He-Ne激光器的纵模横模分析

He-Ne激光器的纵模横模分析
He-Ne激光器的纵模横模分析

锁模激光器

西安邮电大学光电子技术及应用 锁模激光器 班级:软件1103班 学号:04113098 院(系):计算机学院

姓名:刘歌歌 2013年12月8日 一、摘要 本文主要介绍了锁模的基本原理和应用前景,并简单介绍了锁模激光器。 二、关键词:锁模激光器,工作原理,应用和前景 三、引言 如果在激光谐振腔内不加入任何选模装置,那么激光器的输出谱线是由许多分立的,由横纵模确定的频谱组成的。锁模就是将多纵模激光器中各纵模的初相位关系固定,形成等时间间隔的光脉冲序列。使各纵模在时间上同步,频率间隔也保持一定,则激光器将输出脉宽极窄、峰值功率很高的超短脉冲。 发展前景: 目前,最为广泛使用的一种产生飞秒激光脉冲的克尔透镜锁模(Kerr Lensmode locking)技术是一种独特的被动锁模方法。科尔透镜锁模实际上是利用了材料的折射率随光强变化的特性使得激光器运转中的尖峰脉冲得到的增益高出连续的背景激光增益,从而最终实现短脉冲输出。一台激光器实现锁模运转后,在通常情况下,只有一个激光脉冲在腔内来回传输,该脉冲每到达激光器的输出镜时,就有一部分光通过输出镜耦和到腔外。因此,锁模激光器的输出是一个等间隔的激光脉冲序列。相邻脉冲间的时间间隔等于光脉冲在激光腔内的往返时间,即所谓腔周期。一台锁模激光器所产生的激光脉冲的宽度是否短到飞秒量级主要取决于腔内色散特性、非线性特性及两者间的相互平衡关系。而最终的极限脉宽则受限于增益介质的光谱范围。衡量一台飞秒激光器的重要技术指标为:脉冲宽度、平均功率和脉冲重复频率。 此外,还有谱宽与脉宽积,脉冲的中心波长,输出光斑大小,偏振方向等。脉冲重复频率实际上告诉我们了激光脉冲序列中两相邻脉冲间的间隔。由平均功率和脉冲重复频率可求出单脉冲能量,由单脉冲能量和脉冲宽度可求出脉冲的峰值功率。 四、锁模激光器的原理 1、多模激光器的输出特性

半导体激光器原理

半导体激光器原理 一、半导体激光器的特征 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。常用材料有砷化镓:GaAs:、硫化镉:CdS:、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。 半导体激光器件,可分为同质结、单异质结、双异质结等几种。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。 半导体激光器具有体积小、效率高等优点,广泛应用于激光通信、印刷制版、光信息处理等方面。 二、半导体激光器的结构与工作原理 现以砷化镓:GaAs:激光器为例,介绍注入式同质结激光器的工作原理。 1〃注入式同质结激光器的振荡原理。由于半导体材料本身具有特殊晶体结构和电子结构,故形成激光的机理有其特殊性。 :1:半导体的能带结构。半导体材料多是晶体结构。当大量原子规则而紧密地结合成晶体时,晶体中那些价电子都处在晶体能带上。价电子所处的能带称价带:对应较低能量:。与价带最近的高能带称导带,能带之间的空域称为禁带。当加外电场时,价带中电子跃迁到导带中去,在导带中可以自由运动而起导电作用。同时,价带中失掉一个电子,则相当于出现一个带正电的空穴,这种空穴在外电场的作用下,也能起导电作用。因此,价带中空穴和导带中的电子都有导电作用,统称为载流子。 :2:掺杂半导体与p-n结。没有杂质的纯净半导体,称为本征半导体。如果在本征半导体中掺入杂质原子,则在导带之下和价带之上形成了杂质能级,分别称为施主能级和受主能级:见图19,24:。

图19,24 有施主能级的半导体称为n型半导体;有受主能级的半导体称这p型半导体。在常温下,热能使n型半导体的大部分施主原子被离化,其中电子被激发到导带上,成为自由电子。而p型半导体的大部分受主原子则俘获了价带中的电子,在价带中形成空穴。因此,n型半导体主要由导带中的电子导电;p型半导体主要由价带中的空穴导电。 半导体激光器中所用半导体材料,掺杂浓度较大,n型杂质原子数一般 为:2,5:×1018cm-1;p型为:1,3:×1019cm-1。 在一块半导体材料中,从p型区到n型区突然变化的区域称为p-n结。其交界面处将形成一空间电荷区。n型半导体带中电子要向p区扩散,而p型半导体价带中的空穴要向n区扩散。这样一来,结构附近的n型区由于是施主而带正电,结区附近的p型区由于是受主而带负电。在交界面处形成一个由n区指向p区的电场,称为自建电场。此电场会阻止电子和空穴的继续扩散:见图19,25:。 图19,25 :3:p-n结电注入激发机理。若在形成了p-n结的半导体材料上加上正向偏压,p 区接正极,n区接负极。显然,正向电压的电场与p-n结的自建电场方向相反,它削

