最简二次根式和同类二次根式

合集下载

第十六章:二次根式

第十六章:二次根式

第十六章 二次根式.. 最简二次根式:① ; ② ; ③ . . . . ;文字语言: . ; 文字语言: . . ..①分母形如的二次根式.给分子、分母同时乘以 ;②分母形如.给分子、分母同时乘以 .2的区别与联系:例一:下列各式一定是二次根式的是()分析:判定一个代数式是否是二次根式,要看该式子是否同时具备两个要素:(1)含有二次根号;(2)被开方数是非负数.对应训练:1.下列各式中,一定是二次根式的是()A专题二:二次根式有意义的条件对于非负数x,如果有x2=a,那么x就是a的算术平方根,也是a在这里a是x的平方数,它的值是一个正数或零(因为任何数的平方都不可能是负数).由此得出:只有当a≥0时,.(1a≥0a<0.(2)从具体的情况总结,如下:a≥0; a≥0,n+有意义的条件: b≥0,…n≥0;a>0;1b有意义的条件:a≥0且b≠0;有意义的条件:a≥0且b>0.例二:当x是怎样的实数时,下列各式在实数范围内有意义?(1;(2(3;(4;(5(6分析:对于含有二次根式和分式的式子,求其有意义的条件时:首先找出二次根式的被开方数,根据二次根式的被开方数为非负数列不等式,其次找分式的分母,根据分母不为0,列出所需的不等式,将这些不等式组成不等式组,不等式组的解集就是字母的取值范围.解:(1)13103x x-≥≥当,即.(4)32301012x x x x+≥+>≥->-当,且,即且.对应训练:1.x的取值范围是()A、x>3B、x≥3C、 x>4 D 、x≥3且x≠42.x的取值范围是 .3.有意义,那么,直角坐标系中点P(m,n)的位置在()A、第一象限B、第二象限C、第三象限D、第四象限例三:若y=++2009,则x+y=分析:式子(a ≥0), ,y=2009,则x+y=2014对应训练:1.,则x -y 的值为( ) A .-1 B .1 C .2 D .3 2.若x 、y 都是实数,且4,求xy 的值3.当a 1取值最小,并求出这个最小值.专题四:二次根式的整数部分与小数部分例四:已知a b 是12a b ++的值. 分析:因为23<<2,即a=2;其小数部分等于此数本身减去其整数部分,即对应训练:1.若3的整数部分是a ,小数部分是b ,则=-b a 3 。

