硝基苯废水处理方案
酸析与微电解法预处理硝基苯工业废水的研究

4 3 . O % ~ 4 8 . 4 %, 硝基苯去除率在 5 0 %左 右; 微 电解 单 元硝基 苯去 除率在 8 0 % 以上 , C O D去 除率为 5 5 . 6 % ~
6 4 . 8 % 。微 电解可使 硝基苯类物质初步 阵解为苯胺 类等容 易氧化处理的物质 , 提 高 了废 水的 可生化性 , 同时不
某工业废水拟定 中试 , 中试规模 定为 5 0  ̄h ( 每
性。由于其不溶 于水且密度大于水 , 进入水体的
硝 基苯 会沉 入 水 底 , 长 时 间保 持 不 变 , 所以 , 造 成
的水体 污染 会 持续相 当长 的时间 。
天1 . 2 H l 3 ) 。从 资 料 来 看 , 高浓 度 碱 性 废 水 C O D< 2 0 0 0 0 m g / 1 。但根 据现 场所 采样 品监 测情 况 , 废 水 C O D值 远 大于所 给数 值 。取样 检测 数 据见 表 1 。
水用硫酸调节 p H值 , 恒流泵连续加入 , 使废水进
电解槽 时 p H 在 2左 右 , 两 级 电解 还 原 之 后 废 水 进入 F e +/ F e + 还 原氧 化池 。废 水经 混凝 沉淀 后 测 定其 硝 基 苯 含 量 及 C O D 值 。铁 碳 比为 1: 1 , 反 应停 留时 间为 3小 时 。 从 4月 2 9日开 始 , 将钢屑和活性碳掏 出, 换 用 铸铁 屑与 活性 碳混 合进 行实 验 , 其他 条件 不变 。
第2 期
卢 炎秋 , 程 胜高 , 文传 选 : 酸 析 与微 电解 法预处 理 硝基苯 工 业废 水 的研 究
2 9
酸 析法 适用 于 高浓度 的硝基 化合 物碱 性废 水 的预处 理 , 废 水 中 的杂 酚 以酚钠 的 形式 存 在 于废 水 中 。用 酸 性 废 水 和分 析 纯 硫 酸 调 整 碱 性 废 水 p H在 2 - 3 , 使废 水 中析 出大量 红 色 的酚渣 及 其 它 物质 经 沉淀 后析 出得 以去 除 。
电化学多相催化处理硝基苯废水_贾保军

1.3 试验方法 用去离子水配置初始浓度为 60mg/L 的硝基苯
模拟废水,分别加入不同质量的无水 Na2SO4 调节支 持电解质的浓度,用 1mol/L 的 H2SO4 或 NaOH 调节 溶液的 pH 值。在电解之前,活性炭先用配置的硝基 苯溶液浸泡,使其达到吸附饱和,以消除活性炭对硝 基苯的吸附效果对硝基苯去除率的影响。取 500mL 的硝基苯溶液加入到储液槽中,通过循环水泵使反 应过程中循环进水。通电开始电解,并开始计时,间 隔一定的时间从储液槽中取出样品溶液进行有关的 分析。 1.4 分析方法
法 作 为 一 种 环 境 友 好 技 术(Environment-friendly
technology)[2],在环境污染治理方面越来越受人们
的重视。电化学技术在有机废水尤其是对生物有较
大毒性或难生化降解有机废水的治理方面得到广泛
的应用。
电化学氧化是以外电压为化学反应推动力,迫
使有机物分子在电极上失去电子,改变分子结构而
摘 要 : 采 用 新 型 的 电 化 学 - 多 相 催 化 反 应 器 , 在 有 、无 催 化 剂 的 情 况 下 , 研 究 了 它 对 硝 基 苯 模 拟 废 水 的 处 理
效果。考查了不同填料存在时, 各种因素对电解硝基苯处理效果的影响。试验结果表明, 有催化剂存在时电化
学 - 多相催化反应器对电解硝基苯有较好的处理效果, 尤其是以铁催化剂为填料时, 处理效果最佳, 可以将原
pH 值对硝基苯的去除影响很小,以催化剂为填料时 本试验对中间产物进行分析得到苯胺,和文献所述
pH 值对硝基苯的电解效果有较大影响。从图中可以 一致。试验结果表明,硝基苯在电解过程中,除了直
看出,铜催化剂为填料时,硝基苯在碱性条件下的处 接和间接电氧化过程,还有硝基苯在阴极的电还原
硝基苯类废水的全混态零价铁-芬顿组合预处理工艺优化与工程验证

