最新北师大课标版八年级数学上册《平均数1》教案1(优质课一等奖教学设计)
北师大版初中数学八年级上册《1 平均数 算术平均数与加权平均数》 优质课获奖教案_1

第1课时 平均数教学目标1、知识与技能(1)知道算术平均数是数据的一个代表;(2)在实际情境中理解算术平均数的概念和意义;(3)通过实例了解加权平均数的意义,会根据加权平均数的计算公式进行有关计算. 初步经历数据的收集、加工整理的过程,能利用算术平均数解决一些实际问题,发展学生的数学应用能力.3、情感、态度与价值观培养学生互相合作与交流的能力,增强学生的数学应用意识.重点与难点1、重点:加权平均数的概念以及运用加权平均数解决实际问题.2、难点:正确运用算术平均数,加权平均数处理一些实际问题.教具准备教学用ppt.教学过程一、复习引入这节课,我们要学习一些与平均数有关的问题.我们在小学已经学过了算术平均数,它就经常被用来作为一组数据的代表.旧知回顾:1、已知一组数据:3,5,4;求这组数据的平均数 解:43453=++=x平均数: x 要点呈现: . 算术平均数的定义:一般地,对于 n 个数 x 1,x 2,x 3.....x n ,我们把)...(121n x x x n+++叫做这 n 个数的算术平均数,简称平均数,记为 x ,读作 x 拔。
121(...)n x x x x n=+++即: 情景导入泓文学校举行运动会 ,入场式有七年级的一个队列.已知这个队列共100人,排成10行,每行10人.其中前两行同学的身高都是160cm ,接着3行同学的身高都是155cm ,最后5行同学的身高都是150cm 、 怎样求这个队列的平均身高?分析:100名同学的身高有100个数那他们加起来再除100,就得到平均数。
这组数据中有许多相同的数,相同的数求和可用乘法计算。
用x 表示平均身高,则(160201553015050)1002030501601551501001001001600.21550.31500.5153.5().x cm =⨯+⨯+⨯÷=⨯+⨯+⨯=⨯+⨯+⨯=在上面的算式中,0.2,0.3,0.5分别表示160,155,150这三个数在数据中所占的比例,分别称它们为这三个数的权数(weight )。
新北师大版初中八年级数学上册6.1平均数1公开课优质课教学设计

6.1 平均数1.掌握算术平均数和加权平均数的概念,会求一组数据的算术平均数和加权平均数;(重点)2.会用算术平均数和加权平均数解决实际生活中的问题.(难点)一、情境导入某校有24人参加“希望杯”数学课外活动小组,分成三组进行竞争,在一次“希望杯”比赛前进行了摸底考试,成绩如下:甲:80、79、81、82、90、85、94、98乙:90、83、78、84、82、96、97、80丙:93、82、97、80、88、83、85、83怎样比较这次考试三个小组的数学成绩呢?你有金点子吗?二、合作探究探究点一:算术平均数某班10名学生为支援“希望工程”,将平时积攒下来的零花钱捐献给贫困地区的失学儿童,每人捐款金额如下(单位:元):10,12,13,21,40,16,17,18,19,20.那么这10名同学平均捐款多少元?解析:利用算术平均数公式x=1n(x1+x2+…+xn)计算即可.解:x=110×(10+12+13+21+40+16+17+18+19+20)=18.6(元).答:这10名同学平均捐款18.6元.方法总结:利用公式求算术平均数时,要数清数据的个数,求数据总和时不要漏加数据.探究点二:加权平均数【类型一】加权平均数的求法某学校在开展“节约每一滴水”的活动中,从八年级的200名同学中任选10名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:这10名同学家庭一个月平均节约用水量是( )A.0.9吨B.10吨C.1.2吨D.1.8吨解析:利用加权平均数公式计算.平均节约用水量为(0.5×2+1×3+1.5×4+2×1)÷10=1.2(吨),故选C.方法总结:在计算加权平均数时,一定要弄清,各数据的权.算术平均数实质上是各项权相等的加权平均数.【类型二】已知平均数求其中的未知数某班进行个人投篮比赛,受污损的下表记录了在规定时间内投进n个球的人数分布情况:同时,已知进球3个或3个以上的人平均每人投进3.5个球;进球4个或4个以下的人平均每人投进2.5个球.问投进了3个球和4个球的各有多少人?解析:本题是要求两个未知数,即3和4的权.所以应把平均数与方程组综合起来,利用平均数的定义来列方程,组成方程组求解.解:设投进3个球的有x人,投进4个球的有y人,由题意,得⎩⎪⎨⎪⎧3x+4y+5×2=3.5×(x+y+2),0×1+1×2+2×7+3x+4y=2.5×(1+2+7+x+y).整理,得⎩⎪⎨⎪⎧x-y=6,x+3y=18.解得⎩⎪⎨⎪⎧x=9,y=3.答:投进3个球的有9人,投进4个球的有3人.方法总结:利用平均数的公式解题时,要弄清数据及相应的权,避免出错.三、板书设计平均数⎩⎨⎧算术平均数:x=1n(x1+x2+…+xn)加权平均数:x=(x1f1+x2f2+…+xnfn)f1+f2+…fn通过探索算术平均数和加权平均数的联系与区别,培养学生的思维能力;通过有关平均数问题的解决,提升学生的数学应用能力.通过解决实际问题,体会数学与社会生活的密切联系,了解数学的价值,增进学生对数学的理解和增加学好数学的信心.。