二次根式的加减法

二次根式的加减法

二次根式的加减法一、知识概述 1、同类二次根式、同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式.同类二次根式与整式中的同类项类似.类二次根式.同类二次根式与整式中的同类项类似. 2、二次根式的加减法法则、二次根式的加减法法则二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.根式进行合并.注意:(1)二次根式的加减常分为两大步骤进行,第一步化简;第二步合并;二次根式的加减常分为两大步骤进行,第一步化简;第二步合并; (2)在合并前应注意要先判断清楚它们中哪些二次根式的被开方数是相同的;在合并时类似于以前学过的合并同类项,只需将根号外的因式进行加减,被开方数和根指数不变.变.3、二次根式的混合运算、二次根式的混合运算二次根式的混合运算顺序与有理数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).注意:(1)在运算过程中,每一个根式可以看作是一个“单项式”,多个被开方数不同的二次根式的和可以看作“多项式”;(2)有理数(或整式)中的运算律、运算法则及所有的乘法公式在二次根式的运算中仍然适用;然适用;(3)二次根式的运算结果必须是最简二次根式.二次根式的运算结果必须是最简二次根式. 二、重难点知识1、二次根式的加减法运算实质上是合并同类二次根式,在进行二次根式的加减法时,注意先把各个二次根式化为最简二次根式,再把同类项合并,合并同类二次根式的方法与合并同类项类似.与合并同类项类似.2、二次根式的混合运算中可以与有理数的混合运算及整式的混合运算及分式的运算作比较,使二次根式的混合运算易于理解和掌握,并能合理应用运算律及技巧进行计算.二次根式的除法运算转化为分母有理化的问题,同时可避免错误地使用运算律.次根式的除法运算转化为分母有理化的问题,同时可避免错误地使用运算律. 三、典型例题讲解 例1、计算:、计算:.分析:本组题中各个加数都不是最简二次根式,因此需先进行化简,然后再把被开方数相同的根式进行合并.相同的根式进行合并.解:.例2、计算:、计算:分析:先根据去括号的法则,去掉括号,再进行二次根式的加减运算.先根据去括号的法则,去掉括号,再进行二次根式的加减运算.总结:解此类问题分为三个步骤:一是去括号,二是化简,三是合并,但在去括号时应注意符号的处置.时应注意符号的处置. 例3、计算下列各题:、计算下列各题:.思路:(1)题可仿照单项式乘以多项式的方法进行计算;(2)、(3)题可仿用多项式乘题可套用完全平方公式计算.法法则进行计算;(4)题可套用完全平方公式计算.、计算下列各题例4、计算下列各题.解:化简:例5、化简:总结:在计算过程中要注意各个式子的特点,能否约分或消项(第2小题)达到化简的目的,又要善于在规则允许的情况下可交换相邻项的位置,如,结果为-1,继续运算易出现符号上的差错,而把变为,这样,继续运算可避免错误.则为1,继续运算可避免错误.例6、已知x、y都为正整数,且.求x+y的值.的值.分析:因为只有化简后被开方数相同的二次根式才能合并,而,易知化简后的被开方数必为222,故可设.由此求出正整数a 、b 即可求出x 、y .解:,于是,于是即a +b =3∴a=2,b=1或a=1,b=2,故x=222,y=888或x=888,y=222. ∴x +y=1110,总结:几个二次根式化简后被开方数相同,则它们可以合并,本题则是逆用该结论,即几个二次根式能合并成一个二次根式,则它们化简后的被开方数必相同.即几个二次根式能合并成一个二次根式,则它们化简后的被开方数必相同.课外拓展:例、已知a 、b 是实数,且,问a 、b 之间有怎样的关系?请推导.样的关系?请推导. 思路分析:由特殊探求一般,在证明一般性的过程中,由因导果,从化简条件等式入手,而化简的基本方法是有理化.简的基本方法是有理化.解:原等式两边分别乘以,得两式相加得,所以.A 卷一、选择题1、下列计算结果正确的是、下列计算结果正确的是( ( ( ) )A .B .C .D .2、下列计算正确的是、下列计算正确的是( ( ( ) )A .B .C .D .3、下列各式化简结果不正确的是(、下列各式化简结果不正确的是( )A .B .C .D .4、下列计算正确的是(、下列计算正确的是( )A .B .C .D .5、计算等于(等于( )A .·1 1B .3C .D .6、在数轴上点A 表示实数,点B 表示,那么离原点较远的点是(,那么离原点较远的点是( )A .A AB .BC .A 、B 的中点的中点D .不能确定.不能确定B 卷二、填空题7、△、△ABC ABC 的三边长为a 、b 、c ,且a 、b 满足则△则△ABC ABC 的周长的取值范围是取值范围是__________________..8、若成立,则xy 的值为的值为__________________..9、若,则____________..1010、已知正数、已知正数a 、b ,有下列结论:,有下列结论:(1)(1)若若a=1a=1,,b=1b=1,则,则;(2)(2)若若,则;(3)(3)若若a=2a=2,,b=3b=3,则,则;(4)(4)若若a=1a=1,,b=5b=5,则,则.根据以上几个命题提供的信息,请猜想:根据以上几个命题提供的信息,请猜想:若a=6a=6,,b=7b=7,则,则____________..三、解答题1111、计算或化简下列各题:、计算或化简下列各题:、计算或化简下列各题:1212、计算:、计算:、计算:1313、已知、已知,求代数式的值.的值.1414、计算、计算.[1515、先观察下列等式,再回答问题:、先观察下列等式,再回答问题:、先观察下列等式,再回答问题:(1)根据上面三个等式提供的信息,请猜想的结果,并进行验证;的结果,并进行验证; (2)请按照上面各等式反映的规律,试写出n (n 为正整数)表示的等式,并加以验证.验证.一.选择题一.选择题DDCBDB 二.填空题二.填空题7、△、△ABC ABC 的周长大于6且小于1010..8、由题意有x=2x=2,,y=3y=3,∴,∴,∴x x y =8=8..9、.1010、、=13=13..三.解答题三.解答题11.12.13..14. 解:(1)配方法:本题中的根式不符合型,我们可根据分式的基本性质,分子、分母都乘以2,将原式变形为(2)换元法:设,两边同时平方得两边同时平方得,所以x2=10,又因为x>0,所以,即.15.。