第34卷第1期2021年2月污染防治技术POLLUTIO N C ONTROL TE C H N OL O GYVol.34,No.1Feb2021硝基苯类废水的全混态零价铁-芬顿组合预处理工艺优化与工程验证李杰,王骏(南京华创环境技术研究院有限公司,江苏南京211100)摘要:针对企业硝基氯苯装置产生的高毒性、难降解的硝基苯类废水,开发出全混态零价铁-芬顿组合预处理工艺,并分别优化了零价铁还原和芬顿氧化的工艺条件。
结果表明,pH为2.0、零价铁投加量为220mg/L时,废水中硝基苯类物质的去除率可达98.5%以上。
出水pH约为3.0,继续投加3000m//L的1。
2,Fe2+投加比按C(Fe2+,m//L):C(1。
2, m//L)=1:10,1h内COD去除率可达90%以上,且B/C由0.08提高到0.45。
可见该组合预处理工艺可大幅削减废水毒性、改善可生化性,且直接运行成本仅为26.28元/吨,具有良好的环境和经济效益。
关键词:硝基苯类;全混态;零价铁还原;芬顿;组合预处理中图分类号:X730文献标识码:AOptimization and Engineering Verification of Full-mixed Zero-valentIron-Fenton Combined Pretreatment Process for Nitrobenzene WastewaterLO Jie,WANG Jun(Nanjing Huachuang Institute of Environmental Technology Co.,Ltd.Nanjing Jiangsu211100,China)Abstract:Based on the highly toxie and Xifficult-to-XegraXe nitrobenzene waste water produced by the nitrochlorobenzene plant of an enterprise,a fully mixed zero-valent iron-Fenton pretreatment procese wae developed,and tOe procese conditione of reduct tion of zero-valent iron and Fenton oxidation wero optimized respectively.The resulte showed that when the pH wae2.0and the amount of zero-valent iron added wae220m/L,the remove.rate of nitrobenzene compounds in wastewateo can reach moro than 98.5%.The pH of the effluent of the last process wae about3.0,and3000m/L HO wae added subsequently,Fe2+wae added with the ratio of C(Fe2+,m/L):C(H O?,mg/L)=1:10,and the COD removat rate can reach more than90%in1houo,B/ C ratio wae sivnificantly improved from0.08te0.45.Ot can be seen that the combined premeatment process can greatly reduce the toxicity of wastewater and iniprove biodearadabiUm,and the direct operatin/cost wae only26.28RMB/ton,which had/ood environmental and economic benefits.Key words:nitrobenzenes;fully mixed;zero-ralent iron reduction;Fenton;combined pretreatment1概述硝基苯类物质具有强烈的致癌致突变性,广泛存在于染料、农药、医药等工业废水中。