八年级平均数—教学设计及专家点评(获奖版)

《平均数(1)》教学设计广东省佛山市南海外国语学校封小波一、教学内容分析北师大版教材将《数据的分析》安排在八年级上册第六章,本章属于“统计与概率”部分.在七年级,学生已经经历过一些数据收集的过程,并对数据进行了初步的整理,能用适当的统计图表清晰地反映数据信息.本章将进一步学习数据的分析,在对数据进行分析的基础上,进而作出判断和预测.刻画一组数据的两个常用指标是集中趋势与离散程度,前者反映了数据“平均水平”的高低,后者反映了数据的波动状况,刻画数据集中趋势的常用统计量有平均数、中位数、众数,这些内容构成了本章的前三节;刻画数据离散程度的统计量有极差、方差这是本章第4节的学习内容.《平均数(1)》是《平均数》的第1课时.本节课教材的设计思路侧重在从问题出发,逐步去发现统计问题需要进行平均数的计算,先用小学的简单算术方法,再重现小学算法的简化,并且从简便算法的内涵反映了某因素数据的份数的不同对平均数有直接的影响,最后明确加权平均数.教材的设计思路有其内在的逻辑联系,但是我认为本节的设计思路可以按照从“数理”到“统计”的设计思路开展,即将本节分为“数理探究”、“平均数的进一步学习”(衔接板块)和“统计探究”三个板块进行开展.其中,在“数理探究”板块中,通过计算一组数的平均数,从小学熟悉的计算中对比产生一类平均数的两类方法,引导学生运用数学语言进行描述,生成算术平均数与加权平均数的概念,通过开展数学实验活动初步感受权对平均数的影响;在“平均数的进一步学习”板块中,从实际问题出发开展数学活动让学生经历用平均数描述数据集中趋势的过程;在“统计探究”板块中,从实际问题出发引导学生作统计案例分析,理解权的统计意义,运用平均数的知识解决实际问题.按照这种教学设计思路,重点落在统计案例的学习,理解权的统计意义以及解决利用平均数作出判断的统计问题上。
这样的教学设计,其目的清晰、层次分明、逻辑性强,且符合课标(2011年版)对统计学习的要求.从数学工具出发,与统计问题相结合,按照一定的逻辑去演绎,同样可以达到教学的目的.按照这样的设计思路,第二课时可以定位为通过广泛的统计问题,了解权有不同的类别表现,进一步感受权对平均数的影响,加深对加权平均数的理解.二、教学目的1.理解(算术和加权)平均数的概念,会求一组数的(算术和加权)平均数.2.会用平均数描述一组数据的集中趋势.3.理解平均数是描述一组数据平均水平和比较两组(或以上)数据平均水平的统计量,是数据集中趋势的反映,会解决一些用数据平均数作出判断的现实问题.三、教学重点1.理解(算术和加权)平均数的意义,会计算加权平均数.2.统计案例的学习,会用加权平均数反映数据的集中趋势.四、教学难点1.理解加权平均数的概念,会用平均数描述一组数据的集中趋势.2.统计案例的学习与运用,理解权的统计意义.五、教学准备(一)学生学习准备本节课授课对象是广东省佛山市南海外国语学校的学生,在广东省佛山市属于基础较好的学生,他们具有较为扎实的基础,较强的计算能力和较高的逻辑思维水平.教师在课前利用本节引例中“北京金隅队和广东东莞银行队两支篮球队队员身高、年龄的数据”对学生进行前测,发现学生熟悉算术平均数的概念,会简单地求一组数据的算术平均数,并会单一地用算术平均数理解一组数据的平均水平.该校已经在七至八年级开设了《初中统计与概率实验活动课程》的选修课.该班学生在七年级数据的收集与整理的学习过程中,已经经历了一些统计活动,能够解决一些简单的现实问题,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验,具备一定的合作与交流的能力.(二)教辅工具准备计算机,投影机,黑板,双色粉笔等.六、教学流程框图七、教案正文3.探究并初步感受权对平均数的影响.然后知轻重.”物有了权,就知道它的重量,数有了权我们就可以知道它的相对重要程度.开展数学实验活动-探究数的权对平均数的影响.小结并板书:在一组数中,平均数会偏向权大的数,而偏离权小的数.观察实验,感受权对平均数的影响,探索与表述规律.发现探究结论.观察学生是否积极参与数学活动,是否得到正确的探究结论.设计意图:1.通过计算一组数的平均数,从小学熟悉的计算中对比产生一类平均数的两类方法,引导学生运用数学语言进行描述,生成算术平均数与加权平均数的概念.让学生在经历从具体到抽象的概念生成过程中体会从特殊到一般的数学思想方法;2.借助权的古代释义,先让学生通过类比想象借物的“权”感受数的“权”,再通过开展数学实验活动感受权对平均数的影响,让学生经历一个完整的数学实验活动过程,积累数学活动经验,体验探索的乐趣,同时培养学生良好的实验探究习惯;3.通过研习任务让学生熟悉数学语言定义算术平均数与加权平均数的概念,体会数学语言的严谨性,为在课堂小结中体会算术平均数与加权平均数的联系与区别做好准备.预计时间(分)教学内容教师活动学生活动教学评价5 分钟第三环节平均数的进一步学习1.分析例1探索平均数的算术特征.2.探索平均数的意义与作用.