44瓦超高功率808nm半导体激光器设计和制作

44瓦超高功率808 nm半导体激光器设计与制作 仇伯仓,胡海,何晋国 深圳清华大学研究院 深圳瑞波光电子有限公司 1. 引言 半导体激光器采用III-V化合物为其有源介质,通常通过电注入,在有源区通过电子与空穴复合将注入的电能量转换为光子能量。与固态或气体激光相比,半导体激光具有十分显著的特点:1)能量转换效率高,比如典型的808 nm高功率激光的最高电光转换效率可以高达65%以上 [1],与之成为鲜明对照的是,CO2气体激光的能量转换效率仅有10%,而采用传统灯光泵浦的固态激光的能量转换效率更低, 只有1%左右;2)体积小。一个出射功率超过10 W 的半导体激光芯片尺寸大约为0.3 mm3, 而一台固态激光更有可能占据实验室的整整一张工作台;3)可靠性高,平均寿命估计可以长达数十万小时[2];4)价格低廉。半导体激光也同样遵从集成电路工业中的摩尔定律,即性能指标随时间以指数上升的趋势改善,而价格则随时间以指数形式下降。正是因为半导体激光的上述优点,使其愈来愈广泛地应用到国计民生的各个方面,诸如工业应用、信息技术、激光显示、激光医疗以及科学研究与国防应用。随着激光芯片性能的不断提高与其价格的持续下降,以808 nm 以及9xx nm为代表的高功率激光器件已经成为激光加工系统的最核心的关键部件。高功率激光芯片有若干重要技术指标,包括能量转换效率以及器件运行可靠性等。器件的能量转换效率主要取决于芯片的外延结构与器件结构设计,而运行可靠性主要与芯片的腔面处理工艺有关。本文首先简要综述高功率激光的设计思想以及腔面处理方法,随后展示深圳清华大学研究院和深圳瑞波光电子有限公司在研发808nm高功率单管激光芯片方面所取得的主要进展。 2.高功率激光结构设计 图1. 半导体激光外延结构示意图

多模光纤激光器

多模光纤激光器 可见光和红外光半导体激光器都可以和多模光纤耦合,通过光纤输出。光纤输出的优点是可以随意改变光路方向,此类激光器多用于探测仪器及医疗仪器等。光纤出口光斑大小和光纤长度可由客户选择。光纤耦合模块具有大功率、高亮度的连续光输出,其输出为圆光束、小孔径和对称的请打零贰玖捌捌柒贰陆柒柒叁光斑形状,可广泛应用于医疗、材料处理、固体激光器泵浦、工业及航空、航天等诸多领域。光纤耦合模块的输出波长可满足固体激光器泵浦、医疗诊断及冶疗所需的波段。在工业应用上可被金属及其它材料有效地吸收,可用于激光焊接、打孔和材料处理。光纤的小数值孔径及小芯径有效地改善了激光器的输出亮度、功率密度和光束质量。 Visible light and infrared laser diode can be and multimode optical fiber coupling, through the optical fiber output. The advantages of optical fiber output is free to change the direction of the light path, such lasers to detect more instruments and medical instruments, etc. Fiber export spot size and fiber length can be selected by the customer. Fiber coupling module has high power, high brightness, light output, the output for the circular beam and small aperture shape and symmetry of light, can be widely used in medical, materials processing, solid state laser pump, industrial and aviation, aerospace and other fields. Fiber coupling module output wavelength can meet please dozen zero two nine pure two land and pure pure three solid laser pumped, medical

He-Ne激光器纵横模分析与分裂

He-Ne 激光器的纵横模分析与纵模分裂 0610130018 况吕林 物理系06级本科 实验日期:2009-4-3 指导老师:何琛娟 【摘要】 本实验利用He-Ne 激光器和扫描干涉仪等仪器,观察了长管和短管的He-Ne 激光的横纵模式,并测量相应的模间隔. 实验还观察了晶体双折射引起的纵模分裂和分裂光谱偏振态. 关键字:纵模,横模,自由光谱区,晶体光折射,纵模分裂 一、 引言 激光器由增益介质﹑光学谐振腔和激励能源组成. 根据驻波条件,激光谐振腔每一种本征频率对应一种光场分布,叫做一种纵模模式,它描述轴向光场分布状态,然而纵模越多,单色性、相干性越差,谐振腔越短,纵模越少,因此在要求高单色性的时候,应尽量减小谐振腔长度. 由于光的衍射造成的场横向分布用横模模式来描述,但是多横模却损害了激光器输出的良好方向性,对聚焦非常不利,因此在需要完美聚焦的情况下,应当尽量减少横模. 激光器在今天应用越来越广,对通过模式的研究,减少其不利因素利用其有用特性显得尤其重要. 在本实验中将利用He-Ne 激光观察和分析激光模谱的一些基本性质. 二、 实验原理 1、He-Ne 激光器纵横模及对应的频率间隔 (1)纵模 激光器是由增益介质、激励能源和光学谐振腔组成的,谐振腔是激光发生来回反射的地方,其中增益介质对于特定频率的光具有放大作用,其他的光则会被反射掉,这些被放大的光的频率,频率满足谐振腔的驻波条件: L 2qc q μν= (1) 其中q 为整数(又称纵模序数),c 为光速,L 为谐振腔的腔长,μ为增益介质的折射率,可近似取为空气的折射率,即为1. 这种驻波的分布被称为纵模.相邻两纵模的间隔为: L μν2c q = ? (2)

