老顶给定变形下直接顶受力变形分析

老顶给定变形下直接顶受力变形分析
老顶给定变形下直接顶受力变形分析

基坑变形稳定性的分析

基坑变形稳定性的分析 关键词:变形监测监测技术监测网研究 随着城市建设的发展,目前各类用途的地下空间已在各大中城市中得到开发利用,地下工程建设项目的数量和规模也迅速增大,如高层建筑物基坑、大型管道的深沟槽、越江隧道的暗埋矩形段及地铁工程中的车站深基坑等。基坑工程是一种临时性工程,与地区性岩土性质有关。基坑工程造价高,并且临近人口稠密区的狭小场地,在岩土性质千变万化,软土、高水位及其他复杂条件下,对周边建筑物、地下构筑物及管线安全造成严重威胁。因此,基坑安全监测反馈的信息化施工应运而生。 基坑的变形预测是基坑设计和施工的重要补充手段。通过预测数据不断调整优化设计从而达到信息化施工的目的,这充分体现了“设计一施工一设计”的科学化施工管理模式。归纳起来基坑变形监测的目的主要为: (1)为信息化施工提供依据。通过监测随时掌握岩土层和支护结构内力、变形的变化情况以及周围环境中各种建筑、设施的变形情况,将监测数据与设计值进行对比、分析,以判断前步施工是否符合预期要求,确定和优化下一步施工工艺和参数,以达到信息化施工目的,使得监测成果成为现场施工工程技术人员作出正确判断的依据。 (2)为基坑周边环境中的建筑、各种设施的保护提供依据。通过对基坑周边建筑、管线、道路等的现场监测,验证基坑工程环境保护方案的正确性,及时分析出现的问题并采取有效措施,以保证周边环境的安全。 (3)为优化设计提供依据。基坑工程监测是验证基坑工程设计的重要方法,设计计算中未曾考虑或考虑不周的各种复杂因素,可以通过对现场监测结果的分析、研究,加以局部的修改、补充和完善,因此基坑工程监测可以为动态设计和优化设计提供重要依据。 一、基坑变形监测研究现状 随着国民经济的发展,特别是近我国大型基础设施、城市高层建筑、地铁等建设规模的不断增大,城市用地日趋紧张。为提高土地的空间利用率,地下室从一层发展到多层,但往往基坑工程周围建筑设施密集,施工条件复杂,因此,无论在国内还是国外,大型基坑变形预测与控制是岩土工程领域的研究热点之一。变形监测的研究,主要围绕监测技术、监测数据的分析处理这两个方面。 1、变形监测技术 科学技术的进步,特别是测量技术和设备以及自动控制技术的发展,基坑工程监测技术亦向自动化和高精度方向不断发张。在过去的二十多年里,各类新型

某基坑地面沉降成因分析

某基坑地面沉降成因分析 The analysis of the ground settlement of a pit 胡振烽(福建省第五建筑工程公司362000) [提要]针对泉州市某基坑地面沉降过大的现象,分析相关的影响因素,并得到一些实用的体会。 [关键词]基坑支护;地面沉降;被动区加固;时间效应 Abstract: A ccording to the excessive ground settlement of a pit in QuanZhou, in this paper some relative causes is analyzed and some experience is gained. Keywords: pit retaining; ground settlement; reinforcement for the passive zone; temporal effect 1 工程概况 2 2.1 2.2 动区6φ θ=20 2.3

用二次注浆工艺。图2支护结构设计图 3 基坑监测 在地下室施工期间对基坑进行监测,监测内容主要包括沉降观测和支护结构水平位移观测。监测结果显示,在基坑开挖期间(4月13日至7月22日),基坑支护结构最大侧向位移为20.7mm,3)。

设计中采用基坑内被动区加固以提高围护墙被动土压力区的土体强度和刚性。在基坑抗隆起稳定验算中,对于一般的粘性土,计算按同时考虑c 、φ的抗隆起法[1]。当仅按原状土参数计算,kPa c s 1.11=,?=9.6s φ,抗隆起系数1.186.0≤=s K 。但按被动区加固,kPa c sp 45=,?=9.6sp φ,计算得1.1=s K ,按照规范符合要求。从图4中可以看出:坑内没有被加固的c 区仍处在滑动面以内,显然就会降低抗隆起安全系数,增大土体位移和地面沉降。因此,当嵌固深度下部存在软弱土层时,加固和改善基坑土体的范围尚应考虑产生深部土层滑动范围。 4.2考虑时间效应影响 力学分析及工程实践表明基坑支护施工与地层位移之间,存在一定程度的时间效应。尤其对于淤泥质粘土及软塑粘土,流变性就更明显。由于该基坑面积较大,滑动临空面就大,并且自开挖到设计标高后施工缓慢,至浇好钢筋混凝土底板历时30天(5月10日至6月10日),过程曲线中出现平缓段(5月10日开始),但10天后又出现上升段,直至第57日才逐渐稳定。 综合分析可知,沉降量过大主要是基坑施工速度慢,暴露时间长且面积大,造成基坑被动承压区土体流变的速率和幅度都比较大,亦将增大墙体被动压力区的土体位移和墙外土体向坑内的位移,因而增加地表沉降。按照时空效应法[1],最大地面沉降为v v v δδ δ?+=',非施工因素所增加的施工沉降量∑∑+=?H K t a i i i v αδ,式中i a 某道支撑拖延一天而引起的沉降量(mm/d),i t 拖延天数,i K 某种施工因素所引起的沉降增量系数,H 基坑开挖深度,沉降与深度的关系系数α可根据基坑稳定系数确定。经计算可得mm v 6.395000%9.02.03002.1=??+?=?δ。 4.3考虑降水固结影响 基坑施工期间抽排水同样会引起地面沉降。抽排水过程中在基坑外侧形成漏斗曲线,在降水曲线范围内,饱水地层(如淤泥夹细砂)水位下降形成的渗水附加有效应力所引起土体的压缩,即为渗透固结沉降。 按照土的附加压力计算法[3],土的沉降ε ω+???=1a H P ,式中P ?为土壤骨架的附加压力,H 为土的压缩层厚度,a 为土的压缩系数,ε为孔隙比。沉降计算时主要考虑含水量大,压缩性大的软土层的固结沉降,即淤泥和淤泥夹砂层,经计算可得总沉降范围为8.07~28.06cm ,按照经验抽水20天的沉降约占总沉降量的25%左右,即2.0~7.0cm 。 除以上所述外,还有其他相关的因素影响地面沉降。如支护桩的桩周土和桩端持力层承载能力差,基坑开挖期间支护挡墙在自重和地面超载作用下会产生附加地面沉降。 5 体会 (1)围护结构设计时除应进行稳定性验算外,还需要按照极限平衡设计方法验算围护结构的入土深度,并确定坑内被动区加固范围,以有效减少基坑隆起量,避免出现隆起破坏。 (2)在具有流变性的地层中进行基坑施工,应充分发挥和利用时间效应来控制基坑变形,做到精心组织,科学施工。