教授:在例1中,我们还可以看到,平均数将这组数分为两部分,一部分比平均数要大,另一部分比平均数要小.各数与平均数之差的代数和为0.我们把这一特征称为平均数的算术特征.陈述:在一组数中,各数与平均数之差的代数和为0.展示:“北京金隅队”和“广东东莞银行队”两支篮球队队员身高、年龄的数据和一组问题(“哪支球队队员的身材更为高大?哪支球队队员更为年轻?你是怎样判断的?”).[注:有关以上两支球队队员的身高与年龄数据的平均数计算问题已经安排前测完成]说明:年龄取整的原则:计算数据与原始数据同类型.观察与聆听教师对例1的进一步分析,领悟平均数的算术特征.思考一组问题.答:比较两队的平均身高和平均年龄.北京金隅队队员的平均身高为 1.98m,平均年龄为25岁;广东东莞银行队队员的平均身高为 2.00m,平均年龄为24岁.所以,广东东莞银行队队员的身材更为高大,更为年轻.观察学生是否认真聆听.从学生的回答中辨别学生是否会用平均数解决实际问题.3.说明用平均数刻画一组数据的集中趋势.展示:“北京金隅队”身高数据的分布图.教授:从图中可以看到队员的身高靠近球队队员平均身高的居多,而远离球队队员平均身高的较少,整组数据向着球队队员平均身高靠拢.在统计上,称一组数据向着某一个中心值靠拢的程度为数据的集中趋势.在日常生活中,我们常用平均数描述一组数据的集中趋势.板书:在日常生活中,我们常用平均数描述一组数据的集中趋势.布置研习任务:请同学们在课本上勾划这句话,体会用平均数描述一组数据的集中趋势.观察“北京金隅队”身高数据的分布图.聆听教师教授.体会进一步学习和理解平均数的意义和作用的必要性.经历用平均数刻画一组数据集中趋势的探索过程.勾划课本内容(在日常生活中,我们常用平均数描述一组数据的集中趋势.)体会平均数的作用.观察学生是否认真聆听.观察学生是否执行研习任务.设计意图:采取“实例+说明”的方式,通过对例1的进一步分析,引导学生探索平均数的算术特征,让学生再次体会“移多补少”的数学思想;通过探索教材引例让学生理解平均数是描述一组数据平均水平和比较两组(或以上)数据平均水平的统计量,是数据集中趋势的反映.预计时间(分)教学内容教师活动学生活动教学评价15 分钟第四环节统计探究本环节为案例学习1.阅读案例,解析案例背景,收集案例数据信息.过渡语:在日常生活中我们常常会利用平均数解决实际问题.请同学们阅读下面一段材料.展示案例:例2.某广告公司欲招聘一名广告策划人员,对A、B、C三名候选人进行了三项素质测试.他们的各项测试成绩如下表所示:测试项目测试成绩A B C创新72 85 67综合知识50 74 70语言88 45 67解析:案例背景.解释:案例中的文字和数据信息.阅读案例.聆听并思考.收集案例中的文字和数据信息.观察学生对案例是否感兴趣,小组讨论的激烈程度.预计时间(分)教学内容教师活动学生活动教学评价5 分钟第五环节课堂小结引导学生回顾本节学习内容,体会算术平均数与加权平均数的联系与区别.回顾与总结:本节课所学内容.总结(师生):算术平均数与加权平均数之间的联系与区别.联系:两者都是平均数,都能反映数据的集中趋势.区别:定义不同(或者说计算方法不同);影响因素不同,算术平均数受到极端值的影响,极端值的出现,会使平均数的真实性受到干扰.加权平均数的大小不仅取决于总体中各数的大小,而且取决于各数出现频数.回顾与总结本节课所学内容.体会算术平均数与加权平均数的联系与区别.观察学生的回答是否全面.设计意图:引导学生小结算术平均数和加权平均数的概念及运用,体会算术平均数与加权平均数的联系与区别,发挥学生的主观能动性,培养学生归纳总结知识的能力.预计时间(分)教学内容教师活动学生活动教学评价2 分钟第六环节布置作业1.必做题2.选做题3.课外探究布置作业:课本第138页至第139页,随堂练习第1题;习题6.1第1,2,4题.课本第139页,习题6.1第3题.某广告公司欲招聘一名客户代理人员负责客户的面谈工作,对A、B、C三名候选人进行了三项素质测试.他们的各项测试成绩如下表所示:测试项目测试成绩A B C创新72 85 67综合知识50 74 70语言88 ?67(1)如果根据三项测试的平均成绩确定录用人选,那么候选人B在语言测试上至少要达到多少分才能被录用?(结果取整数)勾划作业内容.在课本例题中记录下例题的变式作业.观察学生是否认真记录作业.(2)在(1)的基础上,请根据实际需要,制定录用标准,确定各人的测试成绩,此时谁将被录用?(阐述你的理由)设计意图:通过必做题与选做题分层布置课本习题复习和巩固本节所学;通过课外探究,进一步加深学生对统计案例的学习和理解,发展数据分析观念,增强应用意识.对封小波同志的课例《平均数(1)~从数理到统计》点评孙治中佛山市教育局教学研究室本节课内容分析准确,教学设计符合设计理论,特别体现了数学人教学统计的特色,不管是从教案的撰写与编辑上,还是从课堂教学的组织和流程上,都清晰明了、合理有序,充分展示了授课教师的教研教学水平。
北师大版数学八年级上册6.1平均数(第一课时)优秀教学案例

(三)学生小组讨论
在学生小组讨论环节,我会让学生分成小组,共同探讨一些与平均数相关的问题。例如:如何求一组数据的平均数?平均数在实际生活中有哪些应用?学生在讨论过程中,可以互相交流自己的观点和想法,提高他们的合作能力和解决问题的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,让学生感受数学与生活的紧密联系,激发学生学习数学的内在动机。
