电力系统有功无功及调整

合集下载

电力系统的无功补偿和电压调整的解决方案

电力系统的无功补偿和电压调整的解决方案

电力系统的无功补偿和电压调整的解决方案为了保证电力系统的稳定运行和电能质量的提高,无功补偿和电压调整是非常重要的技术手段。

本文将从技术和设备两方面,详细讨论电力系统的无功补偿和电压调整的解决方案。

1.静态无功补偿装置(SVC):SVC是通过控制可变电容器和可变电抗器的容量,实现电力系统的无功调节。

它具有快速响应、精确调节无功功率因数的特点,并且能够提供压力支撑和电压稳定功能。

2.静态同步补偿装置(STATCOM):STATCOM是利用电力电子器件和控制系统,通过直流电压的调节来实现对电力系统无功功率的调节。

它能够实现快速响应和灵活控制的特点,可以有效地提高电力系统的无功调节能力。

3.无功发电机(SVC):无功发电机是利用发电机的励磁系统来控制无功功率的输出,实现电力系统的无功补偿。

它可以根据需要灵活调节无功功率因数,提高电力系统的无功调节能力。

4.并联电容器补偿装置:并联电容器补偿装置是通过并联连接电容器,提供无功功率来补偿电力系统的无功功率缺陷。

它具有成本低、简单可靠的特点,并且能够有效改善电力系统的功率因数。

5.无功补偿滤波器:无功补偿滤波器是利用滤波器来抑制电力系统中的无功电流,实现无功补偿。

它可以有效减少电力系统中的谐波和电磁干扰,提高电力系统的电能质量。

1.电压调整变压器:通过调整变压器的变比来实现电力系统的电压调整。

它可以根据需要提高或降低电压水平,保证电力系统的电压稳定性。

2.电压调整容性器:通过并联连接容性器,提供额外的无功功率,实现电力系统的电压调整。

它可以根据需要灵活调整电压水平,保证电力系统的电压稳定性。

3.电压调整调压器:通过调节调压器的输出电压,实现电力系统的电压调整。

它具有调节范围广、快速响应的特点,并且能够适应不同负荷变化的需求。

4.电力电子设备:电力电子器件和控制系统可以通过改变电力系统中的电流、电压和频率等参数,实现对电力系统的电压调整。

它具有响应快、控制精度高的特点,并且能够适应不同负荷的变化。

电力系统有功功率和频率调整

电力系统有功功率和频率调整

电力系统有功功率和频率调整1. 引言在电力系统中,有功功率和频率是两个关键的电能参数。

有功功率是指电力系统中实际提供给负载的电能,而频率则表示电力系统中电压和电流的周期性变化。

准确地调整有功功率和频率可以保证电力系统的稳定运行,提高能源利用率,保障用电的安全和可靠性。

2. 电力系统有功功率调整电力系统的有功功率调整主要通过控制发电机输出功率来实现。

有功功率调整的目标是使电力系统的供需平衡,以满足用户的用电需求。

有功功率调整可以通过控制发电机的机械输入来实现,也可以通过调整发电机的励磁电流来实现。

2.1 机械输入调整机械输入调整是通过控制发电机的机械输入来调整有功功率。

机械输入调整的方式包括调速和负载调整两种。

2.1.1 调速调整调速是通过调整发电机的键合阻抗或者转子的绕组来改变发电机的转速,从而改变机械输入功率。

调速调整的原理是根据负荷需求,通过调整发电机的转速来保持有功功率的平衡。

2.1.2 负载调整负载调整是通过调整发电机的输出负载来改变发电机的有功功率。

负载调整的方式包括直接调整负载阻抗、调整发电机馈线阻抗、调整发电机并联等。

2.2 励磁调整励磁调整是通过调整发电机的励磁电流来改变发电机的有功功率。

励磁调整的原理是控制发电机的磁场强度,从而改变发电机的输出电压和电流。

励磁调整可以通过调整励磁电流的大小、相位和波形等来实现。

3. 电力系统频率调整电力系统的频率调整主要通过控制发电机输出的机械输入来实现。

频率调整的目标是使电力系统的供电频率保持在额定值附近,以满足用户的用电需求。

3.1 负荷频率特性负荷频率特性是指负载的电流和供电频率之间的关系。

负荷频率特性可以分为正负荷频率特性和正负荷功率频率特性两种。

正负荷频率特性描述了负载对供电频率变化时的功率响应。

3.2 机械输入调整机械输入调整是通过调整发电机的机械转速来调整电力系统的频率。