材料力学中的组合变形

材料力学中的组合变形 过程转备与控制工程梁艳辉201005050219 摘要:材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。而组合变形在生活中普遍存在,基本上一些简单的单一变形在我们身边很少见,都是以组合变形的的形式出现,所以讨论组合变形具有重要意义。 关键字:组合变形,线弹性,载荷,应力,内力,静力等效原则,强度理论,失效形式通过一个学期的学习,对材料力学有了一个基本的理解。整个材料力学主要讨论了各种变形以及如何对各种变形进行强度校核,刚度校核以及稳定性校核。那么材料力学中主要有哪些变形呢?主要分为单一变形和组合变形,单一变形包括:杆的拉伸和压缩变形,杆的扭转变形,杆的弯曲变形和剪切变形。而组合变形包括:弯扭组合变形,拉扭组合变心,以及拉弯扭组合变形等。下面主要来简单的谈一谈我对组合变形的理解。 一.生活中的实例 在工程实际中,杆件的受力变形的情况种类很多,又不少构件同时发生两种或两种以上的基本变形,生活中常见的机械设备的传动轴:传动轮上作用力的既有扭转变形又有弯曲变形。常见的钻杆:钻杆受扭距的作用,同时钻杆的自重沿钻杆的轴向作用,所以钻杆的变形既有轴向的拉伸变形又有扭转变形。这样的例子在生活中还有很多。 二.如何解决组合变形 在线弹性,小形变的条件下,构件的内力,应力和变形均与外力成线性关系。可以认为载荷的作用是独立的,每一个载荷所引起内力,应力,变形都不受其他载荷的影响。几个载荷的同时作用在杆件上所产生的应力,变形,等于各个载荷单独作用时产生的应力,变形之

深基坑变形监测与分析

深基坑变形监测与分析 1 工程概况 某深基坑工程位于市区,建筑面积25767 〃,框剪结构,地下 2 层,地上31 层,首层架空层层高为5.0m ,二层以上为标准层,层高均为3.10m ,外地坪标高为-0.000m ,天面标高为97.5m ,建筑物顶部标高为110.50m 。 1.1 周围环境 场地地势平坦,地质结构简单,但周边环境较复杂,北面临城市道路,东、南、北面与高层住宅楼相邻,小区有自来水、通讯管道、煤气管道等地下管线,因此也作为监测对象。 1.2 工程地质 根据工程勘察报告,场地自上而下土层为:①杂填土:厚 1.2?1.5m ;②淤泥:厚7.5?9.0m :③粉质粘土:厚4.0?6.0m。 1.3 基坑支护结构 基坑呈凸型,开挖深度8.4m ,基坑开挖地层主要为软弱土、高压塑性、力学性质差,邻近有建筑物、城市道路、地下管道等,场地不具备放坡条件。设计支护结构为静压沉管灌注桩(?600@1000m m ),混凝土强度为C25,桩顶一道冠梁,桩长约15m,配2道钢管式水平支撑,间距沿基坑开挖深度等间距设置(间距为2.8m)。

2 变形观测方案 根据监测的设计要求及本工程实际情况,变形观测点布置 2.1 基准点布置 根据《建筑变形测量规程》和《城市测量规范》的要求:设3 个稳固可靠的点作为基准点。基准点布置在大于3 倍基坑以外平坦位置。固定基准点要做到既服务于基坑变形测量,也可服务于后期的拟建工程主体变形测量。 2.2 基坑观测点布置 ①支护桩桩顶沉降及位移:共布置10个点(al ~ a10 );②基坑侧向变形观测:共布置9个点(bl?b9 ),基坑开挖期间,每隔2d 监测一次,位移速率较大且呈增长趋势时,监测频率加密到1 次/ d ;③地下水位监测:在此工程基坑开挖中,每隔3d进行一次观测;④流砂观测;⑤周边环境沉降观测:共布置12个点(cl?C12), 观测频率7d/1 次。 2.3 观测方法及工程预警值 桩顶变形、地下管道变形采用水准仪和经纬仪观测;基坑侧向变形采用测斜仪进行观测;基坑外水位采用电测水位仪观测。 工程的预警值:①桩顶变形:水平位移30mm ;煤气管道变形: 10mm ;自来水、通讯管道变形:30mm ;②基坑外水位:水位下降 1000mm,速率500mm/d :③周边建筑沉降:最大沉降值10mm , 最大差异沉降△ Smax <5mm ;④流砂:须立即报警,必要时进行处理;⑤道路沉