电絮凝-气浮法处理高浓度硝基苯废水

第43卷第 10 期2023年10月Vol.43 No.10Oct.,2023 工业水处理Industrial Water TreatmentDOI:10.19965/ki.iwt.2022-1069电絮凝-气浮法处理高浓度硝基苯废水张洋1,2,王宝山1,2,许亚兵1,2,汪光宗1,2,李鹏程1,2,张继成1,2,陈晓杰1,2,赵培宇1,2(1.兰州交通大学环境与市政工程学院,甘肃兰州 730070;2.甘肃省黄河水环境重点实验室,甘肃兰州 730020)[ 摘要]对兰州新区某化工厂高浓度硝基苯(NB)废水进行双铝电极电絮凝-气浮工艺处理,探讨了该工艺处理高浓度硝基苯废水的技术参数及硝基苯类有机物的降解过程。
结果表明,在溶液初始pH为9、电流密度为10 mA/cm2、极板间距为3 cm、反应时间为100 min时,硝基苯和COD的平均去除率分别为60.34%和12.10%。
通过气相色谱-质谱联用仪(GC-MS)分析反应前后废水中特征污染物的降解情况,发现电絮凝-气浮工艺对原水中硝基苯类和苯酚类有机物有着显著的去除效果,主要产物为苯胺类和偶氮苯类。
电絮凝-气浮工艺虽不能实现高浓度硝基苯废水COD的大幅降低,但可实现硝基苯类有机物向可生化性较好的苯胺类有机物的有效转化,改变废水的可生物降解性能,为后续进一步处理提供有利条件。
[关键词]电絮凝-气浮工艺;硝基苯;苯胺;化工废水[中图分类号]X703.1 [文献标识码]A [文章编号]1005-829X(2023)10-0079-09Treatment of high concentration nitrobenzene wastewater byelectrocoagulation-flotationZHANG Yang1,2,WANG Baoshan1,2,XU Yabing1,2,WANG Guangzong1,2,LI Pengcheng1,2,ZHANG Jicheng1,2,CHEN Xiaojie1,2,ZHAO Peiyu1,2(1.School of Environmental and Municipal Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China;2.Key Laboratory of Yellow River Water Environment in Gansu Province,Lanzhou 730020,China)Abstract:The high concentration nitrobenzene (NB) wastewater from a chemical plant in Lanzhou New Area was treated by double aluminum electrocoagulation-flotation process. The technical parameters of the process for treat⁃ing high concentration nitrobenzene wastewater and the degradation mechanism of nitrobenzene organics were dis⁃cussed. The results showed that the average removal rates of nitrobenzene and COD were 60.34% and 12.10% re⁃spectively,with the condition of reaction time 100 min,the initial solution pH 9,the current density 10 mA/cm2 and the plate spacing 3 cm. The degradation of