锁模脉冲激光器概述

锁模脉冲激光器概述 张斌 北京工业大学 应用数理学院 010611班 指导教师:宋晏蓉 摘要 本文概述了锁模激光器的发展历史和发展方向、激光超短脉冲技术的分类及应用。 关键词 锁模,脉冲,激光器 一、引言 自从1964年第一台锁模激光器问世以来,超短脉冲激光器的研制工作已有了飞速发展,到目前为止已经可产生脉宽几个飞秒,峰值功率TW (1012瓦)级,激光波长从紫外到红外的全光谱范围的超短、超强脉冲激光器。缩短脉冲激光器脉冲宽度的方法主要经历了三次革新,即调Q 脉冲激光器阶段、主动、被动锁模激光器阶段和克尔锁模激光器阶段。随着超短脉冲激光技术的飞速发展,目前人们已能从克尔透镜锁模(KLM )的掺钛蓝宝石飞秒激光器中直接产生脉冲宽度不到两个光学周期的激光脉冲(对于800nm 的中心波长,一个光学周期约等于2.17fs )。同时在得到高峰值功率的脉冲输出方面也作了很多尝试,目前利用啁啾脉冲放大技术(CPA )所能获得的最高脉冲峰值功率已经突破了200TW [1]。由于输出的脉宽窄、峰值功率高、光谱范围宽这些特点,使超短脉冲激光器广泛应用于各个领域。如高峰值功率的脉冲激光器被用于产生高次谐波,用于“水窗”和X 射线的应用中。而高重复率的脉冲激光器在信息处理、通信(波分复用)、互联网及光全息技术、激光光谱等领域中均有广泛用途。也正是由于这些重要领域对超短光脉冲源的需求,促使从事激光领域研究的人们一直在不断努力探索,用各种手段,各种方法得到脉宽越来越窄,峰值功率越来越高,波长范围连续可调并覆盖全波段的相干光脉冲,并不断地改进其锁模方式和泵浦方式,使激光器向小型化、全固化方向发展。 二、锁模脉冲激光器的发展历史 自本世纪60年代第一台激光器诞生以来,由于此新型光源具有以前光源所不具有的优点,如单色性好、相干性好、高亮度等,使激光技术得到了飞速发展,其中发展的一个重要方向是缩短输出脉冲宽度,就锁模脉冲激光技术领域来研究,大致可以分为四个发展阶段: 60年代中期~为第一阶段,其特征是各种锁模理论的建立和各种锁模方法的试验探索。这属于超短激光脉冲的初始阶段。 s 910?s 1010?70年代中后期10-11~10-12s 为第二阶段,其特征是各种锁模方式和理论(如主动锁模、被动锁模、同步泵浦锁模等)逐步成熟,并在物理和化学领域展开了皮秒(10-12s )级的初步应用。 80年代为第三阶段,其主要特征是脉冲宽度已进入飞秒(10-15s )阶段。它是以所谓碰撞锁模染料激光器为主要代表,该激光器就其基本的锁模原理来说依然为被动锁模,在锁模机理和方法上并没有根本突破,但是由于脉冲的碰撞效应,使该激光器不仅能够产生,而且能够稳定地运转在飞秒量级。这展开了超快激光极其重要和十分活跃的新研究领域—飞秒激光技术与科学。 90 年代初开始了超短激光脉冲的第四阶段。这一阶段的主要特征并不表现脉冲宽度的进一步压缩,而是在产生飞秒激光的介质方面有新突破。具有突破性的研究是1991年,D. E. Spence [2]等人利

半导体激光器驱动电路设计(精)

第9卷第21期 2009年11月1671 1819(2009)21 6532 04 科学技术与工程 ScienceTechnologyandEngineering 2009 Sci Tech Engng 9 No 21 Nov.2009 Vol 通信技术 半导体激光器驱动电路设计 何成林 (中国空空导弹研究院,洛阳471009) 摘要半导体激光驱动电路是激光引信的重要组成部分。根据半导体激光器特点,指出设计驱动电路时应当注意的问题,并设计了一款低功耗、小体积的驱动电路。通过仿真和试验证明该电路能够满足设计需求,对类似电路设计有很好的借鉴作用。 关键词激光引信半导体激光器窄脉冲中图法分类号 TN242; 文献标志码 A 激光引信大部分采用主动探测式引信,主要由发射系统和接收系统组成。发射系统产生一定频率和能量的激光向弹轴周围辐射红外激光能量,而接收系统接收处理探测目标漫反射返回的激光信号,而后通过信号处理系统,最终给出满足最佳引爆输出信号。由此可见,激光引信的探测识别性能很大程度上取决于激光发射系统的总体性能,即发射激光脉冲质量。而光脉冲质量取决于激光器脉冲驱动电路的质量。因此,半导体激光器驱动电路设计是激光引信探测中十分重要的关键技术。 图1 驱动电路模型 放电,从而达到驱动激光器的目的。 由于激光引信为达到一定的探测性能,通常会要求激光脉冲脉宽窄,上升沿快,一般都是十几纳秒甚至几纳秒的时间。因此在选择开关器件时要求器件开关速度快。同时,由于激光器阈值电流、工作电流大 [1] 1 脉冲半导体激光器驱动电路模型分析 激光器驱动电路一般由时序产生电路、激励脉冲产生电路、开关器件和充电元件几个部分组成,如图1。 图1中,时序产生电路生成驱动所需时序信号,一般为周期信号。脉冲产生电路以时序信号为输入条件。根据其上升或下降沿生成能够打开开关器件的正激励脉冲或负激励脉冲。开关器件大体有三种选择:双极型高频大功率晶体管、晶体闸流管电路和场效应管。当激励脉冲到来时,开关器件导通,