机械输入调整的方式包括调速和负载调整两种。

3.2.1 调速调整调速调整是通过改变发电机的转速来调整电力系统的频率。

电力系统有功与无功控制策略

电力系统有功与无功控制策略

电力系统有功与无功控制策略随着电力系统的不断发展和扩大,能源的可持续性和安全性成为了迫在眉睫的问题。

在电力系统中,有功与无功控制策略是两个关键的方面,对于提高电力系统的运行效率和稳定性具有重要意义。

本文将探讨电力系统中有功与无功的概念、控制策略以及其在实际应用中的重要性。

首先,有功与无功是电力系统中的两个基本概念。

有功是指电力系统中能够产生有用功率的部分,例如通过发电机产生的机械功率,通过电阻产生的热能等。

而无功则是指不能产生有用功率的部分,例如由电容器和电感器等元件输入和吸收的无功功率。

有功和无功是电力系统中能量传输的基础,它们的合理控制对于电力系统的正常运行至关重要。

为了保证电力系统的运行稳定,减少能量损耗和提高能源利用效率,有功与无功的控制策略必不可少。

在有功控制方面,常见的策略包括频率和电压控制。

频率控制是指通过调整电力系统的发电机转速和负荷平衡,使得电力系统的频率维持在一个合理的范围内,通常为50Hz或60Hz。

电压控制则是指通过调节变压器的变压比和负荷电流,使得电力系统的电压保持在稳定的水平上。

与有功控制相比,无功控制更为复杂。

无功控制主要包括无功功率平衡和电压调节两个方面。

无功功率平衡是指在电力系统中维持无功功率的供需平衡,以提高电力系统的稳定性。

常见的控制策略包括静态无功补偿器(STATCOM)和串联容抗器(SVC)等设备的应用,通过调节其电抗值来实现无功功率的平衡。

电压调节则是指调整电力系统中变压器和输电线路等设备的电压,以保持电力系统电压的合理范围。

纵观整个电力系统,无功控制是实现电力系统稳定运行的关键要素。

在实际应用中,有功与无功的控制策略在电力系统中具有重要性。

首先,通过合理的有功和无功控制策略,电力系统可以提高能源利用效率,减少能量损耗,降低运营成本。

其次,有功和无功控制可以保证电力系统的稳定运行,防止发生电力系统崩溃和事故。

此外,无功控制还可以提高电力系统的电压质量,保证用户得到稳定可靠的电力供应。

电力系统中的有功无功协调控制方法

电力系统中的有功无功协调控制方法

电力系统中的有功无功协调控制方法电力系统是现代社会的重要组成部分,起着供电、传输和分配电能的重要作用。

在电力系统中,有功功率和无功功率是不可或缺的两个要素。

有功功率指的是电能在系统中转化为机械能、热能等有用的能量,而无功功率则是指电能在系统中循环流动而不对外界做实质性功功的能量。

有功功率和无功功率之间的协调控制对于保障电力系统的稳定运行至关重要。

本文将介绍一些电力系统中常用的有功无功协调控制方法。

第一种协调控制方法是静态无功补偿。

静态无功补偿是通过改变电路参数来调整系统中的有功功率和无功功率之间的平衡。

常见的静态无功补偿设备有无功电容器、静态无功发生器等。

无功电容器可以通过并联在电路中来提供无功功率,从而降低系统中的功率因数,提高系统的效率。

静态无功发生器则可以通过控制其输出电压和电流的相位角来调整系统中的无功功率。

通过静态无功补偿可以提高电力系统的功率质量,减少电压波动和电流谐振等问题。

第二种协调控制方法是动态无功补偿。

动态无功补偿是通过调节无功功率的输出来实现对电力系统有功无功的协调控制。

常见的动态无功补偿设备有STATCOM(静态同步补偿器)和SVC(静态无功补偿器)等。

STATCOM是一种可控的静止无功补偿装置,通过调节其输出电流和电压的相位角来实现对无功功率的调节。

SVC是一种调节变压器的无功电流来控制电力系统无功功率的装置。

动态无功补偿可以在电力系统频繁变化的负荷情况下有效调节无功功率,提高系统的稳定性。

第三种协调控制方法是强迫电网调度。

强迫电网调度是通过对电网的监控和控制来实现对有功无功的协调控制。

电网调度员可以对系统中的发电机、变电站和负荷进行监测和控制,并根据系统需求来调整有功功率和无功功率的平衡。