基坑变形监测及变形机理与规律分析研究

基坑变形监测及变形机理与规律分析研究 【摘要】自改革开放以来,我国的经济得到了飞速的发展,与此同时,高层建筑的数量也在不断增加,这就使建筑基坑工程的开挖深度不断加深、施工难度越来越大,由此基坑的变形监测工作显得尤为重要。所以,本文首先对基坑的变形监测进行了概述,然后通过分析基坑变形的原因和机理,最后总结了基坑变形的规律,为正在从事基坑变形监测的工作人员提供一些参考。 【关键词】基坑;变形监测;变形机理;规律分析 1 前言 在经济高速发展的大背景下,在建筑工程当中出现了越来越多的高层建筑,由此也使得建筑的基坑逐渐朝着深开挖、工作面较窄的方向发展。目前,基坑工程的设计、施工和监测被称为保证基坑工程质量安全的三大基本要素,其中基坑工程的监测包含基坑的变形监测、地下水动态检测和应力检测。由于在基坑的开挖过程中,开挖深度越深,土体原有的平衡被破坏的越严重,因此在土的应力发生变化之后,其支护结构也发生变形,这就容易导致建筑的周边地面产生不均匀沉降的现象,并且在这些现象周而复始、相互影响的作用下,严重威胁着整个工程的施工顺利进行,以及周围临近建筑和基础设施的安全。除此之外,建筑基坑的变形与周围的环境、天气情况、基坑的开挖深度以及开挖方法等诸多因素有关,因此只有对其进行变形监测,才能够实时发现基坑在开挖过程中发生的变化,及时对造成的危险进行预防,避免工程事故的发生。鉴于此,基坑的变形监测是基坑工程开挖过程中不可或缺的重要步骤,加强对于基坑的变形监测研究十分重要。 2 基坑的变形监测 2.1 基坑变形监测的重要作用 在改革开放之前,我国建筑的基坑都比较浅,因此基坑技术并没有得到发展,但是近年来,随着高层建筑的不断涌现,深基坑的数量不断增加,因此对于深基坑的变形监测也得到了施工人员的高度重视。尤其是在大型的建筑工程中,很难单纯的从理论上对基坑的数据进行分析预测,只有将理论、经验和检测相互结合,才能够保证工程的顺利实施。因此,开展基坑变形的现场检测具有非常重要的意义,具体分析如下:首先,基坑的变形监测为工程的实施提供了实时的动态信息。由于基坑在开挖过程中常常受到周边环境、天气等因素的影响,其变化无规律可循,所以容易对周围的建筑物和基础设施造成一定的伤害,一旦危险发生则可能会造成不可挽回的损失。鉴于此,这就需要对施工现场的情况进行实时的检测,从而掌

弹片压力变形计算公式

The formula between Shrapnel stress and deflection The deflection curve equation of Shrapnel is as following: ()x l EI F y x --=362 (1) The max deflection of the Shrapnel ’s endpoint A : EI F l y A 33-= (2) In which I stands for Z-axis moment of inertia of the Shrapnel ’s Section, 1232 2222 2b y y a dydZ dA I a a b b ===???-- (3) To verify the correctness of the above formula . Assume : l=10mm ;a=2mm ;b=0.2mm ;E=210GP;F=11N Result:mm 95.013-=y A The figure is the finite element result:

The deflection curve equation of Shrapnel is as following: EI F y x 2d 2 -= (1) The max deflection of the Shrapnel’s endpoint A : EI F l y A 2d -= (2) In which I stands for Z-axis moment of inertia of the Shrapnel’s Section, 1232 2222 2b y y a dydZ dA I a a b b ===???-- (3) b l y Ea F A 32d 12-= (4)

杆件受力变形及其应力分析

第三章 杆件受力变形及其应力分析 §3-1 概 述 一、构件正常工作的基本要求 为了保证机器或工程结构的正常工作,构件必须具有足够的承受载荷的能力(简称承载能力)。为此,构件必须满足下列基本要求。1畅足够的强度例如,起重机的钢丝绳在起吊不超过额定重量时不应断裂;齿轮的轮齿正常工作时不应折断等。可见,所谓足够的强度是指构件具有足够的抵抗破坏的能力 。它是构件首先应满足的要求。图3-1 构件刚度不够产生的影响2畅足够的刚度在某些情况下,构件受载后虽未破裂,但由于变形过量, 也会使机械不能正常工作。图3-1所示的传动轴,由于变 形过大,将使轴上齿轮啮合不良,轴颈和轴承产生局部磨损, 从而引起振动和噪声,影响传动精度。因此,所谓足够的刚 度是指构件具有足够的抵抗弹性变形的能力。 应当指出,也有某些构件反而要求具有一定的弹性变形 能力,如弹簧、仪表中的弹性元件等。3畅足够的稳定性例如千斤顶中的螺杆等类似的细长直杆,工作时当压力较小时,螺杆保持直线的平衡形式;当压力增大到某一数值时,螺杆就会突然变弯。这种突然改变原有平衡形式的现象称为失稳。因此,所谓足够的稳定性是指构件具有足够的保持原有平衡形式的能力。 上述的基本要求均与构件的材料、结构、截面形状和尺寸等有关。所以,设计时在保证构件正常工作的前提下,还应合理地选择构件的材料和热处理方法,并尽量减小构件的尺寸,以做到材尽其用,减轻重量和降低成本。 二、变形固体及其基本假设 自然界中的一切物体在外力作用下或多或少地总要产生变形。在本书第二章中,由于物体产生的变形对所研究的问题影响不大,所以在该章中把所有物体均视为刚体。而在图3-1中,如果轴上任一横截面的形心,其径向位移只要达到0畅0005l (l 为轴的支承间的距离),尽管此时构件变形很小,但该轴已失去了正常工作的条件。因为这一微小变形是影响构件能否正常工作的主要因素。因此,在本章中所研究的一切物体都是变形固体。 在对构件进行强度、刚度和稳定性的计算时,为了便于分析和简化计算,常略去变形固体的 · 75·