浙教版2022-2023学年数学八年级下册第1章二次根式1

浙教版2022-2023学年数学八年级下册第1章二次根式1

浙江版2022-2023学年度下学期八年级数学下册第1章二次根式1.3 二次根式的运算(2)【知识重点】一、同类二次根式:1.定义:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.2.注意:一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式. 要判断几个根式是不是同类二次根式,须先化简根号里面的数或因式,把非最简二次根式化成最简二次根式,然后判断.3.同类二次根式合并法则:“同类二次根式相加减,根式不变,系数相加减”. 二、二次根式的运算法则:实数的混合运算顺序与有理数的混合运算顺序相同,而且有理数的运算法则、运算律以及运算公式在实数范围内仍然适用.【经典例题】【例1】若最简二次根式√x 2+3x 与√x +15是同类二次根式,则x 的值是 .【例2】如果最简根式 √3a −8 与√17−2a 是同类二次根式,那么使√4a −2x 有意义的x 的取值范围是( ) A .x≤10 B .x≥10 C .x <10 D .x >10 【例3】计算:(1)(√27−3√13)÷√3×√20−(2+√5)2.(2)√8+√32−(√2−4√12)【例4】a=1√2−1,b=1√2+1,则a +b −ab 的值是 .【例5】已知x =5−√17√17−3,y =√17−35−√17,则4x 2−3xy +4y 2= .【基础训练】1.若最简二次根式√x +3与最简二次根式√2x 是同类二次根式,则x 的值为( ) A .x =0 B .x =1 C .x =2 D .x =3 2.已知二次根式√32−a 与√8化成最简二次根式后,被开方数相同,则符合条件的正整数a 有( ) A .1个 B .2个 C .3个 D .4个 3.计算 4√12+3√13−√8 的结果是( )A .√3+√2B .√3C .√33D .√3−√24.化简 √12−√0.5−√13+√18 的结果是 .5.若最简二次根式√2−3a 与√2a +7可以合并,则a 的值为 .6.已知x ,y 是两个不相等的有理数,且满足等式(3√2−1)x =3−√2y ,则x = ;y = .7.计算(1)√12−√127+√48(2)√24 × √13 -4× √18 ×(1- √2 )0-( √23)-1(3)(2 √48 -3 √27 )÷ √3 -( √2 - √3 )28.计算:(1)√48÷√3-√12×√12+√24;(2)√8-18√48-(23√412-2√34);(3)(2-√3)2017×(2+√3)2016-2|−√32|-(-√2)0(4)(a +2√ab +b )÷(√a +√b )-(√b -√a ).【培优训练】9.下列二次根式中,同类二次根式是( )A .√81ab 3和3√a 316bB .√4a 2b 和和√2abC .√a 3bc 和和√bcD .√a 3+b 2和和√a 2+b 3 10.我们知道6−√2的小数部分b 为2−√2,如果用a 代表它的整数部分,那么ab 2−a 2b 的值是( ) A .8 B .-8 C .4 D .-4 11.已知x 为实数,化简√−x 3−x √−1x的结果为( )A .(x −1)√−xB .(−1−x )√−xC .(1−x )√−xD .(1+x )√−x 12. 化简 −√−a +√−a 3−a √−1a= .13.已知:m+n =10,mn =9,则 √m−√n√m+√n= .14.先化简,再求值: [4(√x+√y)(√x−√y)+√x+√y √xy(√y−√x)]÷√x−√y √xy,其中x =1,y =2.15.若x,y为实数,且y=√1−4x+√4x−1+12.求√xy+2+yx-√xy−2+yx的值.16.已知:x=√3+√2√3−√2,y=√3−√2√3+√2,求x3−xy2x4y−2x3y2+x2y3的值.17.计算(√a+b−√ab√a+√b )÷(a√ab+b+b√ab−a-a+b√ab)(a≠b).18.已知函数y=kx,其中x>0,且满足√xy−y√xy−x +3=0.(1)求k;(2)求√xy−3yx+2√xy+y的值.19.观察下列格式,√5−12-√5−1,√8−222√8−2,√13−322√13−3,√20−422√20−4…(1)化简以上各式,并计算出结果;(2)以上格式的结果存在一定的规律,请按规律写出第5个式子及结果(3)用含n(n≥1的整数)的式子写出第n个式子及结果,并给出证明的过程.20.先阅读,再解答问题:恒等变形,是代数式求值的一个很重要的方法.利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.例如:当x =√3+1时,求12x 3−x 2−x +2的值.为解答这道题,若直接把x =√3+1代入所求的式中,进行计算,显然很麻烦,我们可以通过恒等变形,对本题进行解答.方法:将条件变形,因x =√3+1,得x −1=√3,再把等式两边同时平方,把无理数运算转化为有理数运算.由x −1=√3,可得x 2−2x −2=0,即x 2−2x =2,x 2=2x +2.原式=12x(2x +2)−x 2−x +2=x 2+x −x 2−x +2=2.请参照以上的解决问题的思路和方法,解决以下问题: (1)若x =√2−1,求2x 3+4x 2−3x +1的值;(2)已知x =2+√3,求x 4−x 3−9x 2−5x+5x 2−4x+3的值.21.如果记 y =x 1+x =f(x) ,并且 f(√1) 表示当 x =√1 时y 的值,即 f(√1)=√11+√1=12 ;f(√2) 表示当 x =√2 时y 的值,即 f(√2)=√21+√2; f(√12) 表示当 x =√12 时 y 的值,即 f(√12)=√12√12=√2+1;… (1)计算下列各式的值:f(√2)+f(√12)= .f(√111)+f(√1111)= .(2)当n 为正整数时,猜想 f(√n)+f(√1n) 的结果并说明理由;(3)求 f(√1)+f(√2)+f(√12)+f(√3)+f(√13)+⋅⋅⋅+f(√100)+f(√1100) 的值.【直击中考】22.计算:√12−2√3= .23.估计(2√5+5√2)×√15的值应在( )A.4和5之间B.5和6之间C.6和7之间D.7和8之间24.计算(√27+√18)(√3−√2)=;25.计算√24−√65×√45的结果是.26.计算:(√5+12−1)⋅√5+12=()A.0B.1C.2D.√5−1227.从√2,−√3,−√2这三个实数中任选两数相乘,所有积中小于2的有()个.A.0B.1C.2D.328.人们把√5−12这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a=√5−12,b=√5+12,则ab=1,记S1=11+a+11+b,S2=11+a2+11+b2,…,S10=11+a10+11+b10.则S1+S2+⋯+S10=.。