强迫电网调度可以根据系统负荷情况来调整发电机的输出功率,同时可以通过控制变电站的电压来实现对系统无功功率的调节。

强迫电网调度可以有效提高系统的可靠性和稳定性。

除了上述的协调控制方法,还有一些较为新颖的技术被引入到电力系统中,以实现更精确的有功无功协调控制。

电力系统中的有功和无功功率控制

电力系统中的有功和无功功率控制

电力系统中的有功和无功功率控制在电力系统中,有功功率和无功功率是两个重要的概念,它们在能量传输和电力运行中起着至关重要的作用。

有功功率指的是电流在电路中传输能量的能力,而无功功率则表示电流在电路中产生电场和磁场的能力。

有功功率是指电力系统中正在转化或传输的实际能量,它以功率因数为单位,常用的单位是瓦特(W)。

在电力系统中,有功功率主要用来为各种电气设备提供正常工作所需的能量,比如家庭中的电灯、电视、冰箱等。

而无功功率则在电力系统中并不转化为有用的功率,而是以无功功率因数为单位,常用的单位是乏特(Var)。

无功功率主要表示电力系统中的电容器和电感器元件所产生的电场和磁场的能量。

它们在电力系统中主要用来平衡电流、稳定电压和提高电力传输效率。

在电力系统中,有功功率和无功功率的控制非常重要。

通过合理控制功率因数,可以有效地提高电力系统的运行效率和能源利用率。

对于有功功率的控制,可以通过使用高效率的电器设备、减少无用的能量损耗,合理规划电力系统的负载等措施来实现。

而对于无功功率的控制,则可以通过使用补偿器来实现,补偿器是一种能够调整电流和电压之间相位差的装置,它可以有效地改善电力系统的功率因数。

补偿器根据电力系统中的电容性和电感性负载的情况,提供相应的无功功率来平衡电流和电压之间的相位差,从而达到提高电力系统功率因数的效果。

在电力系统中,有功功率和无功功率的控制还涉及到电力负荷的平衡和优化。

通过合理规划电力负荷,对电力系统中的负载进行均衡安排,可以降低电力系统的损耗和供电压降,提高系统的稳定性和可靠性。

在电力系统运行中,有功功率和无功功率的平衡控制是提高能源利用率、保证系统稳定运行的关键环节。

只有通过有效地控制和调节有功功率和无功功率,才能确保电力系统的正常运行,提高电力系统的运行效率和经济性。

通过对电力系统中的有功功率和无功功率进行合理的控制,可以最大限度地提高电力系统的能源利用效率,减少无谓的能量损耗,确保电力的稳定供应。

有无功调节解析

有无功调节解析

X
X
1—发电机无功与电压的静态特性 2—异步电动机无功与电压的静态特性
图9-9 无功与电压静态特性曲线
同步调相机:
相当于空载运行的同步电动机,在过励磁运行时,同步调相机向
系统输送无功功率,欠励磁运行时,它从系统吸收无功功率,无功功
率与电压静特性与发电机相似。
电容器:
无功功率与电压静特性关系:QC U2/XC
4、电力系统负荷的频率特性
根据所需的有功功率与频率的关系可将负荷分成以下几类: (1)与频率变化无关的负荷,如照明、电弧炉、电阻炉和整流负荷
等。 (2)与频率的一次方成正比的负荷,负荷的阻力矩等于常数的属于
此类,如球磨机、切削机床、往复式水泵、压缩机和卷扬机等。 (3)与频率的二次方成正比的负荷,如变压器中的涡流损耗。 (4)与频率的三次方成正比的负荷,如通风机、静水头阻力不大的
无功备用容量一般为无功负荷的7%~8% 无功功率的就地平衡
无功电源不足时,应增设无功补偿装置。无功补偿 装置应尽可能装在负荷中心,以做到无功功率的就地平 衡,减少无功功率在网络中传输而引起的网络功率损耗 和电压损耗
四、中枢点的电压管理
中枢点指反映系统电压水平的主要发电厂或枢纽变 电站的母线,系统中大部分负荷由这些节点供电。根据 负荷对电压的要求及电压损耗的实际情况,确定中枢点 的电压允许调整范围。
变压器的无功功率损耗在系统的无功需求中占有相当的比
重: Q T Q 0 Q T U 2 B T I2 X T I1 0 ( 0 % 0 )S N U 1 k 0 (% 0 S )N S 2
△Q0—变压器空载无功损耗,它与所施的电压平方成正比;△QT— 变压器绕组漏抗中的无功损耗,与通过变压器的电流平方成正比。若

