基于大数据分析的精准营销
基于大数据的精准营销策略研究

基于大数据的精准营销策略研究在当今数字化时代,大数据已经成为企业营销领域的重要资源。
通过对海量数据的分析和挖掘,企业能够更加精准地了解消费者的需求、行为和偏好,从而制定更加有效的营销策略。
本文将探讨基于大数据的精准营销策略,包括其优势、实现方式以及面临的挑战。
一、大数据为精准营销带来的优势1、更精准的目标客户定位大数据能够整合来自多个渠道的信息,如消费者的购买记录、浏览行为、社交媒体活动等,从而构建出全面的客户画像。
企业可以根据这些画像,准确地识别出潜在的目标客户群体,将营销资源集中投放在最有可能产生购买行为的客户身上,提高营销效果。
2、个性化的营销内容基于大数据对客户的深入了解,企业能够为每个客户提供个性化的营销内容。
例如,根据客户的兴趣、偏好和购买历史,推送符合其需求的产品推荐、优惠信息和定制化的广告,增加客户对营销活动的关注度和参与度。
3、实时优化营销策略大数据能够实时监测营销活动的效果,企业可以根据数据分析结果及时调整营销策略。
例如,如果某个广告渠道的转化率较低,企业可以立即减少在该渠道的投入,将资源转移到效果更好的渠道上;如果某种营销活动的响应率不高,可以迅速调整活动内容和形式,以提高效果。
4、提高客户满意度和忠诚度通过精准的营销,客户能够得到真正符合其需求的产品和服务,从而提高客户满意度。
同时,个性化的关怀和服务也能够增强客户对企业的忠诚度,促进客户的重复购买和口碑传播。
二、基于大数据实现精准营销的方式1、数据收集与整合要实现精准营销,首先需要收集大量的相关数据。
这些数据来源广泛,包括企业内部的销售数据、客户关系管理系统中的数据,以及来自外部的社交媒体数据、搜索引擎数据、第三方数据提供商的数据等。
然后,通过数据清洗、转换和整合,将这些分散的数据集中到一个统一的数据平台上,以便进行分析和挖掘。
2、数据分析与挖掘运用数据分析和挖掘技术,如聚类分析、关联规则挖掘、预测分析等,从海量数据中提取有价值的信息。
基于大数据分析的互联网精准营销系统设计

基于大数据分析的互联网精准营销系统设计在互联网时代,精准营销已成为企业获取竞争优势的重要手段。
然而,传统的营销方式往往只能依靠经验和直觉进行决策,效果难以量化和评估。
随着大数据技术的快速发展,利用大数据分析进行互联网精准营销已成为一种前沿的营销方式。
本文将介绍基于大数据分析的互联网精准营销系统的设计,以帮助企业更好地利用大数据实现精准营销。
1. 系统背景:随着互联网技术的发展,消费者获取信息的途径大幅增加,传统的广告和宣传手段的效果逐渐减弱。
基于大数据的互联网精准营销系统可以通过分析消费者行为和偏好,精确定位潜在客户群体,将营销资源投放到最有价值的目标客户身上,提高营销效果。
2. 系统架构:基于大数据分析的互联网精准营销系统应包括以下几个核心模块:2.1 数据收集与存储系统需要通过多种渠道收集用户数据,包括网站点击、社交媒体互动、搜索记录等,确保数据的全面性和准确性。
收集的数据需要经过清洗和去重处理后存储在可扩展的数据库中,以供后续的分析和挖掘。
2.2 用户画像构建用户画像是大数据精准营销的基础,通过对大量用户数据进行分析和挖掘,将用户分成不同的群体,并针对不同群体的用户进行个性化推荐和营销。
用户画像的构建可以利用机器学习算法,自动识别用户特征和行为习惯,进行分类和相似度计算。
2.3 数据分析与模型建立对于海量的用户数据,系统需要利用数据挖掘和机器学习算法进行分析,识别出用户的行为模式、偏好和潜在需求。
通过建立推荐模型和预测模型,可以提供个性化的产品推荐和销售预测,为企业的精准营销决策提供支持。
2.4 营销资源投放与效果评估根据用户画像和模型预测结果,系统可以确定最合适的营销资源投放方式,包括广告投放、促销活动等。
同时,系统需要对营销活动的效果进行监测和评估,通过分析用户行为变化和销售数据,及时调整营销策略,提高营销效果。
3. 系统特点:基于大数据分析的互联网精准营销系统具有以下几个特点:3.1 精准度高通过对大量用户数据进行分析和建模,系统可以准确地识别用户的需求和行为习惯,为企业提供个性化的营销方案,提高营销成功的概率和回报。
大数据分析在精准营销中的应用

大数据分析在精准营销中的应用随着互联网的发展,大数据分析逐渐成为企业决策和营销之中的重要部分。
