡苗至少多少只?
(3)相关资料表明:甲、乙两种小鸡苗的成活率分别为94%和99%,若要使这批小鸡苗的成活率不低于96%
且买小鸡的总费用最小,问应选购甲、乙两种小鸡苗各多少只?总费用最小是多少元?
捕捞 鱼的尾数 平均每条鱼质量
第一次 15 千克 第二次
15 千克 第三次
10 千克
参考答案: 一、BABCDD
二、7。
x >2 8. 1,2,3,4 9. 0<x <4 10. 12 11. 22 三、解答题:
1.1) x >-7 2) x ≥-3 3) -3<x ≤1 4) 2<x ≤9
32
2. x ≥7
55
3. 购买40瓶,两家商店一样。
超过40瓶,乙商店合算。
小于40瓶,甲商店合算。
4.解:设有x 只猴子,由题意得 0<3x+59-5(x-1)<4, 解得 30<x<32 (x 为整数)
∴x=31, 猴子有31只,桃子有152个。
5、⑴ ×103 ×104
⑵设鱼塘中大鱼总质量为x 千克, 得02700)3600(610≥-+x x 解得x ≥1350。
因此大鱼质量应至少为1350千克。
附加题:
解: 设购买甲种小鸡苗x 只,那么乙种小鸡苗为(200-x )只. (1)根据题意列方程,得4500)2000(32=-+x x ,
解这个方程得:1500=x (只),
500150020002000=-=-x (只),
·即:购买甲种小鸡苗1500只,乙种小鸡苗500只. (2)根据题意得:4700)2000(32≤-+x x , 解得:1300≥x ,
即:选购甲种小鸡苗至少为1300只. (3)设购买这批小鸡苗总费用为y 元,
根据题意得:6000)2000(32+-=-+=x x x y , 又由题意得:%962000)2000%(99%94⨯≥-+x x ,
解得:1200≤x ,
因为购买这批小鸡苗的总费用y 随x 增大而减小,所以当x =1200时,总费用y 最小,乙种小鸡为:2000-1200=800(只),即:购买甲种小鸡苗为1200只,乙种小鸡苗为800只时,总费用y 最小,最小为4800元.。