2.培养学生积极思考、勇于探究的学习态度,让学生在解决实际问题的过程中,体验到数学的价值和乐趣。
3.通过对平均Байду номын сангаас的学习,培养学生公正、公平的价值观,让学生明白平均数是表示一组数据集中趋势的量,不应受到极端数据的影响。
北师大版数学八年级上册6.1平均数(第一课时)优秀教学案例
一、案例背景
北师大版数学八年级上册6.1平均数(第一课时)优秀教学案例,是基于学生已掌握小学阶段平均数概念的基础上,进一步深化对平均数性质和应用的理解。本节课的主要内容是引导学生通过现实生活中的实例,探究平均数的求法及其含义,培养学生解决实际问题的能力。
案例背景以一个班级学生的身高数据为例,让学生感受平均数在实际生活中的应用。教师可以设计一个身高统计表,展示班级中男女生各自的身高数据,并提出问题:“如果想知道这个班级学生的平均身高,应该如何计算?”引导学生思考并探讨求平均数的方法。
在学生探讨过程中,教师引导学生注意到,求平均数需要将所有数据加起来,然后除以数据的个数。通过对实际数据的处理,让学生体验到平均数的求法,并理解平均数是表示一组数据集中趋势的量。
北师大版数学八年级上册1《平均数》教学设计1

北师大版数学八年级上册1《平均数》教学设计1一. 教材分析《平均数》是北师大版数学八年级上册第一单元第一课的内容。
本节课的主要内容是让学生理解平均数的含义,掌握求平均数的方法,并能够应用平均数解决实际问题。
教材通过生活中的实例引入平均数的概念,让学生感受平均数在实际生活中的应用。
二. 学情分析学生在七年级已经学习了统计学的初步知识,对数据有一定的认识。
但是,对于平均数的概念和求法还不够清晰。
通过本节课的学习,学生应该能够理解平均数的含义,掌握求平均数的方法,并能够应用平均数解决实际问题。
三. 教学目标1.知识与技能:理解平均数的含义,掌握求平均数的方法,能够应用平均数解决实际问题。
2.过程与方法:通过实例引入平均数的概念,培养学生从实际问题中抽象出数学模型的能力。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学解决实际问题的能力。
四. 教学重难点1.重点:理解平均数的含义,掌握求平均数的方法。
2.难点:从实际问题中抽象出数学模型,应用平均数解决实际问题。
五. 教学方法采用问题驱动法、实例教学法、合作学习法等教学方法。
通过实例引入平均数的概念,引导学生主动探索求平均数的方法,培养学生从实际问题中抽象出数学模型的能力。
同时,学生进行合作学习,提高学生的团队协作能力和沟通能力。
六. 教学准备1.教学PPT:制作教学PPT,包括教材中的实例、问题、练习等内容。
2.实例材料:准备一些生活中的实例,用于引导学生理解平均数的概念。
3.练习题:准备一些练习题,用于巩固学生对平均数的理解和掌握。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实例,如班级同学的身高、体重等数据,引导学生关注这些数据,并提出问题:如何描述这些数据的平均水平?2.呈现(10分钟)通过PPT呈现平均数的定义和求法,让学生了解平均数的概念,并学习如何求平均数。
同时,引导学生思考:平均数在实际生活中有什么应用?3.操练(10分钟)让学生分组进行合作学习,每组选择一个实例,运用平均数的方法求解。
北师大版八年级上册1平均数教学设计

北师大版八年级上册1平均数教学设计一、教学目标1.了解平均数的概念和计算方法;2.掌握求一组离散数据的平均数的方法;3.能够运用平均数解决实际问题。
二、教学重难点1.平均数的概念和计算方法;2.求一组离散数据的平均数的方法;3.运用平均数解决实际问题的能力。
三、教学内容1.形成概念:引导学生了解平均数的概念,举例说明平均数在生活中的应用;2.求一组离散数据的平均数:通过多组例题和练习来培养学生得出一组离散数据的平均数的能力;3.运用平均数解决实际问题:通过数学模型和实际问题引导学生运用平均数解决实际问题。
四、教学方法1.课堂讲授法:讲解平均数的概念、计算方法和实际应用;2.案例分析法:通过实际案例引导学生分析并求解平均数;3.课堂练习法:利用丰富的练习题让学生反复练习和应用平均数的计算方法和应用。
第一步:引入平均数的概念教师用生动的例子引入平均数的概念,例如:“小明这周7天每天写完作业所用的时间是:60、40、70、50、80、30、50分钟,请问他平均每天花费多少分钟写作业?”带领学生思考并讨论平均数的概念和如何计算。
第二步:求一组离散数据的平均数教师讲解离散数据的概念,然后通过多组例题和练习,让学生掌握如何求出一组离散数据的平均数。
例如:“小明班里10个同学的身高(单位:厘米)分别是:160、163、165、166、167、169、170、171、173、176,请问他们的平均身高是多少厘米?”第三步:运用平均数解决实际问题教师通过数学模型和实际问题引导学生运用平均数解决实际问题。