第六章电力系统的无功功率和电压调整

第六章电力系统的无功功率和电压调整
无功功率为ΣQGCN时,系
统电压为UN,但电源提供
的无功功率下降为ΣQGC
时 . 无功也能平衡,但电 压要下降。 ■ 调节变压器分接头可以改 善局部电压,但电源提供 的无功不足时,电压不能 全面改善,而且有可能发 生电压崩溃的危险。
第二节电力系统中无功功率的 最优分布
一、负荷功率因数的提高
■ 异步电动机的无功功率:
二、无功功率的平衡
■ 负荷无功功率的静态电压特性
jXΣ
Q



1’

1
U
二、无功功率的平衡
■ 发电机的静态电压特性
■ 近似二次曲线,E ↑ , 曲 线 ↑
Ф
δ
Ф
U
Q 2’
2 E
U
二、无功功率的平衡
Q
2’ 2
1’ 1
U
二、无功功率的平衡
■ 图中所示的无功电源静态 电压特性和无功负荷静态 电压特性,当电源提供的
■ 静止补偿器和静止调相机是分别与电容器和调相 机相对应而又同属“灵活交流输电系统”范 畴 的两种无功功率电源。前者出现在70年代初,是 这一“家族”的最早成员,日前已为人们所 熟 知;后者则尚待扩大试运行的规模。静止补 偿 器的全称为静止无功功率补偿器(svc)。
■ 并联电抗器
■ 就感性无功功率而言,并联电抗器显然不是电 源而是负荷,但在某些电力系统中的确装有这 种设施,用以吸取轻载或空载线路过剩的感性 无功功率。而对高压远距离输电线路而言,它 还有提高输送能力,降低过电压等作用。
■ 最优网损微增率准则
■ 无疑,系统的无功资源越丰富,就可能节约越多 的网损,但也可能会使电网的建设投资增大。
■ 在进行电网规划时,希望以较小的投资,节约 较多的网损,所以无功规划的目标函数不能只 考虑网损,也不能只考虑投资,需要考虑将来 一个时间段内电网的综合效益最好。

