受力变形分析报告

受力变形分析报告
受力变形分析报告

1703185-375有限元分析变形报告

在相同的受力(力大小F=1000N)条件下对零件1703185-375的六种不同形式进行了有限元分析,对比分析结果,以得到最佳设计方案,分析情况如下:

方案一:

1703185-375方案一零件图

分析结果:

1703185-375方案一有限元分析结果

零件变形情况如图所示,零件最大变形处变形量为Max=4.26×10-2×25.4=1.08mm 方案二:

1703185-375方案二零件图.

分析结果:

1703185-375方案二有限元分析结果

零件变形情况如图所示,零件最大变形处变形量为Max=7.94×10-2×25.4=2.02mm 方案三:

1703185-375方案三零件图.

分析结果:

1703185-375方案三有限元分析结果

零件变形情况如图所示,零件最大变形处变形量为Max=4.53×10-2×25.4=1.15mm 方案四:

1703185-375方案四零件图.

分析结果:

1703185-375方案四有限元分析结果

零件变形情况如图所示,零件最大变形处变形量为Max=3.81×10-2×25.4=0.97mm 方案五:

1703185-375方案五零件图.

分析结果:

杆件受力变形及其应力分析

第三章 杆件受力变形及其应力分析 §3-1 概 述 一、构件正常工作的基本要求 为了保证机器或工程结构的正常工作,构件必须具有足够的承受载荷的能力(简称承载能力)。为此,构件必须满足下列基本要求。1畅足够的强度例如,起重机的钢丝绳在起吊不超过额定重量时不应断裂;齿轮的轮齿正常工作时不应折断等。可见,所谓足够的强度是指构件具有足够的抵抗破坏的能力 。它是构件首先应满足的要求。图3-1 构件刚度不够产生的影响2畅足够的刚度在某些情况下,构件受载后虽未破裂,但由于变形过量, 也会使机械不能正常工作。图3-1所示的传动轴,由于变 形过大,将使轴上齿轮啮合不良,轴颈和轴承产生局部磨损, 从而引起振动和噪声,影响传动精度。因此,所谓足够的刚 度是指构件具有足够的抵抗弹性变形的能力。 应当指出,也有某些构件反而要求具有一定的弹性变形 能力,如弹簧、仪表中的弹性元件等。3畅足够的稳定性例如千斤顶中的螺杆等类似的细长直杆,工作时当压力较小时,螺杆保持直线的平衡形式;当压力增大到某一数值时,螺杆就会突然变弯。这种突然改变原有平衡形式的现象称为失稳。因此,所谓足够的稳定性是指构件具有足够的保持原有平衡形式的能力。 上述的基本要求均与构件的材料、结构、截面形状和尺寸等有关。所以,设计时在保证构件正常工作的前提下,还应合理地选择构件的材料和热处理方法,并尽量减小构件的尺寸,以做到材尽其用,减轻重量和降低成本。 二、变形固体及其基本假设 自然界中的一切物体在外力作用下或多或少地总要产生变形。在本书第二章中,由于物体产生的变形对所研究的问题影响不大,所以在该章中把所有物体均视为刚体。而在图3-1中,如果轴上任一横截面的形心,其径向位移只要达到0畅0005l (l 为轴的支承间的距离),尽管此时构件变形很小,但该轴已失去了正常工作的条件。因为这一微小变形是影响构件能否正常工作的主要因素。因此,在本章中所研究的一切物体都是变形固体。 在对构件进行强度、刚度和稳定性的计算时,为了便于分析和简化计算,常略去变形固体的 · 75·