(完整版)第十六章二次根式知识点总结大全

(完整版)第十六章二次根式知识点总结大全

二次根式【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 25.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术平方根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(a≥0,b≥0);=(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.a (a >0)a -(a <0)0 (a =0);【典型例题】1、概念与性质例1、下列各式1)-,其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1)xx--+315;(2)22)-(x例3、在根式1) ,最简二次根式是()A.1) 2) B.3) 4) C.1) 3) D.1) 4)例4、已知:的值。

求代数式22,211881-+-+++-+-=xyyxxyyxxxy例5、已知数a,b,若=b-a,则( )A. a>bB. a<bC. a≥bD. a≤b2、二次根式的化简与计算例1. 将根号外的a 移到根号内,得 ( )A. ;B. -;C. -;D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()b a b b a a b ++++,其中a=512,b=512.例5、如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---4、比较数值 (1)、根式变形法当0,0a b >>时,①如果a b >>a b <<例1、 比较与(2)、平方法当0,0a b >>时,①如果22a b >,则a b >;②如果22a b <,则a b <。

二次根式的化简与计算

二次根式的化简与计算

二次根式的化简与计算【知识要点】1.最简二次根式:①被开方数的因数是整数,因式是整式即被开方数不含有分母。

②被开方数中不含有能开得尽方的因式或因数。

2.化为最简二次根式的方法:①把被开方数的分子、分母尽量分解出一些平方数或平方式;②将这些平方数或平方式,用它的算术平方根代替移到根号外;③化去被开方数中的分母。

3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,那么这几个二次根式叫做同类二次根式。

判断同类二次根式时,注意以下三点:①都是二次根式,即根指数都是2;②必须先化成最简二次根式;③被开方数相同。

4.二次根式的加减法:先把各根式化成最简二次根式,再合并同类二次根式。

合并同类二次根式的方法与合并同类项类似。

5.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。

有理化因式确定方法如下:=①单项二次根式:利用a理化因式。

②两项二次根式:利用平方差公式来确定。

如a与a,,6.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;③最后结果必须化成最简二次根式或有理式。

7.二次根式的混合运算:①二次根式的混合运算的运算顺序与有理式的混合运算的顺序相同;②在二次根式的混合运算中,有理式的运算法则、定律、公式等同样适用。

【典型例题】例1 解答下列各题:(1)下列根式中,哪些是最简二次根式?哪些不是?为什么?,(其中0x >,0y >)。

(2)下列根式中,哪些是同类二次根式?为什么?(题中字母都为正数)2x ,127,(3)如果最简根式,m +m ,n 的值。

例2 计算下列各题:(1)⎛- ⎝ (2)-⎝(3例3 (1)把下列各式分母有理化:)a b ≠(2)把下列各式化简:练 习A 组1.下列各式正确的是( )A ===B =C a b =+D =2.下列各式正确的是( )A =B ()230,0a b a b =><C = D== 3.在下列二次根式中,若0,0a b >>,则属于最简二次根式的是( )A B C D4 ) A .4x < B .1x ≥ C .14x ≤< D .14x ≤≤5.化简的结果是( )A B .3 C . D .a6的相反数的倒数为 。