电力系统的无功功率和电压调整

电力系统的无功功率和电压调整

电力系统的无功功率和电压调整前言在今天的社会中,电力系统已经成为了我们日常生活中不可或缺的一部分,而电力系统中的无功功率和电压调整则是其最重要的组成部分之一。

无功功率和电压调整可以保证电力系统的正常运行和稳定性,从而保障了人们生活的安全和稳定。

本文将会针对电力系统的无功功率和电压调整进行介绍和分析。

无功功率定义无功功率是指在交流电中由于电容、电感电流的相位与电压不同而引起的电流,它不能转化为机械功或电能的功率。

虽然无功功率不能直接输出,但是在电力系统中同样是非常重要的,因为它能够影响到电力系统的正常稳定运行。

无功功率的作用在电力系统中,无功功率具有很重要的作用。

第一,无功功率能够平衡电力系统中的有功功率,从而保证电力系统的电压和频率的稳定性。

当有功功率的需求增加时,无功功率就会自动地增加以保持电力系统的稳态;而当有功功率的需求减少时,无功功率也会自动地减少。

第二,无功功率还可以改善电力系统的功率因数。

正常情况下,电力系统的功率因数应该在0.8至1之间,但有些设备如电容器和电感器等会使功率因数发生变化。

而通过对无功功率的调整,我们就可以将功率因数调整到正常范围内,从而保证电力系统的正常运行。

无功功率的调整方法一般来说,无功功率的调整主要有以下几种方法:•静态无功发生器。

静态无功发生器是通过静态电子管将直流电分解成交流电来产生无功功率的。

它具有无机械运动、静音、响应快等优点,因此得到了广泛应用。

•动态无功补偿设备。

动态无功补偿设备可以根据负载状况自动调整无功功率,从而保持电网的稳定性。

这种设备具有响应时间快、可控性强等优点,在大型电力系统中尤为重要。

•磁流控制器。

磁流控制器是利用变压器的饱和磁路特性,通过控制原边电流和二次电流的相位差,调节负载电流,从而达到调整无功功率的目的。

电压调整定义电压调整是指对电力系统电压的控制和调节。

在电力系统中,电压的稳定性对于保证电网正常运行是非常重要的。

如果电压过高或者过低,都会对电力系统的正常运行产生不利的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节功率三角形一、概述1、有功和无功的概念电力系统无论是发电厂发出的电能还是消费的电能,其电功率都可分为有功功率和无功功率。

有功功率就是指电能转化为热能或者机械能等形式被人们使用或消耗的能量,有功电能是我们最直接能感受到的电功率;而无功功率比较抽象,它是指用于建立电场能和磁场能相互交换所必须的、并用来在电气设备中建立和维持磁场的那部分电功率。

它不对外作功,而是转变为其他形式的能量,凡是有电磁线圈的电气设备要建立磁场,都要消耗无功功率。

无功功率决不是无用的功率,它的作用很大。

电动机需要建立和维持旋转磁场,使转子转动而带动机械运动的转子磁场就是靠从电源取得无功功率建立的;变压器也同样需要无功功率在变压器的一次线圈建立磁场,进而才能在二次线圈感应出电压。

因此没有无功功率,电动机就不会转动,变压器也不能变压,交流接触器也不会吸合。

无功功率的符号用Q表示,单位为乏(Var)或千乏(kVar)。

发电厂(站)担负着向用户提供安全优质电能的任务,由于电能不能储存,因此发电厂(站)必须按照用户的需求向系统实时送出经济安全优质足量的有功和无功电能,确保总发出电能与总需求电能的平衡。

2、电能质量的两个重要指标电压和频率是衡量电能质量的两个重要指标,有功功率充足与否直接影响是频率的变动,而影响电压质量的直接因素就是无功功率。

电力系统中各种用电设备只有在电压和频率为额定值时才能有安全运行和最好的经济指标。

但是在电力系统的正常运行中,用电负荷和系统运行方式都是经常变化的,也由此引起电压和频率发生变化,不可避免地出现电压和频率偏移。

电力系统运行中,频率的稳定与否取决于有功功率的平衡,电压水平高低取决于无功功率的平衡。

系统中的有功电源和各种无功电源的功率输出必须能满足系统负荷和网络损耗在额定状态下对有功功率和无功功率的需求,否则就会偏离额定值,系统的安全和经济运行指标就不可能实现。

二、功率三角形1、有功功率在交流电路中,凡是消耗在电阻元件上、功率不能可逆转换的那部分功率(如转变为热能、光能或机械能)称为有功功率,简称有功用“P”表示,单位是瓦(W)或千瓦(KW)。

它反映了交流电源在电阻元件上做功的能力大小,或单位时间内转变为其它能量形式的电能数值。

实际上它是交流电在一个周期内瞬时转变为其他能量形式的电能数值,故又称平均功率。

它的大小等于瞬时功率最大值的1/2,就是等于电阻元件两端电压有效值与通过电阻元件中电流有效值的乘积。

2、无功功率无功功率比较抽象,它不对外作功。

在交流电路中,凡是具有电感性或电容性的元件,在通过后便会建立起电感线圈的磁场或电容器极板间的电场。

因此,在交流电每个周期内的上半部分(瞬时功率为正值)时间内,它们将会从电源吸收能量用建立磁场或电场;而下半部分(瞬时功率为负值)的时间内,其建立的磁场或电场能量又返回电源。