基础梁与上部结构梁受力区别及相关分析图

地梁受力与顶板梁受力相反是吗,板梁是下部筋受力下部钢筋大, 地梁受力与顶板梁受力相反是吗,板梁是下部筋受力下部钢筋大,而上部主要是支座筋,而地梁相反 正确,地梁(基础梁)受力与普通梁正好相反,所以受力筋与支座筋位置也正好相反。地梁受力与框架梁梁受力相反,支座负筋位置也相反 是的。有梁式筏板基础中的梁(JZL、JCL)与楼层框架梁(KL)及屋面框架梁(WKL)的受力方向是相反的。好像是倒盖楼。但有区别:当承受地震横向作用时,柱是第一道防线,楼盖梁是耗能构件,所以要做到”强柱弱梁“”强剪弱弯“,梁要考虑箍筋加密区、塑性铰等问题;但筏形基础的基础梁通常不考虑参与抵抗地震作用计算。是不同的,因为他们的受力是相反的 地梁承受基础的反作用力,荷载是向上的,而板顶梁承受的是向下的荷载,两者受力是相反的 地梁承受地基反力方向向上,顶梁承受荷载向下,所以受力相反,至于钢筋上部大或下部大那就不一定,要作受力分析. 基础梁是基础的一种型式,是结构的一部份,用于承受上部负荷及调整各基础内力,使各基础处于轴心受压或小偏心受压,改善基础受力的连续基础,它一般与桩基、条基、筏基共同受力,单一的基础梁受力已很少见。条基、筏基中的梁应该叫肋梁,肋梁和条基翼板或筏基板共同组成条基或筏基。基础拉梁是为了减少不均匀沉降,防止形变的拉压杆传力构件,它把水平荷载均匀地传给各个基础,有时充当上部墙体的基础。拉梁顾名思义是连接和协调了两端的独基、承台或基础梁,许多拉梁共同起作用,把整个建筑物基础联合成刚度协调、变形一致的基础。基础梁的作用:1.提高结构整体性;2.抵抗柱底弯矩及剪力;3.调节沉降; 4.承受底层填充墙荷载等。基础梁分为:柱下条形基础梁、筏形基础梁和纯基础梁(没有基础底板);承台间基础拉梁和墙下基础梁,柱下基础梁一般设置在基础底部,有的设计沿一个方向布置(主要用于排架结构),但更多是沿XY双向布置的十字条基,它虽然受地基反力,人们也往往把它所看成是倒框架结构,其实它是作为柱的支座,而框架梁则是以柱为支座,正好相反。所以基础梁不应视为正置弹性地基梁。其箍筋沿基础梁满布(交叉处可只一个方向)这与框架梁有区别。主筋也不存在锚固而是封边。 承台间基础拉梁情况较复杂,如果基础拉梁与承台共同作用共同受力是一个受力整体且承台体积较小时抵抗柱底弯矩及剪力主要由桩承台起作用,那么拉梁可接通;如果承台是主要受力且体积较大而拉梁次要受力那么拉梁锚入承台即可,主筋伸入承台一个锚固。 卧梁主要是抵抗横向地震作用,加强楼盖体系整体性的构件。墙下混凝土条形基础,为增加基础抵抗不均匀沉降的能力,沿纵向可加设肋梁,并按构造配筋。可以理解为卧梁的作用是增加条形基础沿长方向抵抗变形的承受力。卧梁是条形基础的一部分,属于条形基础范畴。不能简单的理解为地基梁或者是拉梁。 一般来说,当独立基础埋置不深,或者埋置虽深但采用了短柱方案时,由于地基不良或柱子荷载差别较大,为了调节不均匀沉降等,为了减小底层柱的计算长度和底层的位移,设计者往往在±0.00以下适当位置设置基础梁,或根据抗震要求,可沿两个主轴方向设置构造基础梁。有时把基础梁设计得比较强大,以便用梁平衡柱底弯矩。这时,梁正弯矩钢筋应全部拉通,负弯矩钢筋至少应在1/2跨拉通。梁正负弯矩在框架柱内的锚固、梁箍筋的加密及有关抗震构造要求与上部框架梁完全相同。此时基础梁宜设置在基础顶部,不宜设置在基础底面之上。 梁代号为JKL,梁又在承台上面,凭这两点,这个梁应该是基础框架梁,那它就应该“悬空”,避免承受地基反力。但你又说,它下面带板(钢筋砼底板?),还有100厚的垫层,这样听起来又像是基础梁了,基础梁本身要承重,自身下面会带钢筋砼底板作基础,而一般有桩基、