organic pollutants such as nitrobenzene in wastewater before and after the reaction were analyzed by gas chromatography-mass spectrometry(GC-MS). It was found that the electrocoagulation-flotation process had obvious removal effect on nitrobenzene and phenol organics in raw water,and the main products were anilines and azobenzenes. Although the electrocoagulation-flotation process could not achieve a significant COD reduction of high-concentration nitrobenzene wastewater,it could realize the effective con⁃version of nitrobenzene organics to aniline organics with good biodegradability,change the biodegradability of waste⁃water,and provide favorable conditions for subsequent further treatment.Key words:electrocoagulation-flotation;nitrobenzene;aniline;chemical wastewater硝基苯(NB)是一种由苯环和含氮官能团组成的有机化合物,具有高毒性、致癌性、致突变性等特点〔1〕,已被我国列为重点污染物质。
硝基苯废水处理的微生物及工艺

化学与生物工程2007,Vol.24No.3开发应用 Chemistry &Bioengineering基金项目:国家自然科学基金资助项目(40472127)收稿日期:2006-11-24作者简介:张悦周(1984-),男,陕西西安人,硕士研究生,主要从事特殊工业废水处理的研究;通讯联系人:吴耀国。
电话:029288488018,E 2mail :wuygal @ 。
硝基苯废水处理的微生物及工艺张悦周,吴耀国,李 想,胡思海(西北工业大学应用化学系,陕西西安710072) 摘 要:从降解硝基苯的微生物和以微生物为核心的硝基苯废水生物处理工艺两个方面,综述了目前硝基苯废水微生物降解研究的进展,并对微生物处理硝基苯废水的发展提出了建议。
关键词:硝基苯;生物降解;生物处理工艺;微生物中图分类号:X 703 文献标识码:A 文章编号:1672-5425(2007)03-0063-04 环境中的硝基苯主要来自石油化工厂、染料厂的废水废气等[1],具有高的毒性,被列为优先控制的环境污染物[2]。
目前对硝基苯废水的处理方法包括物化法和生物法[1,2],其中物化法主要有吸附法、化学氧化法及高级化学氧化法等[3~5]。
这些方法普遍存在能耗高、操作条件难以控制及二次污染等方面的问题。
微生物处理法可以在很大程度上解决上述难题,还因微生物具有较强的可变异性及适应性,被认为是处理硝基苯废水的理想方法[1,2]。
因此,关于环境中硝基苯的生物处理的研究一直受到环境保护科学家的关注,并取得了颇多进展。
作者拟从降解硝基苯的微生物和以微生物为核心的生物处理工艺两个方面综述硝基苯废水微生物降解研究的状况,提出一些值得进一步研究的问题,旨在为其研究的深入及应用提供一定借鉴作用。
1 降解硝基苯的微生物国内外学者就硝基苯的微生物降解进行了大量的研究[6~11],已经富集分离到不少能降解硝基苯的微生物,如屎拟杆菌(B acteroi des merd ae )、产气荚膜杆菌(C 1perf ri ngens )、假单胞菌(Pseu domonas sp.)、恶臭假单胞菌(Pseu domonas p uti da )、白腐菌(White rot f ungu )等,并揭示了某些微生物降解硝基苯的途径及机制。