二次根式知识点归纳

二次根式知识点归纳

二次根式知识点归纳定义:一般的,式子a (a ≥0)叫做二次根式。

其中“”叫做二次根号,二次根号下的a 叫做被开方数。

性质:1、2≥0,等于a;a<0,等于-a3、45612789一.1.【05A.25 B.52 C.542.【05南京】9的算术平方根是(???).A.-3B.3C.±3D.813.【05南通】已知2x <,的结果是(???).A 、2x -B 、2x +C 、2x --D 、2x -4.【05泰州】下列运算正确的是(???).A .a 2+a 3=a 5B .(-2x)3=-2x 3C .(a -b)(-a +b)=-a 2-2ab -b 2D =5.【05无锡】下列各式中,与y x 2是同类项的是()A 、2xyB 、2xyC 、-y x 2D 、223y x6.【05武汉】若a ≤1,则化简后为(???). A.??B. C.???D.7.【05绵阳】化简时,甲的解法是:==,乙的解法是:,以下判断正确的是(???).A.甲的解法正确,乙的解法不正确B.甲的解法不正确,乙的解法正确C.甲、乙的解法都正确D.甲、乙的解法都不正确8.【05(A)a >9.【05A.8 10.【05A.2411.【05A.(-1)312.【05A 、x 213.【05A .114.【05 A 15.【05A .aa b ++b a b +=1B .1÷b a ×a b =1 C .21()a b +·22a b a b --=1a b +二、填空题1.【05连云港】计算:)13)(13(-+=.2.【05南京】10在两个连续整数a 和b 之间,a<10<b,那么a,b 的值分别是。

3.【05上海】计算:)11=4.【05嘉兴5.【05丽水】当a ≥0.6.【05南平=.7.【05漳州,2,(第n 个数).8.【05曲靖】在实数-2,31,0,-1.2,2中,无理数是. 9.【05黄石】若最简根式b a a +3与b a 2+是同类二次根式,则ab =.10.【05太原】将棱长分别为a cm 和bcm 的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为.(不计损耗)11.【05黄岗】立方等于–64的数是。

新沪科版八年级数学下册第16章《二次根式》精品课件

•8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/82021/11/82021/11/82021/11/8
梳理四.二次根的乘除
(1)、积的算术平方根的性质
a ba b (a 0 ,b 0 )
积的算术平方根,等于积中各因式的算 术平方根的积. (2)、二次根式的乘法法则
(5).既可表示开方运算,也可表示运算的 结果.
梳理二.二次根式的性质
(1). a0 ( a 0)
(2). ( a)2 a (a≥0, )
(3).
a2
a
{a,a0 a,a0
梳理三.代数式的定义
形如5,a,a b,ab, s , x2, 3, a(a≥ 0 )
t 的 式 子 , 它 们 都 是 用本基运 算 符 号 ( 基 本 运 算 包 括 加 、 减 、 乘除、、 乘 方 和 开 方 ) 把 数 和 表 示 数 的 字 母接连起 来 的 式 子 ,
则X的取值范围是___
9 计 算 (1): 0 2( 33)2 解:(1)0 2(33)2 1 0(3)2( 3)2 1027 17
10、式子 (a1)2 a1成立的条件
是( D )
A.a1
B.a1
C.a1 D.a1
11、已知三角形的三边长分别是a、b、c,
且 ac,那么 ca (acb)2
(3).判断几个二次根式是否是同类二次根式的关键是 将几个二次根式化成最简二次根式后,被开方数相同.
(4).二次根式的乘除运算可以考虑先进行被开方数的 约分问题,再化简二次根式,而不一定要先将二次
根式化成最简二次根式,再约分.
(5).对有关二次根式的代数式的求值问题一般应对已 知式先进行化简,代入化简后的待求式,同时还应注意 挖掘隐含条件和技巧的运用使求解更简捷.

二次根式的加减(知识讲解)-八年级数学下册基础知识专项讲练(沪科版)