氦氖激光器的横模选择实验

第29卷第6期2016年12月 大学物理实验 PHYSICAL EXPERIMENT OF COLLEGE V〇1.29No.6 Dec.2016 文章编号:1007-2934(2016)06-0015-03 氦氖激光器的横模选择实验 谭中奇,吴素勇,于旭东,肖光宗 (国防科学技术大学,湖南长沙410073) 摘要:衍射作为激光器腔内损耗的重要来源,是决定激光器模式的重要因素。本文以氦氖激光 器为例,针对其模式选择实验内容,搭建起全外腔氦氖激光器实验系统,进行了横模观察和选择实验,并 结合衍射场理论和模式竞争等相关概念对实验结果进行了分析和讨论。相关问题的研讨对于学员理解 和掌握有关激光横模相关概念和选模基本理论具有一定参考价值。 关键词:衍射;氦氖激光器;选模;增益管 中图分类号:TN 248 文献标志码:A DOI: 10.14139/https://www.360docs.net/doc/8e2383077.html,22-1228.2016.006.004 所谓衍射[1-2]是波所特有的一种属性,它是 指波在传播过程中,因遇到障碍物而出现的一种 偏离直线传输的物理现象;衍射有两个基本特点,即非直线传播以及能量的非均匀分布[3];众所周 知,光是一种电磁波,因此它同样具有波的衍射基 本特征。光的衍射效应最早是由费朗西斯科格里 玛第于1665年发现并加以描述。其实,就其本质 而言,衍射其实是光的干涉的一种特殊现象,两者 都是波的相干叠加结果,但不同于通常所了解的 双光束或者多光束干涉现象,形成衍射的干涉的 光束为无穷多子波源所发出的次波干涉叠加的 后果。 激光作为20世纪人类四大发明之一,对人类 科学技术的发展和生产生活都产生了深刻的影 响。激光产生需要三个基本要素:谐振腔、增益介 质和泵浦源,其中谐振腔的主要作用是光放大和 选模。衡量一个光学谐振腔性能的重要参数是Q 值,它与谐振腔的损耗密切相关,即:腔的损耗越 小,其Q值越大。光学谐振腔的损耗主要来源于 几部分:反射镜损耗(包括透射、表面散射和膜片 吸收等)、几何损耗、衍射损耗、腔内介质的吸收 及散射损耗等等[4]。其中衍射损耗主要是由于 谐振腔内反射镜、工作物质、腔内光阑等尺寸有限 所致,它不同于其它类型的腔损耗,在垂直于腔内 谐振光束传播方向的横截面内各点的损耗量不 同,因此它将在影响激光谐振能量的空间分布(即横模)方面发挥主要作用。激光器腔内形成 谐振后,光波场在腔内来回往返时,每次都会因腔 内衍射效应的存在而使得光场分布发生变化,但 当经过足够次时间渡越后,谐振光场的能量分布 不再发生改变,仅仅是幅值的衰减,这种稳定场分 布被称为自再现模。 氦氖激光器作为一种最早研制成功的气体激 光器,因具有良好的光束质量和单色性,在准直、定位、全息照相、测量和精密计量等众多领域均得 到广泛应用,号称“测量之王”。通常而言,氦氖 激光器因为毛细小孔的选模作用而常工作于基横 模(TEM。。)状态。但当采取一些手段主动改变腔 内的衍射损耗时就可以发现激光器的工作模式也 将随之变化,即腔的结构一旦确定,其模式也随之 确定,这也就是腔与模的关系。为分析激光器腔 内衍射与其模式之间的关系,下面,将建立全外腔 氦氖激光器实验系统进行研究,并基于横模选择 理论和模式竞争有关概念对实验结果进行分析 讨论。 1实验研究 如下图1所示,基于德国Micros公司研制的 氦氖激光器系统,搭建如下全外腔氦氖激光实验 系统: 收稿日期:2016-06-28 基金项目:国防科学技术大学光电科学与工程学院教育教学改革研究课题(2015XY 05)

单模激光器和多模激光器原理及特点的对比分析

单模激光器和多模激光器原理及特点的对比分析 单模激光器和多模激光器本质区别就是单模激光器输出的光束中有且仅有一种模式,而多模激光器输出的光束模式可以有多种。其中,我们可以用光束质量M2因子的大小来判断激光器输出是单模还是多模。根据M2因子的不同,我们将M2因子小于1.3的激光称为纯单模激光,其LP01模的能量占比接近100%;M2因子在1.3~2.0之间的激光称为准单模激光,其LP01模的能量占比超过90%并出现少量的LP11模和LP02模;M2因子大于2.0的激光称为多模激光。对于M2因子的大小,可用光在光纤中的传播的波导来求知,接下来我们将从理论上求解M2因子。 光本质上是一种电磁波,可以用麦克斯韦方程组来描述。根据麦克斯韦方程组,可推导出光在光纤中传播的波动方程为: ?2E0+ω2ε0μ0n i2E0=0 ?2H0+ω2ε0μ0n i2E0=0 其中E0为导波光电场E分布的振幅, E=E0(x,y)exp?[j(ωt?βt)] 其中H0为导波光磁场H分布的振幅, H=H0(x,y)exp?[j(ωt?βt)] 而传播常数 β=k0n i cosθ=2π n i cosθ θ为光在光纤中内反射传播的传播角。对于光纤纤芯和包层两种折射率不同的介质,在不连续界面上的边界条件为 (E1?E2)×n=0 (H1?H2)×n=0 其中n为界面的单位法向矢量,边界条件的物理意义表示,在界面的两侧矢量E和H的切向分量必须相等。 图1 圆柱光纤的坐标系