因此,在整个周期内这种功率的平均值等于零。

就是说,电源的能量与磁场能量或电场能量在进行着可逆的能量转换,而并不消耗功率。

为了反映以上事实并加以表示,将电感或电容元件与交流电源往复交换的功率称之为无功功率,简称无功用“Q”表示。

单位是乏(Var)或千乏(KVar)。

无功功率是交流电路中由于电抗性元件(指纯电感或纯电容)的存在而进行可逆性转换的那部分电功率,它表达了交流电源能量与磁场或电场能量交换的最大速率。

实际工作中,凡是有线圈和铁芯的感性负载,它们在工作时建立磁场所消耗的功率即为无功功率。

无功功率决不是无用功率,它的用处很大。

电动机需要建立和维持旋转磁场,使转子转动,从而带动机械运动,电动机的转子磁场就是靠从电源取得无功功率建立的;变压器也同样需要无功功率,才能使变压器的一次线圈产生磁场,在二次线圈感应出电压。

因此,没有无功功率,电动机就不会转动,变压器也不能变压,交流接触器不会吸合。

在正常情况下,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。

如果电网中的无功功率供不应求,用电设备就没有足够的无功功率来建立正常的电磁场,这些用电设备就不能维持在额定情况下工作,用电设备的端电压就要下降,用电设备就不能正常运行。

无功功率不足对供电、用电产生的不良影响主要表现在:⑴降低发电机有功功率的输出。

⑵降低输、变电设备的供电能力。

⑶造成线路电压损失增大和电能损耗的增加。

⑷造成低功率因数运行和电压下降,使电气设备容量得不到充分发挥。

从发电机通过高压输电线供给的无功功率,远远满足不了负荷的需要,所以在电网中需要添置一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,使用电设备在额定电压下工作。

3、视在功率交流电源所能提供的总功率,称之为视在功率,在数值上是交流电路中电压与电流的乘积。

视在功率用S表示。

单位为伏安(VA)或千伏安(KVA)。

它通常用来表示交流电源设备(如变压器)的容量大小。

视在功率既不等于有功功率,也不等于无功功率,但它既包括有功功率,又包括无功功率。

能否使视在功率100KVA的变压器输出100KW的有功功率,主要取决于负载的功率因数。

4、功率三角形视在功率(S)、有功功率(P)及无功功率(Q)之间的关系,可以用功率三角形来表示,如下图所示。

它是一个直角三角形,两直角边分别为Q与P,斜边为S。

S与P之间的夹角Ф为功率因数它反映了该交流电路中电压与电流之间的相位差(角)。

图1 功率三角形各种功率有如下关系式:第二节有功功率和频率调整一、频率随负荷的变化与影响1、频率不稳的影响频率是衡量电能质量的一个重要指标,工业中普遍应用的是异步电动机,其转速和输出有功均与频率有关,频率的变化直接影响到产品的质量,频率的变化也影响电子设备的精确性。

频率不光是影响工农业产品,对电力系统的正常运行也是十分有害的。

汽轮发电机在额定频率下运行时效率最佳,频率偏高或偏低对叶片都有影响;电厂的给排水泵、风机等在频率降低时都要减小出力,直接威胁到电力生产的安全;频率降低时,异步电动机和变压器的励磁电流增大,无功功率损耗增加,这些会使电力系统无功平衡和电压调整增加困难。

2、频率偏差范围由于系统中的负荷随时在变动,发电机的电磁功率存在机械惯性,频率是不可能绝对平衡的,因此电力系统中的频率随时都在变化。

为了满足用户的需要,频率的变化有个允许范围,电力工业技术管理法规中规定的频率偏差范围为:±0.2~±0.5H Z ,一些工业发达国家系统频率偏移大致控制在不超过±0.1 H Z3、系统负荷的分类 根据负荷的变化规律,系统负荷可以分为三种,第一种是变化幅度小,变化周期较短;第二种是变化周期较长,属于此类负荷的主要有电炉,电气机车等;第三种是变化缓慢的持续变动负荷。