含硝基苯、2,4-二硝基酚、对硝基氯苯的废水处理方法

含硝基苯、2,4-二硝基酚、对硝基氯苯的废水处理方法佚名
【期刊名称】《化工环保》
【年(卷),期】2007(27)4
【摘要】该专利公开了一种含硝基苯、2,4-二硝基酚、对硝基氯苯的废水处理方法。
将配水槽中的碱性废水或用质量分数为98%的硫酸调pH至7~8后的中性废水打入活性炭粒子群电催化装置,控制该装置的操作电压和电流,废水经短暂停留后通过微孔过滤器过滤后进人中间池,用硫酸调废水pH至GB8978-1996《污水综合排放标准》的一级排放标准后排放。
该方法具有废水处理工艺流程简单、【总页数】1页(P360-360)
【关键词】废水处理方法;对硝基氯苯;二硝基酚;硝基苯;《污水综合排放标准》;GB8978-1996;微孔过滤器;催化装置
【正文语种】中文
【中图分类】X703
【相关文献】
1.2-(2,4-二硝基苯氧基)乙醇和双-(2,4-二硝基苯氧基)乙烷的合成与分离 [J], 徐若千;丁峰;范红杰;郝虹;刘明
2.由2,4—二硝基氯苯制备3,4—二氟硝基苯 [J], 李志斌;刘鸿
3.对氯苯甲酸、邻氯苯甲酸、2,4-二氯苯甲酸、2,6-二氯苯甲酸、对硝基苯甲酸合成新工艺 [J],
4.气相色谱法测定空气中硝基氯苯,2,4-二硝基氯苯,2,6-二硝基氯苯 [J], 韩津生
5.对氯硝基苯和2,4-二硝基氯苯对锦鲤鱼急性毒性作用 [J], 沈洪艳;宋存义;甄芳芳;任洪强;徐九华
因版权原因,仅展示原文概要,查看原文内容请购买。
国内硝基苯废水治理研究进展

萃取法
• 利用与水不相溶 的有机溶剂将废水 中 的有机物 取出 ,采用物理或化学手段将 有机溶剂与 目的有机 物分离 ,有机 溶 剂一萃取剂 回收重复使用 。林忠祥 等 利用这一原理,以苯为萃取剂处理硝基 苯废水。
吸附法
• 吸附法的吸附过程是指在定条件下 , 一种物 质的分子 ,原子或离子能 自动 的附着在某种 固体表 面的现象 。吸附 法处理硝基苯类废水是通过吸附剂的表 面对硝基苯的吸附作用 ,将硝基苯从 中 除去 ,然后通 过解析 回收硝基苯 ,吸 附剂重新被使用到下一次 的 吸附过程。
光催化氧化法
• 臭氧,过氧化氢在紫外光的照射下,均可激发 产 生羟基自由基,现已证实将紫外光引入 Fenton 试剂,可大大提高 Fenton试剂的氧化 性能。杨文忠 等利用 Fenton试剂与紫外光联 合作用处理硝基苯废 水 ,发现使用 Uv— Fenton试剂处理废水效果优于单 独使用 Fenton试剂 ,并指 出紫外光 与亚铁离子对过 氧化氢的分解具有协 同作用。
国内硝基苯废水治理研究进 展
• 硝基苯的高毒性、难降解性及其在环境 中的积累性,使得硝基苯污染治理成为 众多科研工作者关注 的课题,本文综述 了国内治理硝基苯污染的方法原理 ,研 究进展及今后深入研究的方向。
• 硝基苯是应用广泛的化工基 础原料,主 要用于染料,医药,农药及炸药等行业, 这 些行业的生产废水中含有大量硝基苯、 苯胺等有机 污染物。硝基苯是高毒性物 质,其毒性一般为其它 化合物的20~ 30倍,且具有弱致突变性。长期接 触, 对人体及动植物危害极大。
生物法
• 在一定条件 下,微生物能使废水 中的硝 基苯得 到有效降解。由于生物处理技术 无二次污染 、费用 低 ,且微生物具有 较强的适应性 和可变异性 ,因此生 物 法处理硝基苯废水成为较理想的方法。
硝基苯废水处理方案带计算

硝基苯废水处理方案带计算硝基苯废水是一种工业废水,因其具有毒性、难以降解和对环境造成的危害大等特点,处理起来十分困难。
本文将介绍一种针对硝基苯废水的处理方案,并附有计算实例。
一、处理方案1. 预处理在硝基苯废水处理前,需进行一定的预处理工作。
首先,进行暴露光氧化和氧化还原反应,将原水中的有机物分子裂解成小分子化合物,以便于后续处理。
其次,进行混凝沉淀,使大分子的有机物聚合成较大的团块,方便于后续处理。