温度、热量与热变形的关系及计算方法研究

温度、热量与热变形的关系及计算方法研究 摘要:通过分析热变形与热量之间的关系,提出利用平均线膨胀系数,将较复杂温度分布(如移动持续热源形成的温度分布) 情况下工件热变形量的计算简化为热量含量相同且温度均布状态下工件热变形量的计算方法,并给出了计算实例。 1 引言 在机械制造、仪器仪表等行业,由温度引起的热变形是影响机器、仪器设备精度的重要因素,热变形引起的误差通常可占总误差的1/3。在精密加工中,热变形引起的误差在加工总误差中所占比例可达4 0%~70%。为提高机器设备的工作精度,通常可采用温度控制和精度补偿两种途径来减小温度对精度的影响。温度控制是对关键热源部件或关键零件的温度波动范围进行精密控制(包括环境温度控制)。实现方法包括:①采用新型结构,如机床中的复合恒温构件等;②使用降温系统控制部件温升;③采用低膨胀系数材料等。这些方法都可程度不同地降低热变形程度,但成本较高。精度补偿方法是通过建立热变形数学模型,计算出热变形量与温度的关系,采用相应的软件补偿或硬件设备进行精度补偿。精度补偿法虽然成本较低,但要求建立精确且计算简便的数学模型。目前常见的数学模型大多是以温度作为主要计算因素,当形状规则的工件处于稳定、均匀的温度场中时,热变形数学模型的计算简便性可得到较好保证,但对于处于移动持续热源温度

场中的工件,其温度分布函数的计算将变得相当复杂,甚至无法得出解析解,只能采用逼近的近似数值解法。例如:对精密丝杠进行磨削加工时,磨削热引起的丝杠热变形会导致丝杠螺距误差。在计算丝杠热变形量时,首先必须建立砂轮磨削热产生的移动持续热源在丝杠上形成的温度分布数学模型。再如:车削加工中产生的切削热形成一持续热源,使车刀产生较大热膨胀量(可达0.1mm),严重影响加工精度。计算车刀的热变形量时,首先需要建立持续热源在车刀刀杆中的温度分布模型,这就增加了计算的复杂性。 图1 双原子模型示意图 本文从温度、热量和热变形的定义出发,分析了热量与热变形的关系。利用该关系,可简化实际工程应用中的热变形数学模型,减小运算工作量。 2 热变形原理及计算公式 热变形原理相当复杂,目前只能在微观上给予定性解释。固体材料的热膨胀本质上可归结为点阵结构中各点平均距离随温度的升高 而增大。德拜(Debye)理论认为,各原子间的热振动相互牵连制约,随着温度的升高,各质点的热振动加剧,质点间的距离增大,在宏观上表现为晶体膨胀现象。用图1所示双原子模型可解释如下:在温度T0时,原子1与原子2的间距为r0,当温度升高时,原子热运动加剧,原子间势能增加,两原子间势能U(r)增大,原子间距r=r0+x0。将U(r)

基坑变形监测方案 (1)

佳·克拉项目 基坑变形监测方案 编制: 甘肃统建建筑装饰工程集团有限公司 佳·克拉项目部 二○一七年九月二十日

目录

附图一:基坑监测点平面布置图

一、编制依据 1、佳·克拉基坑开挖图; 2、佳·克拉岩土工程勘察报告; 3、兰州理工大学建筑勘察设计院《佳·克拉项目基坑支护结构设计》《佳·克拉项目基坑降水设计》; 4、《工程测量规范》GB50026-2007; 5、《建筑工程施工质量验收统一标准》GB50300-2013; 6、《湿陷性黄土地区建筑基坑工程安全技术规程》JGJ167-2009; 7、《建筑基坑工程检测技术规范》GB50497-2009; 8、《建筑变形测量规范》JGJ8-2007; 9、基坑监测强制性条文。 二、工程概况 (一)工程简介 工程名称:佳·克拉。 工程地点:拟建场地位于甘肃省天水市秦州区吴家崖村,场地北邻吴家崖村田地。东侧为吴家崖村,南临山水嘉园1#地块,西临佳·水岸华庭C地块。拟建场地近南北宽约,东西长约。 本工程±绝对标高为。地下二层,地上A塔十八层,B塔十五层,商铺为地上三层。结构形式主楼为剪力墙结构,裙楼为框架结构。本工程基础采用筏板,东塔筏板厚度为1800mm,开挖深度为;西塔筏板厚度为1500mm,开挖深度为,,商铺为300厚的防水板,开挖深度为。 本基坑安全级别属于一级基坑。

(二)地层岩性 在勘察深度范围内,拟建场地地层自上而下依次分布为: al):该层分布于整个勘察场地,属第四系冲积产物;黄褐色,坚硬-硬塑; ①粉质粘土(Q 4 土质均匀,含少量植物根系和少量泥岩碎屑,孔隙较发育,有光泽,无瑶震反应,干强度中等,韧性一般,层厚为~,层面标高~。 al+pl):该层除区域缺失外,基本分布于整个勘察场地,冲、洪积成因,青灰色, ②圆砾(Q 4 重型动力触探试验修正值=~击,中密-密实,接触排列,磨圆度较好,颗粒形状呈圆状-亚圆状,级配较好,颗粒间充填物以中粗砂为主,含少量粉土,骨架颗粒成分主要为变质岩、石英岩和花岗岩等,中风化,圆砾一般粒径为~,偶含卵石及漂石。层面埋深~,厚度~,层面标高~。 ③强风化泥岩(N):该层分布于整个场地,半成岩,褐红色-灰绿色,微裂隙及风华裂隙较发育,中密-密实,矿物成分以蒙脱石、绿泥石,高岭石、白云母等为主,泥钙质胶结,碎屑结构,中厚层状构造,岩芯呈短柱状,具有遇水易软化的特点,强风化泥岩岩体基本质量等级Ⅴ级。层面埋深~,厚度~,层面标高~。 ④中风化泥岩(N):该层分布整个场地,半成岩,褐红色-灰绿色,见微裂隙,致密;矿物成分以蒙脱石、绿泥石、高岭石、白云母、长石、石英等为主,泥钙质胶结,碎屑结构,巨厚层状构造,岩芯呈短桩状,具有遇水易软化的特点,未经扰动时坚硬,岩体基本质量等级为Ⅳ级。层面埋深~,勘察厚度~(未揭穿),层面标高~。 (三)气象 天水市气候类型属暖温带轻冰冻中湿区,据天气气象局资料,本区多年平均气温℃,极端最高气温℃,极端最低气温℃,历年最冷月相对湿度平均62%,最热月平均湿度73%,年最大降水量,降水多集中在7、8、9月份,多暴雨,夏季多东北风,夏季平均风速s,冬季多东风,冬季平均风速s,30年遇最大风速s,年雷暴日天,年沙暴日天,年雾日数天,历年最大积雪厚度15cm,地表有季节性冻土,标准冻土深度,场地内无地表水。 (四)地下水 根据区域水文地质资料和勘察结果,拟建场地地下水为第四系松散岩类孔隙潜水,②圆砾