引起负荷变化的原因主要是工厂的作息制度、人民的生活规律等。

当然负荷的变化将引起频率的相应的变化。

第一种变化负荷引起的频率偏移将由发电机组的调速器进行调整,这种调整通常称为频率的一次调整;第二种负荷引起的频率变动仅靠调速器的作用往往不能将频率偏移限制在容许范围之内,这时必须有调频器参与频率调整,这种调整通常称为频率的二次调整。

二、有功功率与频率的关系1、负荷的有功功率与频率的关系当频率变化时,系统中的有功负荷也将发生变化,系统中有功负荷随频率的变化特性称为负荷的静态频率特性。

根据所需的有功功率与频率的关系可将负荷分成以下几种:1)与频率的变化无关的负荷,如照明、整流负荷。

2)与频率的一次方成正比的负荷3)与频率的二次方成正比的负荷4)与频率的高次方成正比的负荷。

整个系统的负荷有功与频率的关系式:+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+=2210N DN N DN DN D f f P a f f P a P a P ……… 当频率偏离额定值不大时,负荷的静态频率特性常用一条直线近似表示。

斜率fP K D D ∆∆= 称为负荷的频率调节效应,由全系统各类负荷比重决定,不同系统或同一系统不同时刻D K 值都不同,它是不能整定的。

2、发电机组的有功功率与频率的关系当系统有功功率平衡遭到破坏,引起频率变化,原动机的调速系统将自动改变原动机的进水量,相应增加或减少发电机出力,这种有功出力同频率之间的关系称为调速器的功-频率静态特性。

机组的静态调差系数pf p p f f ∆∆-=---=1212δ 上式与系统的负荷的频率调节效应公式互为倒数,但区别在多了一个负号,原因是系统中的有功功率是与频率成正比变化:有功多了,频率自然升高。

发电机的有功与频率成反比变化,并且符号相反。

静态调差系数的倒数就是机组的单位调节功率。

由静态调差系数公式可以看出,调差系数愈小,频率的偏移亦愈小,但是因受机组调速机构的限制,调差系数的调整范围是有限的。

通常水轮机组取0.02~0.04。

3、电力系统的有功功率与频率调节关系要确定电力系统的负荷变化引起的频率波动,需要同时考虑负荷及发电机组两者的调节效应。

为简单起见只考虑一台机组和一个负荷的情况.把负荷和发电机的静态特性画在一张图上。

图2 发电机组的p-f 曲线现假定系统负荷增加了△PD0,其特性曲线变为P2(f),发电机组仍是原来的特性,那么新的稳态运行点将由P2(f)和发电机组的静态特性的交点B决定,与此相应的系统频率为f2,由图可见,由于频率变化了△f, 且△f=f2-f1<0此时发电机的功率输出的增量△PG=-KG△f由于负荷的频率调节效应所产生的负荷功率变化为“△PD=KD△f当频率下降时,△PD是负的。

故负荷功率的实际增量为:△PD+△PD0=△PD0+KD△f它应同发电机组的功率增量相平衡,即△PD+△PD0=△PG △PD0=-(KG+KD)△f=-k△f根据上式可知:系统负荷增加时,在发电机组功率频率特性和负荷本身的调节效应共同作用下又达到了新的功率平衡,即:一方面,负荷增加,频率下降,发电机按有差调节特性增加输出;另一方面负荷实际取用的功率也因频率的下降而有所减小。

根据图可知:发电机组已经满载运行,即运行到D点,在D点以后,发电机组的静态特性将是一条与纵轴平行的直线,在这段KG=0。

当系统的负荷再增加时,由于发电机已没有可调节的容量,不能再增加输出了,只有靠频率下降后负荷本身的调节效应的作用来取得新的平衡,但由于负荷的调节效应数值比较小,所以负荷增加所引起的频率下降就相当严重了。

三、电力系统的频率调整1、自动发电控制AGC系统利用调度监控计算机、通道、远方终端、执行装置、发电机组自动化装置等组成的闭环控制系统,监测、调整电力系统的频率来控制发电机出力。

它是电力系统调度自动化的主要内容之一。

(1)简介AGC是发电机组在规定的出力调整范围内,跟踪电力调度下发的指令,按照一定调节速率实时调整发电出力满足电力系统频率和联络线功率控制要求的操作,或者说自动发电控制是对电网部分机组出力进行调整,以满足控制目标要求。

相关文档
最新文档