对于圆柱对称的光纤(如图1),令纤芯的折射率为n1,包层折射率为n2,用E z和H z分别代表电场和磁场的z向分量。 e2E Z er2+ 1 r eE Z er + 1 r2 e2E Z eθ2 +(k02n2?β2)E Z=0 e2H Z 2+ 1eH Z + 1 2 e2H Z 2 +(k02n2?β2)H Z=0 而折射率n按下式分布 n2(r)={ n12??????????????????(r?a) ?n22=n12(1?2?)????????????(r>a)???????? 采用分离变量法,用三角函数表示角度θ的相关性,与失径r的关系可分为纤芯和包层两种情况: 在纤芯中(r≤a) E Z=A l J l(kr)cos(lθ+φl) H Z=B l J l(kr)cos(lθ+ψl) 在包层中(r>a) E Z=A l J l(ka) l () K l(γr)cos(lθ+φl) H Z=A l J l(ka) K l(γa) K l(γr)cos(lθ+ψl) 引入归一化频率 V=k0n1a√2Δ 可得 (ka)2+(γa)2=V2 此时的边界条件为r=a处 Eθ(r→a+0)=Eθ(r→a?0) Hθ(r→a+0)=Hθ(r→a?0) 由此可以求解Eθ和Hθ的两个振幅系数A l和B l,根据场的纵向分量Ez,Hz的存在与否,可将模式命名为: 横电磁模(TEM), E Z=H Z=0 横电模(TE), E Z=0??????H Z≠0 横磁模(TM), E Z≠0??????H Z=0 混杂模(HE,HM), E Z≠0??????H Z≠0 在实际情况中,光纤中存在简并模,有时两类模式特性叠加会使某一横向

锁模激光器的工作原理及其特性

锁模激光器的工作原理及其特性 摘要: 本文主要介绍了锁模的基本原理和实现方法,并简单介绍了锁模激光器。 关键词:锁模,速率方程,工作原理 一、引言 如果在激光谐振腔内不加入任何选模装置,那么激光器的输出谱线是由许多分立的,由横纵模确定的频谱组成的。锁模就是将多纵模激光器中各纵模的初相位关系固定,形成等时间间隔的光脉冲序列。使各纵模在时间上同步,频率间隔也保持一定,则激光器将输出脉宽极窄、峰值功率很高的超短脉冲。 二、锁模的概念 一般非均匀加宽激光器,如果不采取特殊选模措施,总是得到多纵模输出。并且,由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模。每个纵模输出的电场分量可用下式表示 ])-([),(q q z t i q q e E t z E ?υω+= (2.1) 式中,q E 、q ω、q ?为第q 个模式的振幅、角频率及初相位。各个模式的初相位q ?无确定关系,各个模式互不相干,因而激光输出是它们的无规叠加的结果,输出强度随时间无规则起伏。但如果使各振荡模式的频率间隔保持一定,并具有确定的相位关系,则激光器将输出一列时间间隔一定的超短脉冲。这种激光器称为锁模激光器。 假设只有相邻两纵模振荡,它们的角频率差 Ω='=L c q q πωω1-- (2.2) 它们的初相位始终相等,并有01-==q q ??。为分析简单起见,假设二模振幅相等,二模的行波光强I I I q q ==1-。 现在来讨论在激光束的某一位置(设为0=z )处激光场随时间的变化规律。不难看出,在0=t 时,二纵模的电场均为最大值,合成行波光强是二模振幅和的平方。由于二模初相位固定不变,所以每经过一定的时间0T 后,相邻模相位差便增加了π2,即 πωω2-01-0=T T q q (2.3) 因此当0mT t =时(m 为正整数),二模式电场又一次同时达到最大值,再一次发生二模间

课程设计半导体激光器

郑州轻工业学院 课程设计任务书 题目半导体激光器原理及应用 专业、班级学号姓名 主要内容、基本要求、主要参考资料等: 完成期限: 指导教师签名: 课程负责人签名: 年月日

郑州轻工业学院半导体激光器课程设计 郑州轻工业学院 课程设计说明书题目:半导体激光器原理及应用 姓名:王森 院(系):技术物理系 专业班级:电子科学与技术09-1 学号:540911010132 指导教师:运高谦 成绩: 时间:年月日至年月日 I

郑州轻工业学院半导体激光器课程设计 摘要 本文主要讲的是半导体激光器的发展历史、工作原理及应用。半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有合适的光学谐振腔。由于半导体材料物质结构的特异性和其中电子运动的特殊性,首先产生激光的具体过程有许多特殊之处,其次所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围变宽,相干性增强,可以说是半导体激光器开启了激光应用发展的新纪元。 关键词激光技术;半导体激光器;受激辐射;光场 II

郑州轻工业学院半导体激光器课程设计 Abstract This article is mainly about the history of the development of semiconductor lasers, working principle and applications. Semiconductor lasers produce laser mechanism, which must be established between the specific laser energy state population inversion, and a suitable optical resonator. As the physical structure of the semiconductor material in which electron motion specificity and particularity, while the specific process of producing laser has many special features, the other produced by the laser beam has a unique advantage to make it widely used in all sectors of society . From homo-junction to the heterojunction, the power from the information type to type, is also becoming increasingly apparent superiority of the laser, spectral range, coherence enhanced semiconductor lasers opened a new era in the development of laser applications. Keywords: Laser technique;Semiconductor lasers;Stimulated emission;Optical field III