例如:“某校一年级共有4个班,每个班级的学生人数分别是40、45、35、50,请问这个年级平均每个班的学生人数是多少?”第四步:课堂练习教师提供丰富的练习题,让学生反复练习并应用平均数的计算方法和应用。
鼓励学生积极参与课堂练习并解答问题。
六、教学评估1.通过课堂学习,教师能够及时发现学生的掌握情况,针对性地进行教学调整;2.在课后的练习环节,教师可以结合作业情况来对学生的掌握情况进行评估。
北师大版-数学-八年级上册-8.1平均数第1课时教案
《八年级上第八章第一节平均数》教案第1课时8.1平均数(1)【教学课型】:新课◆课程目标导航:【教学目标】:(一)知识目标:1、掌握算术平均数,加权平均数的概念。
2、会求一组数据的算术平均数和加权平均数。
(二)能力目标:1、通过对数据的处理,发展学生初步的统计意识和数据处理的能力。
2、根据有关平均数的问题的解决,培养学生的合作意识和能力。
(三)情感目标:1、通过小组合作的活动,培养学生的合作意识和能力。
2、通过解决实际问题,让学生体会数学与生活的密切联系。
【教学重点】:算术平均数,加权平均数的概念及计算【教学难点】:加权平均数的概念及计算。
【教学工具】:投影片教学情景导入师:同学们,在某次数学测试后,你想了解自己与班级平均成绩的比较,你先想了解该次数学成绩什么量呢?(引入课题)生:平均分师:这节课我们共同学习一组数据的平均数◆教学过程设计1、引例:下面是某班30位同学一次数学测试的成绩,各小组讨论如何求出它们的平均分: 95、99、87、90、90、86、99、100、95、87、88、86、94、92、90、95、87、86、88、86、90、90、99、80、87、86、99、95、92、92甲小组:X= =91(分)甲小组做得对吗?有不同求法吗?乙小组:X== 91(分)乙小组的做法可以吗?还有不同求法吗?丙小组:先取一个数90做为基准a ,则每个数分别与90的差为:5、9、-3、0、0、-4、……、2、2求出以上新的一组数的平均数X'=1所以原数组的平均数为X=X'+90=91想一想,丙小组的计算对吗?2、议一议:问:求平均数有哪几种方法?(1)X= (X 1+X 2+…+X n ) ——算术平均数 95+99…+92+92 30 95×4+99×4+87×4+90×5+86×5+88×2+92×3+100+94+80 30 n1(2)X= (f 1+f 2+…f k =n) ——利用加权求平均数(3)X=X'+a ——利用基准求平均数问:以上几种求法各有什么特点呢?公式(1)适用于数据较小,且较分散。
北师大版数学八年级上册1《平均数》教案1
北师大版数学八年级上册1《平均数》教案1一. 教材分析北师大版数学八年级上册1《平均数》是学生在掌握了整数、分数和小数的基础上,进一步学习平均数这一概念。
平均数是表示一组数据集中趋势的量数,它是反映数据平均水平的一个重要指标。
本节课的内容对于学生理解统计学的基本概念,掌握数据分析的方法具有重要作用。
二. 学情分析学生在学习本节课之前,已经掌握了整数、分数和小数的知识,对于数据的收集和整理也有一定的了解。
但是,学生对于平均数的定义和求法还不够明确,需要通过本节课的学习来进一步掌握。
三. 教学目标1.知识与技能:理解平均数的定义,掌握求平均数的方法,能够运用平均数解决实际问题。
2.过程与方法:通过小组合作、讨论交流的方式,培养学生的合作意识和团队精神,提高学生的问题解决能力。
3.情感态度价值观:培养学生对数学的兴趣,增强学生对统计学的学习信心,培养学生积极思考、勇于探索的精神。
四. 教学重难点1.重点:平均数的定义和求法。
2.难点:如何运用平均数解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究平均数的定义和求法。
2.运用小组合作、讨论交流的方式,培养学生的合作意识和团队精神。
3.结合具体案例,让学生亲身体验平均数在实际生活中的应用,提高学生的问题解决能力。
六. 教学准备1.准备相关案例和数据,用于引导学生探究平均数的概念和求法。
2.准备小组讨论的素材,引导学生进行小组合作、讨论交流。
3.准备课堂练习题,用于巩固学生对平均数的理解和掌握。
七. 教学过程1.导入(5分钟)通过展示一组数据,引导学生思考这组数据的集中趋势是什么,引出平均数的概念。
2.呈现(10分钟)讲解平均数的定义和求法,让学生理解平均数是一组数据集中趋势的量数,它是所有数据之和除以数据的个数。
通过具体案例的计算,让学生掌握平均数的求法。
3.操练(10分钟)让学生分组进行讨论,每组选择一组数据,计算这组数据的平均数,并解释平均数的意义。
北师大版数学初二上册《平均数(1)》教学设计
5
6
7
10
人数
2
3
2
1
这8名同窗捐款的平均金额为〔〕
A 3.5元B6元C6.5元D7元
3.新星公司到某大学从应届毕业生中招聘公司职员,对应聘者的专业知识、英语水平、参与社会实际三项停止测试或效果认定,三项的得分总分值都为100分。三项效果区分按5:3:2的比例记入每人的最后总分。有4位应聘者的得分如下表所示:
〔2〕依据实践需求,学校将言语、综合知识和应变才干三项测试得分按4∶3∶1的比例确定各人的测试效果,此时谁将被录用?