大数据分析能够通过收集、处理和分析大量的数据,提高企业的效率和利润。
其中,精准营销是大数据分析最为重要的应用之一。
大数据分析的本质是将数据转化为可用信息,然后基于这些信息进行决策。
在传统营销中,推广活动通常都是针对广大消费者群体的,效果难以控制和预测。
而大数据分析可以帮助企业找到潜在的目标客户,并进行个性化的营销活动,从而提高营销效果和ROI(投资回报率)。
在精准营销中,大数据分析主要有以下几个应用:1.消费者画像对于任何一家企业而言,了解其目标客户是至关重要的。
而消费者画像能够帮助企业更深入地了解目标客户,并针对其兴趣、需求和行为制定营销策略。
消费者画像包括消费者的年龄、性别、地点、工作、教育背景、生活习惯等重要信息。
通过大数据分析,企业可以对这些信息进行收集和整合,并能够发现潜在的消费者偏好和需求,从而更加精确地制定营销策略。
2.预测消费者需求大数据分析可以对消费者的历史购买记录、浏览行为以及社交媒体数据进行分析,从而预测消费者的未来需求。
企业可以通过这些信息来了解消费者的兴趣、需求和购买决策过程,并据此进行个性化的产品推荐和定制服务。
3.定向广告投放传统广告通常都是面向广大消费者群体,而定向广告可以更加精准地投放到目标客户中。
大数据分析可以帮助企业营销人员根据消费者的标签、位置和行为等因素来制定广告推送策略。
例如,当消费者在搜索某种特定的产品时,企业可以通过搜索引擎广告的方式将与其搜索词相关的广告推送给其。
这样一来,不仅可以提高广告投放的转化率,还能节省广告投放的成本。
4.增强客户忠诚度企业也可以通过大数据分析来增强客户忠诚度。
营销人员可以基于消费者画像和购买历史数据,向客户提供有价值的产品建议和升级服务。
另外,在消费者投诉或退款等情况下,企业也可以通过大数据分析来及时处理问题,提高客户满意度。
总之,大数据分析在精准营销中是非常有用的应用之一。
银行利用大数据精准营销案例

银行利用大数据精准营销案例
银行利用大数据精准营销案例:
案例一:信用卡精准营销
某银行在大数据分析的基础上,对客户进行了细致的划分,并针对每个客户群体进行了个性化的信用卡推广。
通过分析客户的消费行为、收入水平、购物偏好等数据,银行能够准确判断客户的信用卡需求,并通过不同的营销策略和优惠政策,精准地向客户推广最适合他们的信用卡产品。
这种精准营销的方法有效地提高了信用卡申请和使用的转化率,减少了无效推广的成本。
案例二:个人贷款精准营销
一家银行利用大数据分析客户的收入、消费记录、负债情况等数据,通过对客户信用评估模型的建立和优化,能够准确判断客户的还款能力和还款意愿。
基于这些数据,银行可以精确地推送个性化的贷款产品和服务给具有还款能力和意愿的客户,同时排除高风险客户。
这种精准营销提高了贷款的审批效率,同时降低了违约风险。
案例三:理财产品推广
某银行利用大数据分析客户的投资偏好、风险承受能力、资金规模等数据,根据客户的风险评级,精准地推送符合客户风险偏好和收益预期的理财产品。
同时,银行还结合客户的投资目标和期限需求,推送个性化的投资组合和资产配置方案。
这种精准的理财产品推广提高了客户的投资回报率,增强了客户对银行的满意度。
总的来说,银行借助大数据技术能够更好地了解客户的需求和行为,准确地判断客户的风险和潜力,从而精准地推送个性化的产品和服务。
这种精准营销能够提高客户转化率、降低营销成本,为银行带来更大的利润和市场竞争力。
如何通过大数据分析实现精准营销

如何通过大数据分析实现精准营销随着互联网的快速发展和智能设备的普及,大数据分析已经成为企业实现精准营销的重要工具。
通过对海量数据的收集、整理和分析,企业可以更好地了解消费者的需求和行为,从而制定更精准的营销策略。
本文将介绍如何通过大数据分析实现精准营销的方法和步骤。
一、数据收集要实现精准营销,首先需要收集大量的数据。
数据的来源可以包括企业内部的销售数据、客户数据,以及外部的市场调研数据、社交媒体数据等。
企业可以通过建立客户关系管理系统(CRM)、购物网站、社交媒体平台等渠道来收集数据。
此外,还可以通过与第三方数据提供商合作,获取更多的数据资源。
二、数据整理与清洗收集到的数据往往是杂乱无章的,需要进行整理和清洗,以便后续的分析工作。
数据整理包括数据的分类、归档和标注等工作,清洗则是指对数据中的错误、重复、缺失等问题进行修正和处理。