高功率连续多模光纤激光器

高功率多模连续光纤激光器系列 High power multi mode CW fiber lasers 锐科公司研制的高功率多模光纤激光器系列涵盖1kW至10kW,具有电光转换效率高、光束质量好、可靠性高、寿命长、免维护等优点,可广泛应用于金属材料的切割、焊接、表面处理和3D打印等领域。输出光学系统采用了加固铠装的输出光纤,输出接头为QBH,使客户配置更为方便。该系列产品的调制频率最高可达20kHz,能满足绝大多数应用场合的需求,并具备多种控制模式和,良好的兼容性。 Raycus’ high powe r fiber lasers (1~10KW CW) are specially designed and manufactured for material processing such as fast cutting, welding, cladding, surface treatment and 3D printings. Based on modular design, the lasers offer very good reliability and easy maintenance. The lasers use standard QBH beam delivery optics, which make it very easy for industrial integration and robot applications. 特点Features: : 模块化设计Modular design 高电光转换效率High efficiency QBH接头QBH beam delivery cable 输出光纤芯径可选,长度可定制Customized cable length,Fiber diameter optional 免维护Easy integration 易于集成Maintenance free

激光基横模TEM00高斯光束的振幅分布模拟

激光基横模TEM00高斯光束的振幅分布模拟 1、激光基横模TEM00高斯光束原理 激光器作为光源与普通光源的主要区别之一是激光器有一个谐振腔。谐振腔的主要主用有:倍增激光增益介质的受激放大作用长度以形成光的高亮度;提高了光源发光的方向性;由于激光器谐振腔中分立的振荡模式的存在,大大提高了输出激光的单色性,实现了高度的相干性,改变了输出激光的光束结构及其传输特性。 光学谐振腔是由相隔一定距离的两块反射镜组成的(一块全反射镜,一块部分反射镜)。谐振腔靠两端的反射竟来实现光束在腔内的往返传播,对于光波没有任何其他限制,由于反射镜大小有限,它在对光束起反射作用的同时,还会引起光波的衍射效应。腔内的光束每经过一次反射镜的作用,就使光束的一部分不能再次被反射回腔内。因而,反射回来的光束的强度要减弱,同时光强分布也将发生变化。当反射次数足够多时(大约三百多次反射),光束的横向场分布便趋于稳定,不在受衍射的影响。场分布腔内往返传播一次后能够再现出来。反射只改变强度的大小,而不改变光的强度分布。这种稳态场经一次往返后,唯一的变化是,镜面上各点的场振幅按同样的比例衰减,各点的相位发生同样大小的滞后,当两镜面完全相同时(对称开腔),这种稳态场分布应在腔内经单程渡越(传播)后即实现再现,这个稳定的横向场分布,就是激光谐振腔的自再现模。通常叫作横模。(1)自再现模(横模)积分方程 由陈家壁、彭润玲主编《激光原理及应用》第二版一书得

自再现模所足的积分方程为 σ mn μ mn (x ,y )=∫∫K (x,y,x ˊ,y ˊ)μ mn (x ˊ,y ˊ)ds ˊ 式中K (x,y, x ˊ,y ˊ)=L ik π2e )y',x',,(y x ik ρ- = L i λe )y',x',,(y x ik ρ- σ mn 与μ mn 的下标表示该方程存在一系的不连续的本征函数解与 本征值解。积分方程的本征函数解μmn 一般为复函数,它的模代表 对称开腔任一镜面上的光场振幅分布。本征函数解μmn 表示的是在 激光谐振腔中存在的稳定的横向场分布,就是自再现模,通常叫做横模。m=0,n=0时所对应的横模称为基横模,即TEM 00高斯光束。基横模TEM 00高斯光束行波输出在与光束前进方向的垂直平面上的强度呈高斯型分布。同时基横模的输出是相对均匀的,而且它的强度中心沿直线传播,其传播方向很好,发散角很小。 (2) 方形镜面共焦腔镜面上的场分布 设方镜每边长为2a ,共焦腔的腔长为L ,光波波长为λ ,并把x ,y 坐 标轴的原点选在镜面中心,以(x ,y )来表示镜面上的任意一点,则在L ,R >>a >>λ及 L a λ 2 <<(a L ) 2 的近轴情况下,自再现模(横 模)积分方程的本征函数近似解析解μmn ≈C mn H m (X) H n (Y)e-2 2 2 Y X +决定了镜面上的光分布,式中m=0,1,2,…;n=0, 1,2,…; C mn 为一个和m ,n 有关的常数;X=x L λπ2,Y=y L λπ2,H m (X)

-锁模激光器

东北石油大学课程设计 2013年3 月8 日

东北石油大学课程设计任务书 课程光电子技术基础课程设计 题目锁模激光器的设计 专业电子科学与技术姓名学号04 主要内容、基本要求、主要参考资料等 1、主要内容: 设计一锁模激光器,说明所设计的锁模激光器的基本原理、给出所设计的锁模激光器的结构、所使用的材料。 2、基本要求: 说明该锁模激光器的性能参数,撰写报告。 3、主要参考资料: [1]江涛,激光与光电子学进展,北京,电子工业出版社,2000年(8) 40-43 [2]贾正根,半导体报,北京,电子工业出版社,2000年6月第37卷(3)45-47 [3]周炳琨等,激光原理,第5版,北京,国防工业出版社,2004年8月 [4]马养武等,光电子学,第2版,杭州,浙江大学出版社,2003年3月 完成期限2013.3.4 ~2013.3.8 指导教师 专业负责人 2013年3 月4 日