四、达标测评:〔每题25分,共100分。置信自己冲刺总分值!〕
1.一组数据为101,102,103这组数据的平均数是;
2.在一次〝爱心捐助〞捐款活动中,某班第一小组8名同窗捐款的金额〔元〕如以下图所示:
目的:此题除了培育运用知识的才干,更重要的培育先生入手才干、协作才干
教
学
过
程
三、训练稳固:
1.青西中学课外活动兴味小组招募播音员,对我班A,B,C三名候选人停止了三项素质测试,他们的各项测试效果如下表所示:
测试项目
测试效果
A
B
C
语言
72
85
67
综合知识
50
74
70
应变才干
88
45
67
〔1〕假设依据三项测试的平均效果确定录用人选,那么谁将被录用?
B.选做:课本习题6.1的第139页4,5题。
此题先让先生独立思索解答,在思索与交流的基础上,教员再停止适当引导与整理。
本环节是的目的它既能检测先生掌握基本知识状况,也能给教员提供教学状况的反应。
经过〝变式拓展〞环节使先生在了解知识的基础上,把学到的知识转化为才干,构成解题技艺,最终完成〝知识-运用-了解-构成技艺-培育才干〞的认知进程。
八年级数学上册 平均数(第一课时)教案 北师大版
平均数教学设计(第一课时)一、教学设计思想本节重点在于让学生感受算术平均数与加权平均数的联系和区别,并利用它们解决实际问题,本节课教学分2课时。
本节课首先通过具体问题的解决,回顾算术平均数的概念,其后通过变式和例1,引入加权平均数的概念。
二、教学目标(一)知识与技能1.能准确描述出算术平均数,加权平均数的概念.2.会求一组数据的算术平均数和加权平均数.(二)过程与方法1.初步经历数据的收集与处理的过程,发展初步的统计意识和数据处理能力.2.根据有关平均数的问题的解决,培养判断能力.(三)情感态度与价值观1.通过小组合作的活动,培养合作意识和能力.2.通过解决身边的实际问题,初步认识数学与人类生活的密切联系及对人类历史发展的作用.三、教学重点1.掌握算术平均数、加权平均数的概念.2.会求一组数据的算术平均数和加权平均数.四、教学难点理解加权平均数的概念,会求一组数据的加权平均数.五、教学方法启发引导法.六、教具准备投影片三张:第一张:补充练习(记作§8.1.1 A);第二张:补充练习(记作§8.1.1 B);第三张:补充练习(记作§8.1.1 C).七、教学过程Ⅰ.创设问题情境,导入新课[师]在信息技术不断发展的社会里,人们面临着更多的机会和选择,常常需要对大量纷繁复杂的信息作出恰当的选择与判断,而随着计算机等技术的飞速发展,数据日益成为重要的信息.为了更好地适应社会,人们不仅要收集数据,还要对收集到的数据进行加工处理,进而作出评判.比如我们在每次考试结束后要进行横向对比,看本班级在年级中的所排名次如何,自己在本班中排名第几,这就需要知道各科分数这些数据,并要对数据进行处理之后才能得出结论,本节课我们一起来进行有关问题的学习.Ⅱ.讲授新课1.算术平均数的定义[师]打篮球是大家喜欢的一种运动项目,尤其是男生同学们更是倍爱有加,请问同学们影响比赛成绩的因素有哪些呢?[生]有心理因素,有大伙儿的配合程度,有技术成份,还有身高和年龄等因素.[师]对.如何衡量两个球队队员的身高呢?怎样理解“甲队队员的身高比乙队更高”?[生]衡量两个球队队员的身高,就是分别求两个球队队员的平均身高,然后再作比较,甲队队员的身高比乙队更高是指甲队队员的平均身高要比乙队队员的平均身高高.[师]要比较两个球队队员的身高,需要收集哪些数据呢?[生]需要求出每队各个队员的身高.[师]下面我们根据大家刚才讨论的结果,亲自去实践一下.CBA(中国篮球协会)2000~2001赛季冠亚军球队队员的身高、年龄如下:上面两支篮球队中,哪支球队队员的身材更为高大?哪支球队的队员更为年轻?你是怎样判断的?与同伴交流.[生]八一双鹿队队员的平均身高为1.99米,平均年龄为25.3岁;上海东方大鲨鱼队队员的平均身高为1.98米,平均年龄为23.3岁.所以这两支篮球队中,八一双鹿队队员的身材更为高大,上海东方大鲨鱼队队员更为年轻.我们是通过求他们身高和年龄的平均数,然后作比较得出的.[师]大家是怎样求出平均数的?[生]把一个队中的所有队员的身高求和,再除以人数就是本队队员的平均身高.求平均年龄类似.[师]这种求平均数的方法我们并不陌生,在处理日常生活中的事情时,我们经常用到它,这种平均数叫算术平均数.算术平均数的定义一般地,对于n 个数x 1,x 2,…,x n ,我们把n 1 (x 1+x 2+…x n )叫做这n 个数的算术平均数(mean ),简称平均数,记为x ,读作“x 拔”.2.想一想[师]除了上面求平均数的方法之外,小明经过认真的观察,对上海东方大鲨鱼队队员的年龄总结如下:相应队员数 1 2 4 1 3 1 2 1他是这样计算的平均年龄=(16×1+18×2+21×4+23×1+24×3+26×1+29×2+34×1)÷(1+2+4+1+3+1+2+1)≈23.3(岁)你能说说小明这样做的道理吗?