只有经过整理和清洗的数据才能为后续的分析工作提供准确可靠的基础。
三、数据分析数据分析是实现精准营销的核心环节。
通过对数据进行统计、挖掘和建模,可以发现消费者的行为模式、偏好和需求,从而为企业制定精准的营销策略提供依据。
常用的数据分析方法包括数据挖掘、机器学习、人工智能等。
企业可以利用这些方法来进行用户画像、购买预测、推荐系统等分析工作。
四、精准营销策略制定在数据分析的基础上,企业可以制定精准的营销策略。
根据消费者的需求和行为模式,企业可以进行个性化的产品推荐、定制化的营销活动等。
例如,通过分析用户的购买历史和浏览记录,企业可以向用户推荐符合其兴趣和需求的产品;通过分析用户的社交媒体行为,企业可以制定针对性的广告投放策略。
五、效果评估与优化精准营销的过程是一个不断迭代的过程。
企业需要对营销策略的效果进行评估和优化,以不断提升营销的精准度和效果。
通过对营销活动的数据进行监测和分析,企业可以了解到营销活动的效果如何,从而对策略进行调整和优化。
六、隐私保护在进行大数据分析的过程中,企业需要注意保护用户的隐私。
大数据精准营销的案例

大数据精准营销的案例摘要随着互联网技术的迅猛发展,大数据分析在精准营销领域发挥着越来越重要的作用。
本文将介绍几个应用大数据精准营销的案例,包括电商平台的个性化推荐、移动应用中的定位营销、社交媒体的社群分析等。
通过这些案例,可以看到大数据分析对于企业精准定位用户需求、提高营销效果的重要性。
引言在传统的营销方式中,企业通常采用批量群发的方式,将广告、优惠券等信息发送给所有用户。
然而,这种广泛覆盖的方式往往无法满足用户的个性化需求。
而大数据分析技术的出现,为企业提供了精准营销的手段。
大数据分析可以通过对海量数据的挖掘和分析,找到用户的兴趣、需求等信息,从而精准地服务用户。
电商平台的个性化推荐电商平台是大数据精准营销的典型应用场景之一。
通过对用户的浏览记录、购买记录等数据进行分析,电商平台可以了解用户的兴趣爱好、购买习惯等信息。
在此基础上,电商平台可以向用户推荐个性化的商品或促销活动。
比如,当用户搜索某一类商品时,电商平台可以根据其历史购买记录和行为特征,推荐相关的商品,从而提高用户的购买转化率。
移动应用中的定位营销移动应用中的定位营销也是大数据精准营销的重要应用之一。
通过获取用户的地理位置信息,移动应用可以向用户发送特定位置的优惠券、活动推广等信息。
例如,当用户进入某个商圈时,移动应用可以根据该商圈的特点,向用户推荐相关商家的促销活动。
这种通过定位信息进行精准推送的方式,可以提高用户的参与度和促销效果。
社交媒体的社群分析社交媒体也是大数据精准营销的重要应用领域之一。
社交媒体平台上的用户行为和社交关系可以提供丰富的数据源,通过分析这些数据,企业可以了解用户的兴趣、偏好等信息,从而进行精准营销。
社交媒体平台还可以根据用户的社交关系,构建用户社群,并通过社群分析,找到具有特定兴趣的用户群体。
通过向这些特定用户群体推送个性化的信息和广告,企业可以提高精准营销的效果。
结论大数据分析技术正在逐渐渗透到各个行业的精准营销中,提高了企业的竞争力和销售效果。
如何利用大数据分析进行精准营销

如何利用大数据分析进行精准营销近年来,大数据已经成为了营销领域的一个重要工具。
随着互联网和移动互联网的不断发展,人们的消费行为和消费习惯也在不断变化。
而精准营销正是在这样一个变化不断的环境下变得越来越重要。
那么,如何利用大数据分析进行精准营销呢?一、了解目标用户了解目标用户的需求和购买行为是精准营销的一个重要前提。
而大数据分析可以帮助企业收集并分析用户的消费数据和行为数据,进而深入了解用户的需求和兴趣。
这些数据可以包括用户的搜索历史、浏览记录、社交媒体等多个方面的数据。
通过这些数据,企业可以了解用户的兴趣爱好、购买偏好、消费习惯等,从而精准地定位目标用户。
二、制定邮件营销策略邮件营销一直是一种十分有效的营销方式。
而利用大数据分析,企业可以更加精准地制定邮件营销策略。
首先,企业可以根据用户的购买历史、消费能力等因素,将用户进行分组。
然后,针对不同分组的用户制定不同的邮件营销策略,从而提高邮件营销的精准度和效果。
三、实现个性化推荐个性化推荐是利用大数据分析实现精准营销的重要手段之一。