基坑坍塌原因分析

摘要:基坑坍塌原因复杂,涉及地质及勘察、支护设计、施工技术和管理、基坑周边环境等。本文分析近三年来发生的重大基坑坍塌事故,提出防范事故建议。 关键词:基坑坍塌 1概述 近三年建设部备案的重大施工坍塌事故中,基坑坍塌约占坍塌事故总数的50%。塌方事故造成了惨重的人员伤亡和经济损失。对施工坍塌的专项治理是近 年来建筑安全工作的重点之一。 基坑坍塌,可大致分为两类: (1)基坑边坡土体承载力不足;基坑底土因卸载而隆起,造成基坑或边坡土体滑动;地表及地下水渗流作用,造成的涌砂、涌泥、涌水等而导致边坡失稳, 基坑坍塌。 (2)支护结构的强度、刚度或者稳定性不足,引起支护结构破坏,导致边 坡失稳,基坑坍塌。 导致基坑坍塌的原因可归结为技术和管理两个层面,本文分析基坑坍塌事故 发生的原因和特点,提出防范建议。 2基坑坍塌事故概况 2.1发生事故的企业,无施工资质和无施工许可证者占企业总数的近50%, 10%左右的企业属三级或者三级以下施工资质。 2.2坍塌事故中,工业与民用建筑约占54%,道路、排水管线沟槽约占38%, 桥涵、隧道的约占8%。 2.3放坡不合理或支护失效引发的事故约占74%,其中无基坑支护设计导致 的事故约占60%。 2.4未编制施工组织设计引发的事故约占56%,施工组织设计不合理导致的事故约占19%,不严格按规范和施工组织设计施工导致的事故约占25%。 2.5发生坍塌的基坑(或边坡)深度从1.9米~22米,发生在1.9米~10米 的事故约占78%,10米~20米的约占17%,20米以上约占5%。 3基坑坍塌事故分析 3.1地质勘察报告不满足支护设计要求 地质勘察报告往往忽视基坑边坡支护设计所需的土体物理力学性能指标,不注重对周边土体的勘察、分析,这使得支护结构设计与实际支护需求不符。某办公楼基坑设计深度6米,仅对建筑物范围内的土体 进行了勘察,而基坑边坡淤泥质土层的相关指标,凭“经验”给出。因提供的

电功率的计算公式的变形

电功率的计算公式的变形 解读电功率的计算公式: 电功率的四个表达式:(1)定义式:P=W/t。(2)反映电学特点的普适式P=UI。 与欧姆定律结合后得到的(3)式P=I2R。(4)式P=U2/R。 电功率是反映电能消耗快慢的物理量,定义为1秒钟内消耗电能的多少,因此,用所消耗的电能除以消耗这些电能所用的时间,就得到定义式P=W/t。 经实验研究证明,电功率等于导体两端电压与通过导体电流的乘积,即P=UI。电压和电流是电路中最重要的物理量。有电压才可能有电流。电能是通过电荷有规律的运动转化成其它形式的能量的,电荷有规律的运动就形成电流。没有电流就不会消耗电能,当然也就不会有电能转化为其它形式的能量。所以,P=UI广泛应用于电功率的计算。 与欧姆定律结合得到的(3)式P=I2R、(4)式P=U2/R适用于纯电阻电路。因为,欧姆定律反映的是导体中的电流与导体两端电压和导体电阻之间的关系,是在纯电阻电路中得出的,所以,它只适用于纯电阻电路。如:白炽灯、电阻、电热器等,不适用于含电动机的电路和输变电电路的计算。由于串联电路中电流处处相等,所以在串联电路中,使用(3)式P=I2R分析和计算方便。在并联电路中,各支路两端电压相等,所以用(4)式P=U2/R分析和计算方便。通过对近几年的中考命题分析,除了含电动机电路的电功率计算外,其它全是纯电阻电路。在纯电阻电路中,四个计算公式通用,可根据具体情况选择方便的公式进行运用。 巧用电阻不变求实际功率: 由用电器铭牌上的U额、P额,求出电阻。即由P= ,解出R=;由于电 阻是不变的物理量,当求不同电压的实际功率时,可依据求得。 例1:如图所示,电源电压不变,灯L1标有“6V 3W”字样。当S、S1均闭合时,L1 正常发光,的示数是____V。若闭合S、断开S1,的示数是0.3A,则L2的实际功率为__W。 解析:当S、S1均闭合时,L2被短路,此时L1正常发光,所以电压表示数等于6V。 当闭合S,断开S1 时,灯L1、L2串联。灯L1电阻。灯L1