目录 第1章概述 (4) 第2章锁模激光器的原理 (2) 2.1 锁模的基本原理 (4) 2.1.1锁模脉冲的特征 (4) 第3章锁模方式 (8) 3.1 主动锁模 (8) 3.1.1损耗内调制锁模 (8) 3.1.2相位内调制锁模 (9) 3.1.3主动锁模激光器的结构 (9) 3.2 被动锁模 (10) 第4章锁模光纤激光器设计 (13) 4.1 锁模光纤激光器基本结构 (13) 4.2 锁模光纤激光器设计 (13) 结论 (11) 参考文献 (12)

第1章概述 锁模就是将多纵模激光器中各纵模的初相位关系固定,形成等时间间隔的光脉冲序列。使各纵模在时间上同步,频率间隔也保持一定,则激光器将输出脉宽极窄、峰值功率很高的超短脉冲。实现锁模的方法有很多种,但一般可以分成两大类:即主动锁模和被动锁模。主动锁模指的是通过由外部向激光器提供调制信号的途径来周期性地改变激光器的增益或损耗从而达到锁模目的;而被动锁模则是利用材料的非线性吸收或非线性相变的特性来产生激光超短脉冲。 目前,最为广泛使用的一种产生飞秒激光脉冲的克尔透镜锁模(Kerr Lens mode locking)技术是一种独特的被动锁模方法。科尔透镜锁模实际上是利用了材料的折射率随光强变化的特性使得激光器运转中的尖峰脉冲得到的增益高出连续的背景激光增益,从而最终实现短脉冲输出。一台激光器实现锁模运转后,在通常情况下,只有一个激光脉冲在腔内来回传输,该脉冲每到达激光器的输出镜时,就有一部分光通过输出镜耦和到腔外。因此,锁模激光器的输出是一个等间隔的激光脉冲序列。相邻脉冲间的时间间隔等于光脉冲在激光腔内的往返时间,即所谓腔周期。一台锁模激光器所产生的激光脉冲的宽度是否短到飞秒量级主要取决于腔内色散特性、非线性特性及两者间的相互平衡关系。而最终的极限脉宽则受限于增益介质的光谱范围。衡量一台飞秒激光器的重要技术指标为:脉冲宽度、平均功率和脉冲重复频率。 此外,还有谱宽与脉宽积,脉冲的中心波长,输出光斑大小,偏振方向等。脉冲重复频率实际上告诉我们了激光脉冲序列中两相邻脉冲间的间隔。由平均功率和脉冲重复频率可求出单脉冲能量,由单脉冲能量和脉冲宽度可求出脉冲的峰值功率。

半导体激光器的设计

半导体激光器设计 半导体激光器产生激光的机理,即必须建立特定激光能态间的粒 子数反转,并有光学谐振腔。由于半导体材料物质结构的特异性和 其中电子运动的特殊性,一方面产生激光的具体过程有许多特殊之处,另一方面所产生的激光光束也有独特的优势,使其在社会各方面广 泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈 发明显,光谱范围宽, 相干性增强,使半导体激光器开启了激光应用 发展的新纪元。 1半导体激光器的工作原理 激光产生原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具 备三个基本条件: (1)增益条件:建立起激射媒质(有源区)内载流子的反转分布,在 半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处 在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠 给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现。将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子 数反转状态的大量电子与空穴复合时,便产生受激发射作用。 (2)要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内 得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自

然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜.对F—p腔 (法布里一珀罗腔)半导体激 光器可以很方便地利用晶体的与P—n结平面相垂直的自然解理面 一[110]面构成F—P腔。 (3)为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔面的激光输出等引起的损耗,不断增加腔内的光场.这就必须要有足够强的电流注入,即有足够的粒子数反转,粒子数反转程度越高,得到的增益就越大,即要求必须满足一定的电流阀值条件.当激光器达到阀值时,具有特定波长的光就能在腔内谐振并被放大,最后形成激光而连续地输出. 可见在半导体激光器中,电子和空穴的偶极子跃迁是基本的光发射和光放大过程。 1.2 双异质结基本结构 将有源层夹在同时具有宽带隙和低折射率的两种半导体材料之间,以便在垂直于结平面的方向(横向)上有效地限制载流子和光子。用此结构于1970年实现了GaAlAs/GaAs激射波长为0.89 μm 的半导体激光器在室温下能连续工作。 图表示出双异质结激光器的结构示意图和相应的能带图在正向 偏压下