企业可以根据用户的浏览历史、搜索历史等数据,对用户做出个性化的推荐。
这些推荐可以包括商品推荐、服务推荐等内容,从而提高用户的体验,最终提高企业的转化率。
四、分析竞争对手分析竞争对手也是利用大数据分析的一项重要工作。
通过收集和分析对手的营销数据,企业可以了解竞争对手的营销策略、产品定位、定价策略等信息。
再结合自身的情况,企业可以进行优化和调整,从而提高自身的市场竞争力。
五、实现实时监测利用大数据分析,企业可以实现实时监测,并即时调整营销策略。
随着互联网时代的到来,市场变化非常迅速,如果不能及时调整营销策略,就有可能错失市场机会。
而利用大数据分析,企业可以对市场进行即时监测,并根据市场的变化进行及时调整,从而保障营销策略的精准性和实效性。
结论综上所述,利用大数据分析进行精准营销是一项十分重要的工作。
企业可以通过了解目标用户、制定邮件营销策略、实现个性化推荐、分析竞争对手和实现实时监测等方式,提高营销的精准度和效果,从而取得更好的市场表现。
基于大数据分析的精准营销策略研究与优化

基于大数据分析的精准营销策略研究与优化随着互联网和移动设备的普及,消费者日常生活中产生的数据量不断增加。
大数据分析对于企业来说,已经成为一种重要的战略资源。
通过对海量的数据进行分析和挖掘,企业可以更加深入地了解消费者的需求和行为习惯,为精准营销提供支持。
本文将研究并优化基于大数据分析的精准营销策略,旨在提高营销效果和客户满意度。
首先,我们需要明确什么是精准营销。
精准营销是一种通过对消费者进行精细化细分,针对性地提供个性化产品和服务的营销策略。
传统的营销策略往往是面向大众,但现在企业需要根据不同消费者的特征和需求,提供个性化的产品推荐、定价策略和沟通方式,以增加销售额和提高顾客满意度。
大数据分析在精准营销中起到了关键的作用。
通过对大数据的分析和挖掘,企业可以了解消费者的购买行为、喜好偏好和生活习惯等方面的信息。
例如,企业可以通过分析消费者的购买历史和浏览记录,得知消费者的偏好和购买意向,从而给予个性化的产品推荐。
同时,通过对社交媒体和在线论坛等渠道的数据分析,企业还能够洞察到消费者的需求和意见,及时调整产品和服务。
基于大数据分析的精准营销策略在以下几个方面可以进行研究和优化:1. 数据收集和整合:要进行精准营销,首先需要收集消费者的相关数据,并将其整合以形成全面的消费者画像。
这些数据可以来自不同的渠道,如销售记录、调查问卷、社交媒体和网站访问数据等。
优化数据收集和整合的过程,可以提高数据的质量和完整性,从而更准确地了解消费者的需求和偏好。
2. 消费者细分:通过大数据分析,可以将消费者按照不同的维度进行细分,例如年龄、性别、地理位置、购买行为等。
这样,企业可以更准确地了解每个细分群体的需求和购买行为,从而针对性地开展精准营销活动。
优化消费者细分的方法包括使用更精准的算法和模型,以及引入机器学习和人工智能技术。
3. 个性化推荐:通过大数据分析,企业可以根据消费者的历史购买记录和浏览行为,提供个性化的产品推荐。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第13期2018年7月No.13July,2018随着我国电子商务和移动支付的快速发展,手机已成为人们生活中必不可少的工具。
除了常规的通信功能外,手机还可以进行购物、支付、娱乐、学习和交流等。
因此,选择一个什么样的手机已经成为广大消费者注重要考虑的问题。
移动终端的普及,让数据分析随地可行。
大数据营销使得营销行动目标明确、可追踪、可衡量、可优化,从而造就了以数据为核心的营销闭环,营销行动得到良性循环[1]。
1 对数据进行描述性统计分析以网络上某一品牌手机为例,进行数据分析,调查用户的基本行为特征对手机购买的影响以及如何影响[2]。
首先对数据进行量化处理,进而建立主成分分析模型,得到影响用户购买手机的主要成分;最后,建立多项Logistic 回归模型,运用SPSS 对数据进行处理,计算出各个因素对影响购买手机的权重,用以研究各个因子是如何影响是否购买手机的[3]。
研究消费者的基本属性和个人偏好对购买手机的影响,从而得出精准营销策略[4]。
1.1 主成分分析模型首先,分析用户的个人偏好,发现并不是所有偏好都与用户对手机的购买有所关联,因此,建立主成分分析模型对用户的基本属性特征以及个人偏好进行主成分分析处理。