浅谈深基坑变形成因和预控

浅谈深基坑变形成因和预控 摘要对建筑工程基坑变形的分析,总结深基坑变形的一般特征,并分析基坑变形的影响因素,最后指出如何控制基坑变形的一些有效的方法,提出一些控制基坑变形的措施,为深基坑的设计和施工提供参考。 关键词基坑变形;影响因数;特征分析;预控措施 1基坑变形的影响因素 通过前人对基坑变形分析资料的分析和总结发现,同一基坑中,在满足强度控制设计和正常施工的前提下,围护结构的刚度、入土深度、支撑或锚杆道数和预应力、土体的变形模量这6个方面对基坑变形(基坑坑底隆起、支护结构位移、周边沉降)的影响较为显著,这其中以围护结构入土深度、支撑或锚杆道数和预应力因素尤为突出。 2分析深基坑变形的特征 2.1基坑周围地表的沉降分析及地表沉降原因 1)基坑开挖降水引起周边地下水位下降,形成以抽水井点为中心的降水漏斗,由于基坑周边土层地下水位降低,土体中的孔隙水压力消散,直接导致土体中有效应力增加,土体产生了新的固结沉降。另外,基坑开挖后周边土体处于临空状态,原有的结构平衡遭到破坏,土体开始应力释放容易发生滑动剪切破坏,土体将变得松软压缩性增大,地基土在原有荷载作用下产生新沉降。 2)地表沉降的分布类型:地表沉降的分布形式可近似归纳为“三角形”和“抛物线”两种,前者最大沉降点位于基坑边,后者最大沉降点离基坑边有一定距离,如图1所示。但两种形式的产生条件目前尚无定论。 图1地表沉降的分布类型 3)地表沉降的空间分布规律:①基坑中部附近剖面的地表沉降曲线可能是“三角形”也可能是“抛物线”,而基坑角点附近由于受到另一侧围护结构的支撑作用,其沉降分布形式常常为“抛物线”。②基坑中部附近剖面的地表沉降量远大于基坑端部附近剖面的地表沉降量。③基坑中部附近剖面的沉降分布曲线曲率较大,即在这个区域内不均匀沉降较大。 2.2围护结构的水平位移分布规律 围护结构水平位移随时间的变化规律: 1)在下一工况开始时围护结构的位移曲线紧邻上一工况结束时位移曲线的

组合变形习题与参考答案

组合变形 一、判断题 1.斜弯曲区别与平面弯曲的基本特征是斜弯曲问题中荷载是沿斜向作用的。( ) 2.斜弯曲时,横截面的中性轴是通过截面形心的一条直线。( ) 3.梁发生斜弯曲变形时,挠曲线不在外力作用面。( ) 4.正方形杆受力如图1所示,A点的正应力为拉应力。( ) 图 1 5. 上图中,梁的最大拉应力发生在B点。( ) 6. 图2所示简支斜梁,在C处承受铅垂力F的作用,该梁的AC段发生压弯组合变形,CB段发生弯曲变形。( ) 图 2 7.拉(压)与弯曲组合变形中,若不计横截面上的剪力则各点的应力状态为单轴应力。( ) 8.工字形截面梁在图3所示荷载作用下,截面m--m上的正应力如图3(C)所示。( ) 图 3 9. 矩形截面的截面核心形状是矩形。( ) 10.截面核心与截面的形状与尺寸及外力的大小有关。( ) 11.杆件受偏心压缩时,外力作用点离横截面的形心越近,其中性轴离横截面的形心越远。( ) 12.计算组合变形的基本原理是叠加原理。()

二、选择题 1.截面核心的形状与()有关。 A、外力的大小 B、构件的受力情况 C、构件的截面形状 D、截面的形心 2.圆截面梁受力如图4所示,此梁发生弯曲是() 图 4 A、斜弯曲 B、纯弯曲 C、弯扭组合 D、平面弯曲 三、计算题 1.矩形截面悬臂梁受力F1=F,F2=2F,截面宽为b,高h=2b,试计算梁的最大拉应力,并在图中指明它的位置。 图 5 2.图6所示简支梁AB上受力F=20KN,跨度L=2.5m,横截面为矩形,其高h=100mm,宽b=60mm,若已知α=30°,材料的许用应力[σ]=80Mpa,试校核梁的强度。 3.如图7所示挡土墙,承受土压力F=30KN,墙高H=3m,厚0.75m,许用压应力[σ]ˉ=1 Mpa,许用拉应力[σ]﹢=0.1 Mpa,墙的单位体积重量为,试校核挡土墙的强度。 图 6 图 7 4.一圆直杆受偏心压力作用,其偏心矩e=20mm,杆的直径d=70mm,许用应力[σ]=120Mpa,试求此杆容许承受的偏心压力F之值。

焊接变形计算公式

焊接变形收缩始终是一个比较复杂的问题,对接焊缝的收缩变形与对接焊缝的坡口形式、对接间隙、焊接线的能量、钢板的厚度和焊缝的横截面积等因素有关,坡口大、对接间隙大,焊缝截面积大,焊接能量也大,则变形也大。 为了给设计人员提供一定的参考,贴几个公式: 1、单V对接焊缝横向收缩近似值及公式: y = *e^() y=收缩近似值 e= x=板厚 2、script id=text173432>双V对接焊缝横向收缩近似值及公式: y = *e^() y=收缩近似值

e= x=板厚 3、 4、

5、 6、

1、预热处理是为了防止裂纹,同时兼有一定改善接头性能的作用,但是预热也恶化劳动条件,延长生产周期,增加制造成本。过高预热温度反会使接头韧性下降。 预热温度确定取决于钢材的化学成分、焊件结构形状、约束度、环境温度和焊后热处理等。随着钢材碳当量、板厚、结构约束度增大和环境温度下降,焊前预热温度也需相应提高。焊后进行热处理的可以不预热或降低预热温度。 Q345焊接的预热温度板厚≤40mm,可不预热; 板厚>40mm,预热温度≥100度(以上为理论参考)2、焊接变形收缩始终是一个比较复杂的问题,对接焊缝的收缩变形与对接焊缝的坡口形式、对接间隙、焊接线的能量、钢板的厚度和焊缝的横截面积等因素有关,坡口大、对接间隙大,焊缝截面积大,焊接能量也大,则变形也大。具体经验公式见附件! 3、低合金钢接头焊接区的清理是一项不可忽视的工作,是建立低氢环境的主要环节之一。 若直接在焊件切割边缘和切割坡口上的焊接接头,则焊前必须清理干净切割面得氧化皮盒熔化金属的毛刺,必要时可用砂轮打磨。