悬臂梁变形及应力分析

基于ANSYS 10.0 对悬臂梁的强度及变形分析 姓名:刘吉龙 班级:机制0803班 学号:200802070516

对悬臂梁的受力及变形分析摘要:本研究分析在ANSYS10.0平台上,采用有限元法对悬臂梁进行强度与变形分析、验证此悬臂梁设计的合理性。 一、问题描述 长度L=254 mm的方形截面的铝合金锥形杆,上端固定,下端作用有均布拉力P=68.9 Mpa,上截面的尺寸50.8×50.8 mm,下截面尺寸25.4×25.4 mm(见右图),弹性模量E=7.071×104 Mpa,泊松比μ=0.3,试用确定下端最大轴向位移δ和最大轴向应力。试将分析结果与理论解进行比较,说明有限元分析的误差。(理论解:最大轴向位移δ=0.1238 mm)。 二、建立有限元模型: 定义模型单元类型为:solid(实体)95号单元,材料常数为:弹性模量 E=7.071×104 Mpa,泊松比μ=0.3。 三、有限元模型图: 建立有限元模型时,观察模型的形状可知,我们可以先建立模型的上下底面,再根据有上下底面形成的八个关键点(keypoints)生成线,接着生成面,生成体。最后生成该悬臂梁的模型图,示图如下:

整个模型建立好之后即可对其划分网格,划分网格时,若选择自由划分则生成的网格比较混乱,不能比较准确的模拟该梁真实的受力变形情况。故我们选择智能划分模式,并且分别对模型的各个棱边(lines)进行均匀分割,这样可以划分出比较理想的网格,更利于我们的研究和分析。网格划分之后的模型图为: 四、加载并求解: 根据该悬臂梁的受力特点,我们在其下底面(比较大的底面)上进行六个自由度的位移约束,而在其上地面上施加大小为P=68.9 Mpa均布拉力,将载荷加载好之后便可进行运算求解,求解完成之后,我们得到其位移变形图如下:

材料力学梁变形实验报告

梁变形实验报告 (1)简支梁实验 一、实验目的 1、简支梁见图一,力F 在跨度中点为最严重受力状态,计算梁内最危险点达到屈服应力时的屈服载荷Fs ; 2、简支梁在跨度中点受力F=时,计算和实测梁的最大挠度和支点剖面转角,计算相对理论值的误差; 3、在梁上任选两点,选力F 的适当大小,验证位移互等定理; 4、简支梁在跨度中点受力F=时,实测梁的挠度曲线(至少测8个点挠度,可用对称性描点连线)。 二、试件及实验装置 简支梁实验装置见图一,中碳钢矩形截面梁,屈服应力 =s σ360MPa ,弹性模量E=210GPa 。 百分表和磁性表座各1个; 砝码5个,各砝码重;砝码盘和挂钩1套,约重;游标卡尺和钢卷尺各1个。 三、实验原理和方法 1、求中点挠度 简支梁在跨度中点承受力F 时,中点挠度最大,在终点铅垂方向安装百分表,小表针调到量程中点附近,用手轻拍底座振动,使标杆摩擦力最小,大表指针示值稳定时,转表盘大表针调零,分级加力测挠度,检验线性弹性。 2、求支点转角 图一 实验装置简图

梁小变形时,支点转角a δθ≈;在梁的外伸端铅垂方向安装百分表,加力测 挠度,代入算式求支点转角。 3、验证位移互等定理: 图二的线弹性体,F 1在F 2引起的位移 12 上所作之功,等于F 2在F 1引起的位移21 上所作之功,即:212121??=??F F ,若 F 1=F 2,则有:2112?=? 上式说明:当F 1与F 2数值相等时,F 2在点1沿F 1方向引起的位移12 ,等于F 1在点2沿F 2 方向引起的位移 21 ,此定理称为位移互等定理。 为了尽可能减小实验误差,重复加载4次。取初载荷F 0=(Q+)kg ,式中Q 为砝码盘和砝码钩的总重量, F=2kg ,为了防止加力点位置变动,在重复加载 过程中,最好始终有的砝码保留在砝码盘上。 四、数据记录 1、中点分级加载时,中点挠度值: F(kg) w(×10-2mm) 0 20 41 62 83 103 △w(×10-2mm) 20 21 21 21 20 2、测支点转角 F=;w (端点)=;a=71mm 3、验证位移互等定理 F (2)= w (5)= F (5)= w (2)= 4、绘制挠曲线(中点加载F=) 图二 位移互等定理示意图 21 F 1 1 2 12 F 2 1 2