2. 生物降解采用生物处理的方法,将废水中的硝基苯分子通过微生物代谢分解为可降解的物质,随后进行后续的过滤、吸附等处理。
3. 吸附处理采用活性炭吸附的方式,将生物处理过程中分解后的有机物吸附在活性炭上,以减少有机物的含量。
4. 活性污泥技术将有机物质通过活性污泥技术进一步处理,从废水中去除必要的硝基苯分子。
二、计算实例假设废水中硝基苯含量为100ppm(mg/L),预处理后废水流量为5m3/h,采用A/O (甲烷菌-氧化菌)工艺;生物反应器使用SBR(一段式消化)全空隙反应器,反应时间为20小时,用活性炭吸附处理,吸附后的废水流量为3m3/h。
根据上述处理方案的流程,进行如下计算:1. 生物反应器的设计根据容积负荷计算生物反应器(SBR)的体积:可知,处理100ppm硝基苯的生物反应器容积为4.1m3。
2. 活性炭的计算由活性炭吸附等各项处理流程计算得出,处理前后水的流量变化为:水的流量为5m3/h,吸附后的废水流量为3m3/h,则活性炭的水处理能力需达到2m3/h,按照处理10%废水流量计算,此次活性炭的计算用量为:因此,本次废水处理需要使用0.6m3活性炭。
3. 操作时间在SBR反应器内,氧或空气的供应需要足够均匀和充分。
时间分配应根据氧化和生物反应推算。
据此,针对100ppm的硝基苯浓度和纯化到10ppm 的目标,需要的处理时间如下:置于反应器中的水量应该至少为反应器容积的一半。
基于100ppm的硝基苯浓度,本次需要处理的废水总量为5*20=100m3,因此处理的总时间是100m3/ 2m3/h = 50小时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录第一章处理工艺的文献综述 (3)1.1含硝基苯废水对环境的危害 (3)1.2处理硝基苯的技术方法现状 (3)1.2.1 物理法 (3)1.2.2 化学法 (4)1.2.3 生物法 (4)第二章工程设计资料与依据 (5)2.1废水水量 (5)2.2设计进水水质 (5)2.3设计出水水质 (5)2.4设计依据 (6)2.5设计原则与指导思想 (6)第三章工艺流程的确定 (6)3.1废水的处理工艺流程 (6)3.2工艺流程说明 (7)3.3工艺各构筑物去除率说明 (8)第四章构筑物设计计算 (9)4.1设计水量的确定 (9)4.2调节池 (9)4.3微电解塔 (10)4.4FENTON氧化池 (12)4.5中和反应池 (13)4.6沉淀池 (14)4.7生活污水格栅 (16)4.8生活污水调节池 (18)4.9生化处理系统 (19)4.10二沉池 (21)4.11污泥浓缩池 (22)第五章构筑物及设备一览表 (25)5.1主要构筑物一览表 (25)5.2主要设备一览表 (25)第六章管道水力计算及高程布置 (26)6.1平面布置及管道的水力计算 (26)6.2泵的水力计算及选型 (29)6.3高程布置和计算 (31)第七章参考文献 (34)第一章处理工艺的文献综述1.1含硝基苯废水对环境的危害硝基苯,分子式为C5H6NO2,相对分子量为123,相对密度(水=1)1.20,熔点在5.7℃,沸点是210.9℃。
硝基苯是淡黄色透明油状液体,有苦杏仁味,不溶于水,溶于乙醉、乙醚、苯等多数有机溶剂。
用于溶剂,制造苯胺、染料等。
环境中的硝基苯主要来自化工厂、染料厂的废水废气,尤其是苯胺染料厂排出的污水中含有大量硝基苯。
硝基苯在水中具有极高的稳定性,由于其密度大于水,进入水体后会沉入水底,长时间保持不变。
又由于其在水中有一定的溶解度,所以造成的水体污染会持续相当长的时间。
硝基苯类化合物化学性能稳定,苯环较难开环降解,常规的废水处理方法很难使之净化。
因此,研究硝基苯类污染物的治理方法和技术十分必要。
1.2处理硝基苯的技术方法现状1.2.1 物理法对含高浓度硝基苯的工业废水,采用物理手段处理既可降低硝基苯的浓度,改善废水的可生化性,又可以回收部分硝基苯,实现资源利用最大化。
主要的物理处理方法有:吸附法、萃取法和汽提法。
对于吸附法,硝基苯废水处理研究中颗粒状活性炭、炉渣、有机膨润土等都是应用较多的吸附剂。