运用SPSS 软件对表格数据进行主成分分析处理,可得结果如表1所示。
已知表1中合计项为主成分,则可知主成分为年龄、性别、学历、职业、网络购物指数、网络活跃指数。
1.2 多项Logistic 回归模型Logistic 回归分析的因变量应是分类变量,并且包含顺序变量和名义变量。
不论是哪一种变量都要用数字来表示其取值。
自变量是数据型的连续变量,也可以使顺序型分类变量。
如果是名义变量,则需转化成哑变量来解决。
二值变量的Logistic 回归模型:假设因变量y 是一个取值为1和0二值变量(binary variable ),x 是一个影响y 的危险因子(risk factor )。
令在x 条件下y =1的概率是P =P (y =1|x ),则有表达式:exp()(1)11exp()x x e x p p y x e x αβαβαβαβ+++====+++(1)多元L ogistic 回归模型表达式如下:11221122exp()(1)1exp()k k k k x x x p p y x x x x αβββαβββ++++===+++++ (2)首先,对主成分分析模型计算出的主要因子进行集成处理,利用SPSS 软件进行多项Logistic 回归分析,将用户是否购买手机设为因变量y ,性别、年龄、学历、职业、网络购物指数和网络活跃指数为自变量x i (i =1,2,…,6),得出模型拟合信息与拟合优度(见表2—3)。
唐志晶,孙景浩,王执政,伍玉通,周书冉(河南师范大学,河南 新乡 453007)摘 要:随着互联网技术的发展,企业对手机的营销方面表现得更加重视。
现如今,借助大数据技术挖掘出用户在手机使用方面的热度,精准掌控消费者群体的喜好变迁,使得在消费者的需求不断增大的同时,品牌营销的策略也在不断变化。
随着我国电子商务和移动支付的快速发展,手机已成为了人们生活时必不可少的工具。
文章采用深度学习算法,构造主成分分析、多项Logistic 等模型,应用于各种类型的用户,将所得结果进行定量分析,提出合理化建议。
关键词:精准营销;个人偏好;主成分分析模型;多项Logistic 模型无线互联科技Wireless Internet Technology基于大数据分析的精准营销作者简介:唐志晶(1996— ),女,河南鹤壁人,本科生;研究方向:计算机科学与技术。
第13期2018年7月No.13July,2018通过读取模型拟合信息表的最后一列“显著性”可知,显著性值小于0.05,这说明模型具有统计意义,模型通过了初步检验;原假设模型能够很好地拟合原始数据,通过读取拟合优度表可知,最后一列Pearson 卡方显著性值为0.606,说明自变量与因变量呈强相关状态,因此,模型对原始数据的拟合通过检验。
进而对参数估计表进行分析,该表中B 列为自变量不同分类水平在模型中的相关系数,正负号表明它们与购买选择是呈正比还是反比关系。
其中第六列是瓦尔德检验显著性值,此值小于0.05说明对应自变量的系数具有统计意义,对因变量不同分类水平的变化有显著影响。
大学本科用户和大学专科用户相比,大学本科用户更倾向于购买此种手机,并且这种可能是与硕士及以上用户构成显著差异;手机的购买选择,被调查用户的网络购物指数和网络活跃指数介于501~1 000没有影响。
从而我们得到未购买的判别方程如式(3)所示:123456(0) 3.295i i i i i iP a b c d e f αααααα=−+++++(3)由于单一调查用户的各项数据只会出现在一个分段,所以上式的αi 就代表B 列中的相关系数,例如某用户的年龄为30,性别男,学历大学本科,则上式中α1为-0.013, αi 为30,α2为0,b i 为1,α3为0.232,d i 为1,以此类推。
2 精准营销分析精准营销的沟通对象不再是所有客户而是经过细分的目标客户,精准营销不仅仅是基于互联网的一种营销工具,不再仅仅依靠大众媒体,而是以社交平台、搜索引擎等分众媒体为主进行沟通,通过高效的互动,使得受众的接触度更直观,从而使实施效果可衡量、更精准。
精准营销的前提是精准定位。
只有运用基于用户行为的精准广告投放,才能精准地体现用户的爱好,给用户提供精准的个性化的服务。