纵模选择技术

激光器纵模选择技术 1.纵模选择的意义及原则 为了获得好的单色性和相干性的激光束,要求激光以单频振荡,在一般情况下,多横模激光器是一个多频激光器,而多纵模激光器的频率间隔则更大。激光器的振荡纵横数目,由腔长、工作物质的增益线宽和激励水平等因素所决定。因为只有处于增益线宽内的那些纵模频率才有可能真正起振,形成多纵模振荡。某些实际应用,如光通讯、激光全息、精密计量等要求激光具有高单色性、高相干性,必须单频工作,而纵模选择又是单频工作的必要条件。 设由增益线宽和激励水平(阈值)所决定的激光振荡的大致频率范围为Δv,腔所允许的相邻两振荡纵模的频率间隔为δv,则实际起振的纵模数目为Δv/δv。由此可见,减少振荡纵模数(即选纵模)可通过两条途径来实现:一是设法压缩激光器的增益带宽Δv;二是设法增大相邻两振荡纵模之间的频率间隔δv。下述的各种纵模选择方法,均以此为依据。 2.纵模选择的方法 (1)色散腔法。当工作物质具有多条荧光谱线或一条较宽的谱带时,在腔内放入色散棱镜或反射光栅等光学元件,可以进行粗选纵模。使选频振荡的线宽压缩到0.1-1nm左右。 ①棱镜色散腔。在腔内置入色散棱镜,其选频振荡的最窄波长范围,由棱镜角色散和光束发散角所决定。设棱镜顶角为a,光束以最小偏向角δm方式通过棱镜(即光路对称),由于 n=sin[(δm+a)/2]/sina/2 (20-10) 棱镜的角色散率定义为: Dλ=dδm/dλ (20-11) 将式(20-10)求导后则有: Dλ=dδm/dn·dn/dλ=2sina/2/(1-n2sina/2)1/2·dn/dλ (20-12) 为使棱镜的插入损耗减到最小,应使光线入射角i以布儒斯特角iB入射。 则有: sina/2=siniB/n (20-13) 代入(20-12)式,则: Dλ=2siniB/(n2(1-sin2iB))1/2·dn/dλ (20-14) 设腔内振荡光束的发散角为θ,则由棱镜色镜分光作用,腔内激光振荡谱线的最小波长间隔为:

半导体激光器设计

半导体激光器设计 摘要:半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有光学谐振腔。由于半导体材料物质结构的特异性和其中电子运动的特殊性,一方面产生激光的具体过程有许多特殊之处,另一方面所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围宽,相干性增强,使半导体激光器开启了激光应用发展的新纪元。 关键词:受激辐射;光场;同质结;异质结;大功率半导体激光器 、八— 0刖言 半导体激光器是指以半导体材料为工作物质的激光器,又称半导体激光二极管(LD), 是20世纪60年代发展起来的一种激光器。半导体激光器的工作物质有几十种,例如砷化傢(GaAs),硫化镉(CdS)等,激励方式主要有电注入式,光泵式和高能电子束激励式三种。半导体激光器从最初的低温(77K)下运转发展到室温下连续工作;从同质结发展成单异质结双异质结,量子阱(单,多量子阱)等多种形式。半导体激光器因其波长的扩展,高功率激光阵列的出现以及可兼容的光纤导光和激光能量参数微机控制的出现而迅速发展.半导体激 光器的体积小,重量轻,成本低,波长可选择,其应用遍布临床,加工制造,军事,其中尤以大功率半导体激光器方面取得的进展最为突出。 1半导体激光器的工作原理 1.1激光产生原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件:(1)增益条件:建立起激射媒质(有源区)内载流子的反转分布,在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现。将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子数反转状态的大量电子与空穴复合时,便产生受激

居桂方---He-Ne激光器纵模间隔的测量

He-Ne 激光器纵模间隔的测量 1. 实验目的 用共焦球面扫描干涉仪观察He-Ne 激光器纵模结构并测量其间隔。 2. 基本原理 2.1激光纵模的形成 激光器的三个基本组成部分是增益介质、谐振腔和激励能源。如果用某种激励方式,将介质的某一对能级间形成粒子数反转分布,由于自发辐射和受激辐射的作用,将有一定频率的光波产生,在腔内传播,并被增益介质逐渐增强、放大。被传播的光波决不是单一频率的(通常所谓某一波长的光,不过是光中心波长而已)。因能级有一定宽度,所以光在谐振腔内传播受多种因素的影响,实际激光器输出的光谱宽度是自然增宽、碰撞增宽和多普勒增宽迭加而成。不同类型的激光器,工作条件不同,以上诸影响有主次之分。例如低气压、小功率的He-Ne 激光器632.8nm 谱线,则以多普勒增宽为主,增宽线型基本呈高斯函数分布,宽度约为1500MHz ,只有频率落在展宽范围内的光在介质中传播时,光强将获得不同程度的放大。但只有单程放大,还不足以产生激光,还需要有谐振腔对它进行光学反馈,使光在多次往返传播中形成稳定持续的振荡,才有激光输出的可能。而形成持续振荡的条件是,光在谐振腔中往返一周的光程差应是波长的整数倍,即 2μL =q λq (1) 这正是光波相干极大条件,满足此条件的光将获得极大增强,其它则相互抵消。式中,μ是折射率,对气体μ≈1,L 是腔长,q 是正整数,每一个q 对应纵向一种稳定的电磁场分布λq ,叫一个纵模,q 称作纵模序数。q 是一个很大的数,通常我们不需要知道它的数值。而关心的是有几个不同的q 值,即激光器有几个不同的纵模。从式(1)中,我们还可以看出,这也是驻波形成的条件,腔内的纵模是以驻波形式存在的,q 值反映的恰是驻波波腹的数目。纵模的频率为 L c q v q μ2= (2) 同样,一般我们不去求它,而关心的是相邻两个纵模的频率间隔 L c L c v q 221≈=?=?μ (3) 从式中看出,相邻纵模频率间隔和激光器的腔长成反比。即腔越长,Δν纵越小,满足振荡条件的纵模个数越多;相反腔越短,Δν纵越大,在同样的增宽曲线范围内,纵模个数就越少,因而用缩短腔长的办法是获得单纵模运行激光器的方法之一。 以上我们得出纵模具有的特征是:相邻纵模频率间隔相等;对应同一横模的一组纵模,它们强度的顶点构成了多普勒线型的轮廓线。

相关文档
最新文档