赵钰等[1]在用活性炭吸附法处理含芳香族硝基化合物的染料废水的工程试运行中,COD平均值由209mg/L下降至119mg/L。
对于萃取法,目前一般采用多级萃取法或萃取法与其他方法协同处理。
林中祥等人[2]用N5O3—苯做萃取剂对硝基苯生产废水进行处理,萃取两次可使硝基苯含量达国家一级排放标准。
对于汽提法,用于处理高浓度硝基苯废水,工艺上较为可行。
于桂珍等[3]利用汽提—吸附法处理硝基苯废水,实验表明,硝基苯的去除率可达90%以上,汽提后的废水经碳黑吸附,废水中硝基苯含量可降至10mg/L以下,效果较好1.2.2 化学法针对于处理硝基苯的化学法主要有电化学法和高级氧化法。
电化学氧化的基本原理有两种:一是直接电化学反应,指通过阳极氧化使污染物在电极上发生转化或燃烧,把有毒物质转变为无毒物质,或把非生物相容的有机物转化为生物相容的物质,例如芳香化合物的开环氧化等。
二为间接电化学转化,指利用电极表面产生的强氧化性活性物种使污染物发生氧化还原转变。
宋卫健等[4]以DSA类电极作为阳极,对模拟硝基苯废水进行的降解实验证明,在电流密度15mA/cm2条件下,CODcr的去除率可达到90%以上。
也有樊红金等[5]对催化铁内电解法处理硝基苯废水降解动力学特性进行了研究。
结果表明,降解过程符合准一级动力学规律。
进水浓度、pH值和反应温度强烈影响硝基苯的降解速率。
高级氧化技术近年来的发展非常迅速,有臭氧氧化,Fenton试剂氧化,湿式氧化等。
针对硝基苯废水,报道较为集中的是Fenton试剂氧化。
Fenton氧化体系由过氧化氢和催化剂Fe2+构成。
Fenton氧化法处理废水的原理是:在酸性溶液中,在Fe2+催化剂作用下,H2O2能产生活泼的.OH,从而引发和传播自由基链反应,加快有机物和还原性物质的氧化。
余宗学[6]采用Fenton试剂对间硝基苯生产废水进行预处理,在最佳反应条件下,废水中硝基苯类化合物的转化率在89%以上,废水色度的去除率在80%以上,COD的去除率也在60%以上,同时,废水可生化性有了较大的提高另外,利用微电解和Fenton试剂氧化的工程实例报道也很多,徐续等[7]利用微电解和Fenton试剂氧化后,将COD为5000mg/L的硝基苯废水处理达标,COD 总去除率为97%;李欣等[8]利用微电解和Fenton试剂氧化处理硝基苯制药废水,当原水的pH值为2~3、H2O2投加量为500~600 mg/L时,调节预处理出水pH 值至7~8并经沉淀处理后,对COD 和硝基苯类物质的总去除率分别可达47%和92%。
后续混合废水经SBR工艺处理后出水水质能满足国家污水排放标准。
1.2.3 生物法硝基苯类化合物被认为是生物难以降解的物质,但利用生物的变异性,近年来环境工作者筛选出了一些特异性菌种用于处理硝基苯废水。
王竟等[9]在研究假单胞菌JX165对硝基苯的好氧降解时发现,在废水中细胞的质量浓度为9mg/L,pH为7,温度为30℃摇床转速为100r/min,反应时间为2h的条件下,在以硝基苯为惟一碳、氮源的培养基中硝基苯的去除率为98.5%。
第二章工程设计资料与依据2.1 废水水量根据生产工艺及相关资料,生产废水的排放量为150 m3/d,工作方式为24小时工作制,生活污水300m3/d排放。
2.2 设计进水水质(1)生产废水:200 m3/d(2)生活污水:490 m3/d2.3 设计出水水质出水水质达到《污水综合排放标准》(GB8978-1996)三级标准后后排入建设单位所在化工园区的污水处理厂进行进一步生化处理,具体排放要求如下:(注:盐分接管标准≤8000 mg/L后排入业主所在化工园区的污水处理厂处理) 2.4 设计依据➢建设方提供的水质水量及排放标准资料;➢《污水综合排放标准》(GB8978-1996);➢《室外排水设计规范》(GBJ14-87);➢《给水排水设计手册(第二版)》;➢类似工程的经验、工艺参数和试验结果。
2.5 设计原则与指导思想➢采用先进合理的处理工艺,保证污水达到最好的处理效果;➢工艺许可的条件下尽量减少投资和用地面积;➢操作维护简单;➢操作运行可靠,运行费用控制较低。