请大家互相讨论后回答.[生]小明的做法还是根据求算术平均数的公式进行计算的,即求出本队队员的年龄之和,再除以人数,就是平均年龄,只是他在求相同年龄的和时用简便运算法,而不是用加法,如2个18,可以用18+18,又可用18×2,且18×2比18+18计算简便,所以说小明的做法只是求算术平均数的一种简便算法.[师]很好,确实如此,我们应该向小明同学学习,学习他敏锐的观察力,敢于创新的精神.3.例题讲解[例1]某广告公司欲招聘广告策划人员一名,对A、B、C三名候选人进行了三项素质测试,他们的各项测试成绩如下表所示:测试成绩测试项目A B C创新72 85 67 综合知识50 74 70 语言88 45 67 (1)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4∶3∶1的比例确定各人的测试成绩,此时谁将被录用?[师]请大家讨论后解答.[生]解:(1)A的平均成绩为1(72+50+88)=70(分)3B的平均成绩为31 (85+74+45)=68(分) C 的平均成绩为31 (67+70+67)=68(分) 因此候选人A 将被录用.(2)根据题意,3 人的测试成绩如下: A 的测试成绩为=++⨯+⨯+⨯13418835047265.75(分)B 的测试成绩为134145374485++⨯+⨯+⨯=75.875(分)C 的测试成绩为134167370467++⨯+⨯+⨯=68.125(分)因此候选人B 将被录用. 4.议一议[师](1)(2)的结果不一样说明了什么?请大家互相交流.[生]因为在(1)中没有指出创新、综合知识、语言三项所占的比份,是把它们平等对待的,在(2)中就规定了这三项分别占的比份是4、3、1,所以(1)(2)的结果就不一样.这说明所占比份的不同对平均数有影响.[师]很好.由于每一项的重要性不同,所以所占的比份不同,计算出的平均数就不同.可见重要性的差异对结果(平均数)的影响是很大的.加权平均数的概念在实际问题中,一组数据的各个数据的“重要程度”未必相同.因而,在计算这组数据的平均数时,往往给每个数据一个“权”.如例1中4、3、1分别是创新、综合知识、语言三项测试成绩的权(weight ),而称134188350472++⨯+⨯+⨯为A 的三项测试成绩的加权平均数.由此可见,由于工作不同,对各方面的要求就不同,哪一方面比较重要,权就比较大. Ⅲ.课堂练习 (一)随堂练习(二)补充练习 投影片(§8.1.1 A )[生]解:18年间平均每年留学美国的人数为13.5÷18=0.75(万). 投影片(§8.1.1 B )[生]解:平均成绩为:(100×7+99×5+98×6+95×4+88×5+85×5+80×8+79×2+78×4+65×2+50×2)÷(7+5+6+4+5+5+8+2+4+2+2)=87.36(分)投影片(§8.1.1 C )解:∵x 1、x 2、x 3的平均数是x . ∴x =31 (x 1+x 2+x 3)∴3x 1+5,3x 2+5,3x 3+5的平均数是:31[(3x 1+5)+(3x 2+5)+(3x 3+5)] =31[3(x 1+x 2+x 3)+15] =(x 1+x 2+x 3)+5=3x +5. Ⅳ.课时小结 本节课所学内容有:算术平均数、加权平均数的概念及计算.Ⅴ.课后作业 习题8.1.1.解:400只灯泡的平均寿命为:(550×21+650×79+750×108+850×92+950×76+1050×24)÷400=798.75(时). 2.解:平均分为(81.5×50+83.4×45)÷95=82.4(分) Ⅵ.活动与探究某班进行个人投篮比赛,受了污损的下表记录了在规定时间内投进n 个球的人数分布情况:同时,已知进球3个或3个以上的人平均每人投进3.5个球;进球4个或4个以下的人平均投进2.5个球.问投进3个球和4个球的各有多少人?解:设投进3个球的有x 个人,投进4个球的有y 个人. 根据题意,得⎩⎨⎧+++=++⨯+⨯+⨯++=⨯++)721(5.243722110)2(5.32543xy y x y x y x 整理,得⎩⎨⎧=+=-1836y x y x解得⎩⎨⎧==39y x答:投进3个球的有9个人,投进4个球的有3个人. 八、板书设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平均数》教案
教学目标
1.知道算术平均数和加权平均数的意义,会求—组数据的算术平均数和加权平均数;
2.能说出“权”的差异对平均数的影响,算术平均数和加权平均数的联系;
3.能利用平均数和加权平均数解决—些实际问题,进一步增强统计意识和数学应用的能力.
教学重难点
1.平均数的计算(包括加权平均数).
2.能用平均数的计算(包括加权平均数)解决较复杂的实际问题.
教学过程
第一环节:情境引入
内容:1.投影展示课本第六章的章前文字、章前图,引入本章主题.