专题16.7 二次根式的加减(知识讲解)【学习目标】1、理解并掌握同类二次根式的概念和二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;2、会利用运算律和运算法则进行二次根式的混合运算.【要点梳理】要点一、同类二次根式1.定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.特别说明:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关.2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的方法与整式加减运算中的合并同类项类似)特别说明:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式.要点二、二次根式的加减1.二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.特别说明:(1)在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.(2)二次根式加减运算的步骤:1)将每个二次根式都化简成为最简二次根式;2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;3)合并同类二次根式.要点三、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用.特别说明:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用;(3)二次根式混合运算的结果要写成最简形式.【典型例题】类型一、二次根式➽➼概念➽➼同类二次根式✭✭分母有理化1.判断下列二次根式中哪些是同类二次根式:举一反三:【变式1a的值.【点拨】本题考查同类二次根式,掌握同类二次根式的定义,即“被开方数相同的几个最简二次根式是同类二次根式”正确解答的前提.【变式2】分别求出满足下列条件的字母a的取值:(1)(2)2.【阅读材料】把分母中的根号化去,使分母转化为有理数的过程,叫做分母有理化.通常把分子、分母乘以同一个不等于0的式子,以达到化去分母中根号的目的..=【理解应用】(1) 化简: ∵∵ (2)2020++ 2020++【点拨】本题考查了分母有理化,正确的计算是解题的关键.举一反三:【变式1)3x x ≤【变式2【点拨】本题考查根式的运算,解题的关键是熟练掌握根式的运算及根式分母有理化.类型二、二次根式➽➼二次根式的加减运算-+-+.3.计算:38|32|12举一反三:【变式1】计算:6-【变式2】计算:(1)(2) )011+类型三、二次根式➽➼二次根式的混合运算4.计算下列各式.(1)1)举一反三:.【变式1|1【分析】先运用二次根式乘法法则计算,并化简二次根式,去绝对值符号,最后合并同类二次根式即可.【点拨】本题考查二次根式的混合运算,化简绝对值,熟练掌握二次根式的运算法则是解题的关键. 【变式2】计算:(1)1 (2))21+.类型四、二次根式➽➼二次根式的化简求值5.解答下列各题(1) 已知2x =,2y =.求22x xy y ++的值.(2) 若2y =,求y x 的平方根.【答案】(1) 19; (2) 3±.【分析】(1)分别求出22,,x y xy ,再代入到代数式求值即可;举一反三:【变式1】已知x =y 22205520x xy y ++的值.【点拨】本题主要考查了分母有理化,正确化简各数是解题关键.【变式2】已知3x =+3y =-(1) x y +=______;x y -=______;xy =______.(2) 根据以上的计算结果,利用整体代入的数学方法,计算式子223x xy y x y -+--的值.【点拨】本题考查了二次根式的化简求值问题,正确对所求式子变形是解本题的关键.类型五、二次根式➽➼应用6.阅读材料并回答问题肖博睿同学发现如下正确结论:材料一:若0A B ->,则A B >;若0A B -=,则A B =;若0A B -<,则A B <;材料二:完全平方公式:(1)()2222a ab b a b ++=+;(2)()2222a ab b a b -+=-.(1)(2) 2912x x ++___________()2______2=+;(3) 试比较142x x y ⎛⎫- ⎪⎝⎭与()2y x y -的大小(写出相应的解答过程). )解:又32>(322-)解:根据题意,)解:4又()22x y -142x x y ⎛- ⎝【点拨】本题考查利用作差法解代数式比较大小,整式混合运算、合并同类项、完全平方公式因式分解、平方式的非负性等知识,读懂材料,掌握作差法比较代数式大小的方法是解决问题的关键.举一反三:【变式1】设一个三角形的三边分别为a ,b ,c ,p =12(a +b +c ),则有下列面积公式:S S (1) 一个三角形的三边长依次为3,5,6,任选以上一个公式求这个三角形的面积;(2)任选以上一个公式求这个三角形的面积.解题的关键.【变式2】某居民小区有一块形状为长方形ABCD的绿地,长方形绿地的长BC为,宽AB,现要在长方形绿地中修建一个长方形花坛(即图中阴影部分),长方形花坛的长为m,宽为1)m.(1)长方形ABCD的周长是多少?(2)除去修建花坛的地方,其他地方全修建成通道,通通上要铺上造价为2元的地砖,5/m要铺完整个通道,则购买地砖需要花费多少元?答:购买地砖需要花费660元.【点拨】本题考查二次根式的应用,长方形的周长和面积,平方差公式.解题的关键是掌握二次根式的混合运算顺序和运算法则及其性质.。