横梁力学分析

一、横梁的力学分析 在实际工程设计中,各种机器设备和工程结构都是由若干个构件组成的。这些构件在工作中都要受到各种力的作用,应用静力学的知识,我们可以分析计算这些构件所受到的外力情况。为保证机器设备和工程结构在外力作用下能安全可靠地工作,就必须要求组成它的 每个构件均具有足够的承受载荷的能力。 通过材料力学的知识,研究构件在外力作用下的变形、受力和破坏的规律,保证构件能够在正常、安全的工作前提下最经济地使用材料,为构件选用合理的材料,确定合理的截面形状和尺寸。为了保证工程结构在载荷作用下正常工作,要求每个构件均具有足够的承受载荷的能力。下面我们用横梁的力学研究来展示实际分析过程(这里仅介绍分析的方法, 所有的数据均是假设)。 1.新建图1所示零件 1)在前视基准面上做高度为15mm、宽度为5mm的矩形,并拉伸180mm,如图1a所示。 2)单击“镜向”按钮,按如图1b(注意去掉“合并实体”选项)所示设置后单击“确 定”按钮,完成实体镜像,结果如图1c所示。注意:此时为两个实体。

2.静态分析 1 ) 启动“SolidWorks Simulation ” 插件,单击“S i m u l a t i o n”标签,切 换到该插件的命令管理器页,如图2所示。 2)如图3所示,单击“算例”按钮下方的小三角,在下级菜单中单击“新算例”按钮。 在左侧特征管理树中出现如图4所示的对话框。 3)在“名称”栏中,可输入你所想设定的分析算例的名称。在“类型”栏中,我们可以清楚地看到SolidWorks Simulation所能进行的分析种类,这里我们选择的是“静态”按钮。在上述两项设置完成后单击“确定”按钮(确定按钮在特征树的左上角及绘图区域的右上角各有一个)。我们可以发现,插件的命令管理器发生了变化,如图5所示。

箱梁的结构与受力特点

(二)箱形截面的配筋 箱形截面的预应力混凝土结构一般配 有预应力钢筋和非预应力向普通钢筋。 1、纵向预应力钢筋:结构的主要受力 钢筋,根据正负弯矩的需要一般布置在顶板 和底板内。这些预应力钢束部分上弯或下弯 而锚于助板,以产生预剪力。近年来,由于 大吨位预应力束的采用,使在大跨径桥梁设 计中,无需单纯为了布置众多的预应力束而 增大顶板或底板面积,使结构设计简洁,而 又便于施工。 2、横向预应力钢筋:当箱梁肋板间距 厚的桥面板。的上、下两层钢筋网间,锚固于悬臂板端。 3时,可布置竖向预应力钢筋,面桥梁都采用三向预应力。 4 钢筋网。必须指出,因此必须精心设计,做到既安全又经济。 第二节 箱形梁的受力特点 作用在箱形梁上的主要荷载是恒载与活载。恒载 一般是对称作用的,活载可以是对称作用,但更多的 情况是偏心作用的,因此,作用于箱形梁的外力可综 合表达为偏心荷载来进行结构分析; 在偏心荷载作用下,箱形梁将产生纵向弯曲、扭 转、畸变及横向挠曲四种基本变形状态。详见图2-4。 1、纵向弯曲 产生竖向变位w ,在横截面上起纵向正应力M σ及剪应力M τ。对于肋距不大的箱形梁,M σ按初等梁 理论计算,当肋距较大时,会出现所谓“剪力滞效应”。 即翼板中的M σ分布不均匀,近肋翼板处产生应力高 βα+= 刚性扭转 横向挠曲 图2-4 箱形梁在偏心荷载 作用下的变形状态