做到精准营销要有精准的营销理念、对客户进行精准分析、对产品进行精准的市场定位、将产品精准投放到不同地区、提升客户的体验度、最后要对品牌进行精准的管理。
精准营销的前提是精准定位。
根据建立的挖掘模型对所查阅的数据进行处理后,得到100位潜在用户。
分析这100位用户的基本特征和行为偏好可知,购买手机概率高的用户,会选择在某购物平台上浏览、搜索不同手机品牌的信息,针对此现象,手机销售部门可以加大在此购物平台上的广告投放力度,再根据停留时间进一步分析可知,可以选择17:00-21:00时间段内为广告投放时间;同理即可分析出其他用户的爱好与广告投放之间的联系。
同时,手机宣传部门可以针对有不同购买概率的用户,进行广告投放力度的调整,包括投放时间长短、投放平台数量等因素。
就是说,可以针对购买概率极高的用户所在网络停留时间段和停留的购物平台,采取最大的广告投放力度,投放时间最长、投放数量最多;购买概率较高的用户,可以在上述投放力度上减小些,投放时间减短一些、投放数量减少些;对于购买概率相对较低的用户,可以采取最低的广告投放力度,时间最短,平台投放量最少。
3 结语该模型结合数据挖掘可应用于商品实现精准营销,以及在不同的网络平台上的广告投放问题,可帮助企业制定营销战略,定量分析出在什么合适的时间,什么合适的地点,把商品以合适的方式推销给那些合适的人。
亦可结合“大数据杀熟”策略,针对不同的用户,实现营销捆绑,兴趣牵制等目标。
[参考文献][1]金懿.大数据下的广告营销战略发展趋势[J].中国传媒科技,2013(14):39-40.[2]曲晓琳.大数据为精准营销铺路[J].经济论坛,2015(6):118-120.[3]李存琛.海量数据分布式存储技术的研究与应用[D].北京:北京邮电大学,2013.[4]玄文启.大数据背景下的网络营销模式[J].中国科技信息,2015(17):105-106.Accurate marketing based on big data analysisTang Zhijing, Sun Jinghao, Wang Zhizheng, Wu Yutong, Zhou Shuran(Henan Normal University, Xinxiang 453007, China )Abstract:With the development of Internet technology, companies have paid more attention to the marketing of mobile phones. Nowadays, the use of big data technology to excavate the user ’s popularity in the use of mobile phones, and accurately control the preferences of the consumer groups, making the consumer ’s needs constantly upgrade and change at the same time, brand marketing strategy is also rising. With the rapid development of e-commerce and mobile payment in China, mobile phones have become an indispensable tool for people. Deep learning algorithm is used to construct principal component analysis, multiple Logistic models, and applied to various types of users. The obtained results are quantitatively analyzed and rational marketing suggestions are proposed.Key words:precise marketing; personal preferences; principal component analysis model; multiple Logistic models 无线互联科技·科学管理。