最简二次根式和同类二次根式

最简二次根式和同类二次根式学习目标1.经历最简二次根式和同类二次根式的概括过程,体会比较与分析的思维方法;通过合并同类二次根式,体会类比与迁移的认知方法.2.理解最简二次根式的概念,会判别最简二次根式;会将非最简二次根式化为最简二次根式.3.理解同类二次根式的概念,会判断几个二次根式是否是同类二次根式.内容剖析知识点一 最简二次根式观察下列二次根式及其化简所得结果,比较每组两个二次根式里的被开方数前后发生了什么变化可以看到,化简后的二次根式里: (1)被开方数中各因式的指数都是1; (2)被开方数不含分母.被开方数同时满足上述两个条件的二次根式,叫做最简二次根式.如二次根式ab 3、42y x +、a bm 3等都是最简二次根式.判断下列二次根式是不是最简二次根式.(1)35a; (2)a 42; (3)324x ; (4))12(32++a a .将下列二次根式化成最简二次根式.(1))0(423>y y x ;(2)()())0(22≥≥+-b a b a b a;例1 例2 123233a 3a)0(3>b a ab )0(92>b ab(3))0(>>-+n m nm nm ;(4))00(36423><-y x y x z ,.基础过关11.满足下列两个条件的二次根式叫做最简二次根式① ; ② .2.下列二次根式:51、b a 22、a 1.0、22y x +、3ab 、xy 32、11+x ,其中是最简二次根式的有 .3.化简:=-321a . 4.化简:=<+-)21(1442x x x .5.当x 时,x x 35)53(2-=-成立. 6.)0(245>+x x x 化成最简二次根式是 . 7.若1562+>x x ,则x 的取值范围是 .知识点二 同类二次根式 把二次根式a 8与a21化成最简二次根式,所得结果有什么相同之处? 通过化简,得a a 228=;a aa 22121=. 可见,两个最简二次根式里的被开方数都是a 2.几个同类二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.我们知道,在多项式中,遇到同类项就可以合并.类似地,同类二次根式也可以合并.下列二次根式中,哪些是同类二次根式?12、24、271、b a 4、2)0(3>a b a 、)0(3>-a ab例3若最简二次根式b a b a 7752+-+和b a 3+是同类二次根式,求b a +的值的平方根.合并下列各式中的同类二次根式.(1)323132122++-; (2)xy b xy a xy +-3.基础过关21.几个二次根式化成 后,如果 相同,那么这几个二次根式叫同类二次根式.2.若最简二次根式12+x 与23-x 是同类二次根式,则=x . 3.二次根式213a 与a 9- 同类二次根式.(填“是”或“不是”) 4.若0<x ,0<y ,计算=+yxx y. 5.有四个根式2、5、501、32, 其中是同类二次根式. 6.若最简二次根式b a a +5和b a 3+是同类二次根式,则=-a b .综合培优培优练习一一、选择题1. 不改变原来式子的值,把aa 1-中根号外的因式移入根号内后,计算正确的是( ) A.a - B. a -- C. a - D.a2. 下列化简中,正确的是( )A.32123= B. 3327= C. b a a b ⋅=214 D. 23192= 例4 例53. 在122132、、、a ab 中,最简二次根式有( )个. A. 1 B. 2 C. 3 D. 44. 下列化简正确的有( )个.①a a a -=-3;②x x x x x 45=-;③ab b a b a a 2326=;④6106124=+. A. 1 B. 2 C. 3 D. 0 二、解答题 5. 计算:(1)3636 (2)3)(48t s -(3))00(1122<<-b a b a ab , (4))10()1(1422<<--x x x x x6. 已知44.0-=x ,求二次根式321x x x --+的值.7. 已知23+=x ,21-=y ,求41249622+--++y x y xy x 的值.8. 小杰在化简二次根式时发现:322322=,833833=,15441544=,24552455= 你能根据这些式子总结出一般规律吗?证明你总结出的规律.9. 先观察下列各式,再回答问题.211211112111122=-+=++;611312113121122=-+=++;1211413114131122=-+=++. (1)根据上述的计算,猜想2251411++的结果. (2)由此猜想22)1(111+++n n (n 为自然数,1>n )的结果,并说明等式成立的理由.10. 若s b a 、、满足753=+b a ;b a s 32-=,求s 的最大值和最小值.培优练习二一、选择题1. 下列各二次根式中,与24是同类二次根式的为( )A.18B.30C.48D.54 2. 下列各组根式中的几个根式,是同类二次根式的是( )A.20,45,51 B.55bc a ,233c b a ,abc C.325x ,229y x ,xy 2-D.54,12.0,65 3. 下列计算中,正确的是( )A.853=+B.y x y x +=+22C.a a a 555253=+D.y x y x -=-2)(二、解答题 4. 计算:(1)6148294256+-(2)()20125.023155.03--⎪⎪⎭⎫ ⎝⎛-(3))0(327527333>+-x xy x y x y y x x(4))00(2>>--++y x xyy x x yy x ,5. 分别按下列条件化简:x b x a x b a 222)(--+.(1)0>a ,0>b .(2)0<a ,0<b .(3)0<a ,0>b ,且b a >.6. 化简:625625--+.7. 已知实数x 满足x x x =-+-199198,求x 的值.8. 当x 取什么最小正整数时,52+x 与3是同类二次根式.。

同类二次根式与最简二次根式

同类二次根式与最简二次根式在学习二次根式的过程中,我们经常会遇到同类二次根式和最简二次根式这两个概念。

它们在二次根式的化简和比较大小中起着重要的作用。

下面我们就来详细了解一下同类二次根式和最简二次根式的概念以及它们的应用。

一、同类二次根式同类二次根式是指具有相同根指数和相同根式的二次根式。

通俗地说,就是两个或多个二次根式中的根指数相同,且根式也相同,那么它们就是同类二次根式。

如下面的例子所示:√5 和√20 就是同类二次根式,因为它们都是根指数为2,根式为5的二次根式;√7 和√15 也是同类二次根式,因为它们都是根指数为2,根式为7的二次根式。