峰,而远肋翼板处则产生应力低谷,这称为“正剪力滞”;反之,如果近肋翼板处产生应力低谷,而远肋翼板处则产生应力高峰,则为“负剪力滞”。对于肋距较大的宽箱梁,这种应力高峰可达相当大比例,必须引起重视。 2、刚性扭转 刚性扭转即受扭时箱形的周边不变形。扭转产生扭转角θ。分自由扭转与约束扭转。 (1)自由扭转:箱形梁受扭时,截面各纤维的纵向变形是自由的,杆件端面虽出现凹凸,但纵向纵维无伸长缩短,能自由翘曲,因而不产生纵向正应力,只产生自由扭转剪应力K τ。 (2)约束扭转:受扭时纵向纤维变形不自由,受到拉伸或压缩,截面不能自由翘曲。约束扭转在截面上产生翘曲正应力w σ和约束扭转剪应力w τ。 产生约束扭转的原因:支承条件的约束,如固端支承约束纵向纤维变形;受扭时截面形状及其沿梁纵向的变化,使截面各点纤维变形不协调也将产生约束扭转。如等厚壁的矩形箱梁、变截面梁、设横隔板的箱梁等,即使不受支承约束,也将产生约束扭转。 3、畸变(即受扭时截面周边变形) 畸变的主要变形特征是畸变角γ。薄壁宽箱的矩形截面受扭变形后,无法保持截面的投影仍为矩形。畸变产生翘曲正应力dw σ和畸变剪应力dw τ。 4、横向弯曲:畸变还会引起箱形截面各板的横向弯曲,在板内产生横向弯曲应力dt σ (纵截面上)。 5、局部荷载的影响:箱形梁承受偏心荷载作用,除了按弯扭杆件进行整体分析外,还应考虑局部荷载的影响。车辆荷载作用于顶板,除直接受荷载部分产生横向弯曲外,由于整个截面形成超静定结构,因而引起其它各部分也产生横向弯曲。图2-5表示箱形截面在顶板上作用车辆荷载,在各板中产生横向弯矩图。这些弯矩在各板的纵截面上产生横向弯曲正应力c σ及剪应力。 综合箱形梁在偏心荷载作用下产生的应力有: 在横截面上:纵向正应力:dw w M z σσσσ++= 剪应力:dw w M K τττττ+++= 在纵截面上;横向弯曲正应力:c dt s σσσ+= 在预应力混凝土梁中,跨径越大,恒载占总荷载比例就越大。一般地,由于恒载产生的对称弯曲应力是主要的,而由于活载偏心所产生的扭转应力是次要的。如果箱壁较厚,或沿梁的纵向布置一定数量的横隔板,限制箱形梁的畸变,则畸变应力也是不大的。但对于少设或不设横隔板的宽箱薄壁梁,畸变应力不可忽视。板的横向应力对于顶板、肋板及底板的配筋具有重要意义,必须引起重视。 图2-5 局部荷载作用下 横向弯矩图

测试题-弯曲应力(答案)