第三章工艺流程的确定3.1 废水的处理工艺流程根据文献调查的结果并且结合类似工程的设计、操作参数,考虑到该企业废水中含有大量的有机物,COD 很高,可生化性极差,同时废水排放量不是很大,因此综合多种因素考虑,决定采取物化处理与生化处理相结合的处理工艺,以化学法为主,操作简单,自动化程度高,COD 、有机物去除率高,结合厌氧—好氧技术,可以确保稳定达标排放。
确定如下流程:工艺流程如图1所示铸铁屑+活性炭粒H O图1 硝基苯废水处理工艺流程污泥处置流程见图2沉淀池二沉池污泥脱水机泥饼外运处置图2 硝基苯废水处理工艺污泥的处理流程3.2 工艺流程说明由于该废水COD 、硝基苯的浓度很高,所以在处理工艺上采取的方法是以物理化学处理为核心,通过物化+生化的组合有效地去除了COD 及特征污染物硝基苯、甲苯,排水达到《污水综合排放标准》三级标准。
现将流程说明如下:含有硝基苯和甲苯的生产废水,在调节池中均质均量,以减缓对后续物化处理系统的冲击,在水质水量调节后,进入pH 调整池,将生产废水的pH 调整至3左右,以利于微电解操作。
微电解塔利用铁炭构成的原电池进行微电解,有效的去除硝基苯和甲苯,随微电解塔出水中的大量Fe2+在Fenton氧化池中作为H2O2的催化剂,进一步去除硝基苯、甲苯及其微电解产物,Fenton氧化是利用高级氧化技术有效的去除COD和特征污染物的方法,效率高,操作成本低。
在经过微电解和氧化后,废水中的COD和特征污染物迅速下降,此时废水中依然含有大量的Fe2+、Fe3+离子,对其进行中和操作,可以产生大量的胶状絮体以进一步的去除废水的COD。
至此,生产废水的物理化学处理完成。
在完成生产废水的物化处理后,在调节池中接入生活废水进行稀释配水,进入生化系统。
生化系统采用厌氧—好氧处理工艺,可确保各项指标达到《污水综合排放标准》三级标准。
沉淀池的污泥和二沉池污泥排入污泥浓缩池,经浓缩减量后由压滤泵压入板框压滤机脱水,脱至含水率75%左右。
污泥浓缩池上清液和压滤机滤液进入调节池再处理。
处理系统产生的污泥必须由危险固体废弃物处置中心进行妥善处置。
3.3 工艺各构筑物去除率说明根据文献报道,结合确定的工艺流程,可以对COD和特征污染物的去除率进行确定。
第四章 构筑物设计计算4.1 设计水量的确定生物处理池之前,各构筑物按最大日最大时流量设计,已知该厂生产废水流量Q=200 m 3/d ,废水流量总变化系数K z =1.2,故最大设计流量为:3max z Q K Q 1.2200240(m /d)=⋅=⨯=,按照工作8h 计算,3max 240Q =30/8m h = 4.2 调节池 (1)设计说明调节池设计计算的主要内容是确定调节池的容积,该容积应当考虑能够容纳水质变化一个周期所排放的全部水量。
调节池采用机械搅拌方式使水质均衡,防止沉淀。
(2)设计计算(1)池子总有效容积 设停留时间t=12h t q V vmax ⋅=式中:max v q ——最大设计流量,/h m 3; t ——水力停留时间,h 。
33012360()V m =⨯=(2)池子表面积)m (hV A 2=式中:A ——调节池池表面积,2m ; V ——调节池的有效容积,3m ;h ——调节池的有效水深,m 。
调节池的有效水深2~2.5m ,现取h=2.5m 。
则调节池的面积为: 2360144()2.5A m == (3)调节池尺寸根据池体表面积为144m 2,现选择池长为16m ,池宽为9m ,池深超高0.5m 。
调节池尺寸为16×9×3(m)(4)搅拌设备在调节池中增加搅拌设备,以均衡水质,提高中和反应的效率。
选用机械搅拌,在池的对角上设置两个潜水搅拌器。
4.3 微电解塔微电解塔运行的最佳工艺条作为:pH 值为3,反应时间60min ,Fe:C (质量比)=5:1,铁屑粒径5~10目左右。
(1)微电解塔的有效容积 )m (t Q V 3⋅=式中: Q ——设计流量,h /m 3;t ——废水停留时间,h ,为了得到最佳的COD 去除率,本设计选用的反应时间为60min 。