在进行运算时,我们可以将同类二次根式进行合并。

具体方法是将它们的根式相加或相减,而根指数保持不变。

举个例子,对于√5 + √20,我们可以将它们合并为√(5+20),即√25,最终结果为5√1。

二、最简二次根式最简二次根式是指在同类二次根式中,系数为1且根式中的数不能再进行开方的二次根式。

也就是说,最简二次根式的系数是1,而且根式中的数是不可再开方的。

比如,√5 就是最简二次根式,因为根式中的数5是不可再开方的;而√20不是最简二次根式,因为根式中的数20可以进一步开方为2√5。

化简二次根式的一个重要原则就是将其化为最简二次根式。

这样可以使得二次根式的表达更加简洁,并且便于进行比较和运算。

三、应用举例在实际应用中,同类二次根式和最简二次根式经常用于比较大小和进行运算。

下面举几个例子来说明其应用。

例1:比较大小比较√5和√20的大小。

我们将它们化为最简二次根式。

√5已经是最简二次根式,而√20可以进一步化简为2√5。

因此,√5 < 2√5。

例2:合并同类项将4√3 - 2√3 + 3√3进行合并。

我们可以看出这三项都是同类二次根式,因为它们的根指数和根式都相同。

然后,我们将系数相加:4 - 2 + 3 = 5。

将根式保持不变,得到最终结果:5√3。

通过这个例子,我们可以看到合并同类项的步骤:先将系数相加,然后保持根指数和根式不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙文教育数学学科教师个性化辅导学案
教师: 学生: 时间: 年 月 日 时段: 课 题
教学目标
教学重点、难点
教学方法
教学内容
最简二次根式是一种特殊形式的二次根式,如果一个二次根式不是最简二次根式,应根据积的算术平方根的性质和商的算术平方根的性质将其化为最简二次根式.被开方数相同的最简二次根式叫做同类二次根式。

一、最简二次根式的判别方法
1.被开方数不能含有开得尽方的因数
例1:化简363
2.被开方数不能含有小数或分数
例2:化简:(1).3
15)2(;72.0
3.被开方数不能含有开得尽方的因式
例3:化简3532x y
判断最简二次根式就是注意两点:一是被开方数中不能含有分母或小数; 二是被开方数中不能含有开得尽方的因数或因式.
二、同类二次根式的判别方法
判别几个根式是否为同类二次根式,其依据的同类二次根式的定义,若几个二次根式化成最简二次根式后,被开方数相同,则这几个二次根式为同类二次根式.
例4:下列各组里的二次根式是不是同类二次根式?
(1)18,3
1; (2)32,8; 例5:下列二次根式中,哪些与32是同类二次根式?
27
1,
50,54,48,3.0. 例6:如果两个最简二次根式和是同类二次根式,那么a 、b 的值是( )
A.a=2,b=1
B.a=1,b=2
C.a=1,b=-1
D.a=1,b=1
练习:若最简根式
与根式是同类二次根式,求a 、b 的值.
【课内习题精练】
一、精心选一选
1.在根式①ab ;②5
x ;③xy x -2;④abc 27中,最简二次根式是( ) A .①② B .③④ C .①③ D .①④
2.下列二次根式中与3是同类二次根式的是( )
A .18
B .3.0
C .30
D .300
3.若b <-1,则化1
+b a 为最简二次根式得( ) A .)1(11++b a b B .-)1(1
1++b a b C .-)1(1+b a a
D .b +1)1(+b a
4.下列四组二次根式中,可以化为同类二次根式的是( )
A .a a 和a 2
1 B .2x y 和y 2y 1 C .23a 和a 8 D .222y xy x +-和2)(3y x -
5.下列各式中计算正确的是( )
A .3+2=5
B .3+2=32
C .m b -n b =(m -n )b
D .
1162523250=-=- 6.下列说法中正确的是( )
A .22b a -不是最简二次根式
B .12,75,3
4是同类二次根式 C .32,121,18
1是同类二次根式 D .
a 51和212a
b 是同类二次根式 二、耐心填一填
7.根式15,a 20,76,ab 41,3
5y ,22y x +中,最简二次根式有________; 8.化简:(1)10001=________(2)24
13=________. 9.若p
y x m
n -是最简二次根式,则m =________,n =________,p =________(其中m ,n ,p 不为0) 10.当x =________时,102+x 有最小值是________,当x =________时,225x -有最大值是________.
11.当x =________,y =________时,最简二次根式y y x +和y x 23-是同类二次根式.
三、二次根式的加减运算
二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.
在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.
1.二次根式加减运算的步骤:
(1)将每个二次根式都化简成为最简二次根式;(2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;
(3)合并同类二次根式.
2.合并同类二次根式
合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的方法与整式加减运算中的合并同类项类似)
要点诠释:
(1)根号外面的因式就是这个根式的系数;
(2)二次根式的系数是带分数的要变成假分数的形式;
(3)不是同类二次根式,不能合并
例1:计算
(1)3-9+3;(2)(+)+(-);
(3);(4).
例2:已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值.
四、学生对于本次课的评价:
○特别满意○满意○一般○差
学生签字:
五、教师评定:
1、学生上次作业评价:○非常好○好○一般○需要优化
2、学生本次上课情况评价:○非常好○好○一般○需要优化
教师签字:
教导主任签字:
课后作业:。

相关文档
最新文档