基坑变形原因分析及处理措施

基坑变形原因分析及处理措施 张绍宝 (四川广汇建设有限公司,四川广元628000) 【摘要】针对基坑变形,从地质条件、设计及施工等方面进行原因分析,有针对性地提出来了处理措施。 【关键词】防滑桩;变形;处理措施 广汇花园工程项目位于**市区,为高层建筑,各主楼地上12层、24+1层,25层、30层不等,地下设两层地下室,根据中国建筑西南勘察设计研究院有限公司提供的该工程《广汇花园项目岩土工程勘察报告》,以中风化泥岩或中风化砂岩层作为桩基持力层。根据中国建筑西南设计研究院有限公司提供的设计文件表明主体结构为钢筋混凝土剪力墙结构,基础采用人工挖孔扩底灌注桩基础,桩长根据现场情况确定,但应≥6米。应通过施工勘察确定桩底3D 深范围内无空洞、破碎带、软弱夹层等不良地质条件;基础形式为桩筏,筏板基础的埋深为-9.35以下,基坑类别为一级。根据《岩土工程勘察报告》反映该地形情况较复杂。 在基坑南侧○6~○16轴段,在防滑桩施工完毕后,土方分层开挖至地面下5.0米左右时,围墙根部且平行边坡出出现了一条宽2~5㎜长约40米的裂缝,冠梁向基坑内位移35~45㎜,其变形远大于预期设想,出现严重的安全隐患。 1、工程地质条件 1.1地形地貌及地层 根据《广汇花园项目岩土工程勘察报告》,场地地貌单元属于嘉陵江二级阶地,场区地层构成及特征 据钻探揭露,场区土层主要为第四系人工回填土(Q4ml)、第四系上更新统冲洪积层(Q3al+ pl)及侏罗系中统沙溪庙组(J2s)。场地地层自上而下主要为: ①-1杂填土(Q4ml):杂色,松散,湿,主要由建筑垃圾组成。堆积时间较短,为新近回填土,层厚0.60~4.00m。该层主要分布于1栋和2栋楼层所在场地。 ①-2素填土(Q4ml):褐色,松散,湿,主要由粉质粘土构成。回填时间较短,为新近回填土。层厚约0.90~6.00m。该层分布于整个场地。 ②粉质粘土(Q3al+pl):褐色,可塑、硬塑;无摇振反应,稍有光泽,干强度高,韧性中等。含较多铁锰质氧化物,少量钙质结核,层厚5.30~13.40m。分布于整个场地。 ③稍密卵石(Q3al+pl):褐灰色,湿~饱和,卵石粒径2~10mm,其母岩成份以岩浆岩为主,沉积岩次之,亚圆形,中等风化~微风化,卵石含量约45%左右,其中混有较多砾石(约20%左右),充填物为粘性土。层厚0.50~1.70m。N120动力触探击数1~4击。 ④-1强风化砂岩(J2s):浅黄色~黄褐色,细砂结构,斜层理构造,呈巨厚层产生,其矿物成份主要为长石、石英,强风化,可用手捏碎岩块,层厚为0.7~1.6m:层顶标高为466.48~470.64m。 ④-2中等风化砂岩(J2s):浅黄色,层理清晰,细砂结构,斜层理构造,呈巨厚层产生,其矿物成份主要为长石、石英,夹泥质团块,局部夹较多泥岩,中风化。岩芯采取率达90% 以上。岩石为软岩,岩体完整程度为较完整,岩体基本质量等级为Ⅴ级。层厚为1.3~5.20m,层顶标高为468.46~469.44m。 ⑤-1强风化泥岩(J2s):紫红色,泥状结构,以粘土矿物为主,夹薄层砂岩。风化裂隙发育,岩体破碎,呈强风化,可用手捏碎岩块,用镐可挖掘。分布于整个场地,层厚0.70~3.40m,层顶标高为465.43~470.25m。 ⑤-2中等风化泥岩(J2s):紫红色~紫褐色,泥状结构,中厚层状,以粘土矿物为主,中等风化,岩体较完整,用镐难挖掘。在场地中部分孔中有揭露,最大揭露厚度10.30m,该层未揭穿。

论软土地层深长基坑变形原因分析与控制技术

论软土地层深长基坑变形原因分析与控制技术 摘要本文主要就是结合南沙客运港站这個案例,对软土层深长基坑变形的原因进行必要的分析和研究,以了解软土层变形原因,进而对其进行改造以减少施工危险与居住风险。 关键词软土层;基坑变形;原因;控制技术 1 工程概况 1.1 工程设计概述 南沙客运港站位于南沙区港前大道与科技大道交叉路口,主体沿科技大道东西向布置,设计里程为YCK67+112.571~YCK67+506.271。车站全长393.7m,标准段宽32.8m,外包总高21.04m,为地下三层箱型钢筋混凝土结构,附属结构有三组风亭和7个出入口。主体基坑围护结构采用1000mm厚地下连续墙+五道内支撑,基坑开挖深度24.3米,盾构井段开挖深度28.7m,盾构接收井及标准段第1~5道支撑均为混凝土支撑,折返线段第1~3道支撑为混凝土支撑,下面两道为钢支撑。 1.2 地质情况概述 南沙客运港站地处珠江三角洲冲洪积平原地貌,地形较为平坦,地面标高约7.40~7.85m。主要的地岩岩性是人工填土层(主要为素填土、黏土、砂等),海陆交互相沉积层(淤泥层、淤泥质土层、粉细砂层、中粗砂层、粉质黏土层),残积土层(由白垩系碎屑岩和震旦系的混合花岗岩风化而成的砂质黏性土),红层(含砾砂岩、泥质粉砂岩)全风化带、强风化带、中风化带、微风化带,混合花岗岩全风化带、强风化带、中风化带等。另外,车站结构底板主要位于软土、粉质黏土层上,局部位于淤泥质砂层、淤泥质、砂层、粉质黏土层等[1]。 2 软土地层深长基坑变形的原因 2.1 勘探问题 由于软土层特殊的结构,需要有经验的专业人士认真研究,彻底分析清楚地质构造,才能避免后期施工过程中带来的安全问题。 2.2 处理不当 在对软土地层深长基坑变形的原因分析中,主体结构施工不及时、支撑预加轴力小、地连墙塌陷、土体暴露时间过长、施工工序连接不畅、支撑架设不及时、建筑物基础浅,以及土方开挖时空效应等,都会造成基坑变形。如在基坑开挖的过程中,淤泥质地层,开挖难度较大,每层开挖时挖机行走极其困难,特别在基