2.用篮球比赛引入本节课题:
篮球运动是大家喜欢的一种运动项目,尤其是男生们更是倍爱有加.下面播放一段中国男子篮球职业联赛2011~2012赛季冠军队和亚军球队的一场比赛片段,请同学们欣赏.
在学生观看了篮球比赛的片段后,请同学们思考:
(1)影响比赛的成绩有哪些因素?(心理、技术、配合、身高、年龄等因素)
(2)如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”?要比较两个球队队员的身高,需要收集哪些数据呢?(收集两个球队队员的身高,并用两个球队队员身高的平均数作出判断)
在学生的议论交流中引入本节课题:“平均数”.
目的:创设接近学生生活的问题情境,让学生在轻松愉快的环境中,思考现实生活中收集数据、处理数据,并用数据的平均数作出判断的必要性.在课题引入中,激发学生学习本章新知识的兴趣,调动其积极性.
注意事项:本环节一要“有趣”,二要“紧凑”,达到引入课题,调动学生学习积极性的目的即可,不宜将时间拖得过长.
第二环节:合作探究
内容1:算术平均数
投影教材提供的中国男子篮球职业联赛2011~2012赛季冠亚军球队队员的身高、年龄的表格,提出问题:
“北京金隅队”和“广东东莞银行队”两支篮球队中,哪支球队队员的身高更高?哪支球队队员更为年轻?你是怎样判断的?与同伴交流.
(1)学生先独立思考,计算出平均数,然后在小组交流.
(2)各小组之间竞争回答,答对的打上星,给予鼓励.
教师小结:日常生活中我们常用平均数来表示一组数据的“平均水平”.
(x1+x2+…+x n),叫做这n个数的算术平一般地,对于n个数x1,x2,…,x n,我们把1
n
均数,简称平均数,记为x.
目的:独立思考是合作探究的一个前提,所以学习算术平均数的过程中让先学生独立思考,然后再与同伴交流.
小组之间竞争回答问题,让学生经历体验竞争的过程,并以打星的方式给予评价,旨在激发学生的积极性.
内容2:加权平均数
想一想:小明是这样计算北京金隅队队员的平均年龄的:
平均年龄=(19×1+22×4+23×2+26×2+27×1+28×2+29×2+35×1)÷
(1+4+2+2+1+2+2+1)=25.4(岁).
你能说说小明这样做的道理吗?
学生经过讨论后可知,小明的做法还是根据算术平均数的公式进行计算的,只是在求相同加数的和时用了乘法,因此这是一种求算术平均数的简便方法.
例:使用教材的例题进行教学,引导学生思考讨论:第(1)(2)问录用的人不一样说明了什么?从中认识由于测试的每一项的重要性不同,所以所占的比份也不同,计算出的平均数就不同,因此重要性的差异对结果的影响是很大的.
在学生认识的基础上,教师结合例题给出加权平均数的概念:
实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而,在计算这组数据的平均数时,往往给每个数据一个“权”.如例题中4,3,1分别是创新、综合知识、语言三项测试成绩的权,而称
1
3
4
1 88
3
50
4
72
+
+
⨯+
⨯
+
⨯
为A的三项测试成绩的加权平均数.
目的:“想一想”是从算术平均数到加权平均数的一个台阶,想让学生顺利完成新知识的建构.例题是引导学生思考重要性的差异对结果(平均数)的影响,以引入加权平均数的概念并加以诠释.
注意事项:本环节是这一节课的重点,教学的层次要清楚,从两个篮球队队员的平均身高和平均年龄问题引入算术平均数概念,再从“想一想”过渡到加权平均数的概念.整个教学过程中要充分发挥学生的主观能动性,让他们积极思考,合作探究,学会新知.
第三环节:运用提高
内容:1.某次体操比赛,六位评委对某位选手的打分(单位:分)如下:
9.5,9.3,9.1,9.5,9.4,9.3.
(1)求这六个分数的平均分;
(2)如果规定:去掉一个最高分和一个最低分,余下分数的平均值作为这位选手的最后得分,那么该选手的最后得分是多少?
2.某校在期末考核学生的体育成绩时,将早锻炼及体育课外活动表现占成绩的20%,体
育理论测试占30%,体育技能测试占50%.小颖的上述成绩分别为92分、80分、84分,则小颖这学期的体育成绩是多少?
3.从一批机器零件毛坯中取出20件,称得它们的质量如下:(单位:千克)
2001 2007 2002 2006 2005
2006 2001 2009 2008 2010
(1)试求这批零件质量的平均数.
(2)你能用新的简便方法计算它们的平均数吗?
目的:第1,2题是课本上的题,分别是算术平均数和加权平均数的直接应用,巩固本节课的“双基”内容.第3题是补充的题,考查学生能否将大数据转化为小数据,用新的简便方法求出平均数,以培养学生的思维能力和创新意识.
注意事项:对学生的练习结果做适当的评价.
第四环节:课堂小结
内容:引导学生用“我知道了…”,“我发现了…”,“我学会了…”,“我想我以后将…”的语言小结算术平均数和加权平均数的概念及运用.
目的:发挥学生的主观能动性,培养学生归纳总结知识的能力.
注意事项:不要用教师的“一言堂”代替学生的“群言堂”.
第五环节:布置作业
1.课本习题6.1的第1,2题.
2.为了反映你们的家乡近几年的变化,请各小组自己命题,并设计方案,利用双休日展开调查,汇总,用平均数的有关知识进行分析,并写出调查报告.。