班级: 学号: 姓名: 《工程力学》弯曲应力测试题 一、判断题(每小题2分,共20分) 1、弯曲变形梁,其外力、外力偶作用在梁的纵向对称面内,梁产生对称弯曲。 ( √ ) 2、铁路的钢轨制成工字形,只是为了节省材料。 ( × ) 3、为了提高梁的强度和刚度,只能通过增加梁的支撑的办法来实现。 ( × ) 4、中性轴是中性层与横截面的交线。 ( √ ) 5、最大弯矩M max 只可能发生在集中力F 作用处,因此只需校核此截面强度是否满足梁的 强度条件。 ( × ) 6、大多数梁只进行弯曲正应力强度校核,而不计算弯曲切应力,这是因为他们横截面上只有正应力存在。 ( × ) 7、抗弯截面系数仅与截面形状和尺寸有关,与材料种类无关。 ( √ ) 8、矩形截面梁,若其截面高度和宽度都增加一倍,则强度提高到原来的16倍。 ( × ) 9、在梁的弯曲正应力公式中,I z 为梁截面对于形心轴的惯性矩。 ( √ ) 10、梁弯曲最合理的截面形状,是在横截面积相同条件下W z 值最大的截面形状。 ( √ ) 二、单项选择题(每小题2分,共20分) 1、材料弯曲变形后( B )长度不变。 A .外层 B .中性层 C .内层 2、梁弯曲时横截面上的最大正应力在( C )。 A. 中性轴上 B. 对称轴上 C. 离中性轴最远处的边缘上 3、一圆截面悬臂梁,受力弯曲变形时,若其它条件不变,而直径增加一倍,则其最大正 应力是原来的( A )倍。 A. 8 1 B. 8 C. 2 D. 2 1 4、图示受横力弯曲的简支梁产生纯弯曲变形的梁段是( D ) A. AC 段 B. CD 段 C. DB 段 D. 不存在 5、由梁弯曲时的平面假设,经变形几何关系分析得到( C ) A. 中性轴通过截面形心 B. 梁只产生平面弯曲; C. y ερ=; D. 1z M EI ρ= 6、图示的两铸铁梁,材料相同,承受相同的载荷F 。当F 增大时,破坏的情况是( C )。 A. 同时破坏 B.(a )梁先坏 C. (b )梁先坏 D. 无法确定 7、T 形截面的梁,两端受力偶矩M e 作用,以下结论哪一个是错误的。( D ) A. 梁截面的中性轴通过形心; B. 梁的最大压应力出现在截面的上边缘; C. 梁的最大压应力与最大拉应力数值不等; D. 梁内最大压应力的值(绝对值)小于最大拉应力。

《杆件的四种基本变形及组合变形、 直杆轴向拉、压横截面上的内力》教学设计

《杆件的四种基本变形及组合变形、 直杆轴向拉、压横截面上的内力》教学设计 剪切变形的受力特点是作用在构件上的横向外 力大小相等、方向相反、作用线平行且距离很近。 剪切变形的变形特点是介于两横向力之间的各 截面沿外力作用方向发生相对错动。 剪切面是指两横向力之间的横截面,破坏常在 剪切面上发生。 扭转变形的受力特点:在垂直于杆轴线的平面 内,作用有大小相等、转向相反的一对力偶。 扭转变形的变形特点:各横截面绕杆轴线发生

2.剪切 【工程实例】如图a所示为一个铆钉连接的简图。钢板在拉力F的作用下使铆钉的左上侧和右下侧受力(图b),这时,铆钉的上、下两部分将发生水平方向的相互错动(图c)。当拉力很大时,铆钉将沿水平截面被剪断,这种破坏形式称为剪切破坏。 3. 扭转 用改锥拧螺钉时,在改锥柄上手指的作用力构成了一个力偶,螺钉的阻力在改锥的刀口上构成了一个方向相反的力偶,这两个力偶都作用在垂直于杆轴的平面内,就使改锥产生了扭转变形,如图a所示。 例如汽车的转向轴(图b)。当驾驶员转动方向盘时,相当于在转向轴A端施加了一个力偶,与此同时,转向轴的B端受到了来自转向器的阻抗力偶。于是在轴AB的两端受到了一对大小相等、转向相反的力偶作用,使转向轴发生了扭转变形。 扭转角的概念,如图

3.2直杆轴向拉、压横截面上的内力内力的概念 轴力的计算 )轴力 为了显示并计算杆件的内力,通常采用截面法。假设用一个截面m-m (图a )将杆件“切”成左右两部分,取左边部分为研究对象(图b ),要保持这部分与原来杆件一样处于平衡状态,就必须在被切开处加上,这个内力F N 就是右部分对左部分的作用力。在轴向拉(压)杆中横截面中的内力称为由于直杆整体是平衡的,左部分也是平衡的,对这部分建立平衡方程: =0 0=-N F F 若取右部分为研究对象,则可得 0='-N F F 可以看出,取任一部分为研究对象,都可以得到相同的结果,其实F N 与F ′N 是一对作用力与反作用力,其数值必然相等。

相关文档
最新文档