基坑位移过大的应急处理及原因分析

摘要:本工程为土钉喷锚加深搅止水帷幕及护壁桩联合支护的工程,该工程虽无垮塌事故,但施工过程中曾发生基坑位移迅速增大到13cm,以及其它几个面最大位移达到10cm的情况,基坑位移过大,本文就是针对该情况作出分析。 关键词:水压、支护面、位移过大、分析 一、工程概况 拟建某大厦基坑支护工程位于某市环城西路某出版社北西侧,某图书资料中心大楼南东侧,地形平坦,交通十分便利。两侧车流及人流量大。地下车库场地条件狭窄,在场地旁边的道路下面,埋设有重要的电缆线路及排污管道等市政设施。该建(构)筑物为19层框剪结构综合楼,建筑高度约60.50m,建筑面积21000.00㎡,地下车库2层,深度8.2~9.2米。 二、工程地质概况 地下车库北侧原有一条东西方向的水沟通过,压护壁桩前对该处水沟进行了土置换处理。该场地内土层性质描述如下: ①杂填土(单元层代号①):由混凝土块、碎石、砖块及粘性土组成,结构松散。一般厚度为2.00~3.60m ,分布于整块场地。 ②粘土(单元层代号②):褐黄、褐灰、褐红色,可塑状态,局部硬塑状态,湿。一般厚度为1.20~1.50m。整个场地均有分布。 ③淤泥质粘土(单元层代号③):灰黑、灰褐、灰兰、灰紫色,软流塑-软塑状态,很湿。一般厚度为0.70~6.20m,整个场地均有分布。为该场地较软弱的地基土。 ④粘土(单元层代号④):褐灰、灰兰、灰黄、褐红色,可塑状,局部为硬塑状态,湿。一般厚度为0.60~2.20m,大部分场地均有分布,局部地段缺失。 ⑤(单元层代号⑤):灰黑、灰褐、灰、浅灰等色,软塑状态,局部可塑状态,很湿。局部地段间夹薄层粉土,含少量钙质胶结碎块及腐植物。稍有光滑,无摇震反应,干强度低,韧性中等。一般厚度为2.00~5.40m,大部分场地均有分布,局部地段缺失。 ⑥粘土(单元层代号⑥):灰、灰兰、灰褐、灰黑、灰紫、灰黄色,可塑状态,湿。一般厚度为0.80~7.20m,整个场地均有分布。部分地段该层被粘土⑤、⑦层分隔为上下两层。 ⑦粘土(单元层代号⑦):灰黄、灰兰、灰褐、灰黑色,硬塑状态,局部可塑状态,稍湿。一般厚度为2.50~5.70m,大部分场地均有分布。局部地段缺失。 ⑧粘土(单元层代号⑧):灰、灰褐、灰紫、浅灰色,稍密~中密,很湿。间夹薄层粉砂及砾砂。一般厚度为1.80~9.60m,大部分场地均有分布。 三、支护结构设计及位移过大拟采用的应急方案 本工程根据基坑四周建筑物的 不同要求,区别对待。 1、在施工 到基底时最大位移达到10cm,在靠南侧及西侧坑外路面已经开裂和塌陷。虽还未造成灾难,但该情况已经很危险。根据场地周围的要求,在较厚淤泥质土层中采用护壁桩,尚缺少经验。

工程力学-组合变形

10 组合变形 1、斜弯曲,弯扭,拉(压)弯,偏心拉伸(压缩)等组合变形的概念; 2、危险截面和危险点的确定,中性轴的确定; 如双向偏心拉伸, 中性轴方程为 p p o o 22 y z z y 1z y0 i i ++?= 3、危险点的应力计算,强度计算,变形计算、。 4、截面核心。 10.1、定性分析图10.1 示结构中各构件将发生哪些基本变形? 图10.1 解题范例

[解](a)AD杆时压缩、弯曲组合变形,BC杆是压缩、弯曲组合变形;AC杆不发生变形。 (b)AB杆是压弯组合变形,BC杆是弯曲变形。 (c)AB是压缩弯曲组合变形,BC是压弯组合变形。 (d)CD是弯曲变形,BD发生压缩变形,AB发生弯伸变形,BC发生拉弯组合变形。 10.2分析图10.2中各杆的受力和变形情况。 图10.2 [解] (a)力可分解成水平和竖直方向的分力,为压弯变形。 (b)所受外力偶矩作用,产生弯曲变形。 (c)该杆受竖向集中荷载,产生弯曲变形.

(d)该杆受水平集中荷载,偏心受压,产生压缩和弯曲变形。 (e)AB段:受弯,弯曲变形,BC段:弯曲。 (f)AB段:受弯,弯曲变形,BC段:压弯组合。 (g)AB段:斜弯曲,BC段:弯纽扭合。 10.3分析图10.3 示构件中(AB、BC和CD) 各段将发生哪些变形? 图10.3 [解] AB段发生弯曲变形,BC段发生弯曲、扭转变形;CD段发生拉伸、双向弯曲变形。 10.4一悬臂滑车架如图10.4 所示,杆AB为18号工字钢(截面面积30.6cm2,Wz=185cm3),其长度为l=2.6m。试求当荷载F=25kN作用在AB的中点处时,杆内的最大正应力。设工字钢的自重可略去不计。 B l/2 F 20kN 300 C D A l 图10.4 [解]取AB为研究对象,对A点取矩可得 NBCY F12.5kN = 则3 2 25 = = NBCX NAB F F

相关文档
最新文档