有限元上机实验报告分析

有限元上机实验报告分析
有限元上机实验报告分析

有限元法基础及应用上机报告

南京理工大学

2015年12月

上机实验一

1 实验题目

设计一个采用减缩积分线性四边形等参元的有限元模型,通过数值试验来研究网格密度、位移约束条件与总刚度矩阵奇异性、沙漏扩展、求解精度的关系,并验证采用减缩积分时保证总刚度矩阵非奇异的必要条件。总结出你的研究结论,撰写实验报告。

2 实验目的

通过实验来研究减缩积分方案中网格密度和位移约束条件对总体刚度矩阵奇异性和求解精度的影响,以此加深对有限元减缩积分的理解,和对减缩积分中保证总体刚度矩阵非奇异性的认识。

3建模概述

先保持位移约束条件不变,研究网格密度对总体刚度矩阵奇异性和求解精度的影响,并验证采用减缩积分时保证总刚度矩阵非奇异的必要条件。如下图1所示,建立一个简支和链杆的约束条件,然后不断增加网格密度,通过ABAQUS 来计算位移和应力的变化规律。

简支(两个约束)

链杆(一个约束)

积分点(3个独立关系式)节点(两个自由度)

4 计算结果分析讨论与结论 1)1*1单元四边形减缩积分实验

载荷 布种/单元

应力云图

2)2*1单元四边形减缩积分实验

载荷 单元

应力云图

3)4*4单元四边形减缩积分实验

载荷布种单元

应力云图

结果分析

5 实验体会与小结

单元刚度矩阵的特征:

(1)对称性

(2)奇异性

(3)主元恒正

K相同

(4)平面图形相似、弹性矩阵D、厚度t相同的单元,e

K的分块子矩阵按结点号排列,每一子矩阵代表一个结点,占两行两

(5)e

列,其位置与结点位置对应。

整体刚度矩阵的特征:

(1)对称性

(2)奇异性

(3)主元恒正

(4)稀疏性

(5)非零元素呈带状分布。

[K]的物理意义是任意给定结构的结点位移所得到的结构结点力总体上满足力和力矩的平衡。为消除[K]的奇异性,需要引入边界条件,至少需给出能限制刚体位移的约束条件。

对于一个给定形式的单元,如果采用精确积分,则插值函数中所有项次在|J|=常数的条件下能被精确积分,并能保证刚度矩阵的非奇异性。如果采用减缩积分,因为插值函数中只有完全多项式的项次能被精确积分,因此需要进行刚度矩阵非奇异必要条件的检查。

上机实验二

1 实验题目

图示一个简支梁平面应力模型。梁截面为矩形,高度h=160mm ,长度L=1000mm ,厚度t=10mm 。上边承受均布压力q =1N/mm 2,材料E=206GPa ,μ=0.29。X 方向正应力弹性力学理论解为:

)534()4

(6222

23-+-=h y h y q y x L h q x σ

分别应用3节点三角形单元、4节点线性等参元(完全积分、减缩积分、非协调模式)、8节点二次等参元完全积分进行下列数值实验:1)用较粗单元网格求解梁中部应力分量σx 的最大值和上下边法向应力分量,并对各单元计算精度进行比较分析;2)对粗网格下梁中部最大位移进行对比和分析;3)通过网格加密对比试验3节点三角形单元和8节点二次等参元的收敛速度。总结出研究结论,撰写实验报告。

2 实验目的

(1)通过ABAQUS 软件,用有限元法分析整个梁上的σ_x 的分布规律,讨论

σ_y 的有限元解与材料力学解的区别;

(2)用有限元法求梁顶边和底边中点正应力σx 的最大值;

(3)比较3节点三角形单元、4节点线性等参元(完全积分、减缩积分、非

协调模式)、8节点二次等参元完全积分求得的参数与理论解的接近程度; (4)逐步加密单元网格,把有限元法求得的σx 值与理论值进行对比,考察

解的收敛性;

(5)针对以上力学模型,对比分析3节点三角形平面单元和8节点四边形平

面单元的求解精度和收敛性;

(6)绘制σx 的误差——计算次数曲线,并进行分析说明。 3 建模概述

(1)启用ABAQUS/CAE 程序;

(2)创建部件(Module :Part ),选择2D Planar ,Approximate size=2000,

绘制长度为1000,高度为200的矩形;

(3)创建材料和截面属性(Module:Property),弹性模量为E=210000 MPa,泊松比为0.3;

(4)定义装配件(Module:Assembly),选择Independent;

(5)设置分析步(Module:Step);

(6)定义边界条件和载荷(Module:Load),将左右两边界在中点分成两段,在梁的上侧面施加1Mpa的载荷,选取左边界中点设置U1=0和U2=0,选

取右边界中点设置U2=0;

(7)划分网格(Module:Mesh),全局尺寸设为50,采用3节点线性平面应力三角形单元CPS3划分网格;

(8)提交分析作业(Module:Job);

(9)后处理(Module:Visualization):

①显示的应力云图;

②查询底边中点的最大值,与理论最大应力值比较考察其精度;

③绘制底边上各点的应力的曲线;

(10)细化网格验证收敛性,重设单元尺寸为20和10,给出和的应力云图,考察收敛于理论解的程度;

(11)高阶单元分析,将单元类型改为CPS8,单元尺寸分别取为100、50、20:

①绘制和的云图;

②查询底边中点的最大值,对比(10)和(11)中的结果,体会高精

度有限元网格的精度和收敛性;

③查询模型中从上至下的值。

4 计算结果分析讨论与结论

(1)尺寸大小为50的3节点三角形单元

计算云图如下:

1)x方向应力云图

梁中部x方向应力分量最大值为:19.5751

2)y 方向应力云图

上边界

x

σ方向应力分布曲线:

上边界法向最大应力:-1.54372

下边界

x

σ方向应力分布曲线:

下边界法向最大应力:0.543724

有限元上机实验指导书

弹性力学及有限元实验上机指导书 土木工程教学部 2015年6月 一、ANSYS软件安装及有限元建模方法演示1、实验目的 掌握Ansys商用有限元软件的安装及了解有限元建模方法2、实验任务 1)Ansys商用软件8.1安装过程详解。

2)采用有限元直接建模法创建杆系模型演示。 3)采用有限元间接建模法创实体模型演示。 模型一:平面桁架如下图所示,长度单位为m,求支座反力和各杆内力。弹性模量2.1e+11,泊松比0.3,杆件截面面积均为0.01m2。 1/6 1/3 1/2 图1 平面桁架模型 模型二:正方形带孔平板,边长1m,小孔直径0.1m,板厚0.05m。弹性模量2.1e+11,泊松比0.3。上下边受均匀压力1000N。 图2 带孔正方形平板 3、实验方法 实验方法同课堂操作演示。 命令流(模型一) /PREP7 ET,1,LINK1 R,1,0.01, , MP,EX,1,,2.1e+11

MP,PRXY,1,,0.3 n,1,0,0 n,2,1,0 n,3,1,0.5 n,4,2,0 n,5,2,0.833 n,6,3,0 n,7,3,1 n,8,4,0 n,9,4,0.833 n,10,5,0 n,11,5,0.5 n,12,6,0 e,1,2 e,1,3 e,2,3 e,2,4 e,3,5 e,4,5 e,3,4 e,4,6 e,5,7 e,6,7 e,4,7 e,6,8 e,7,9 e,8,9 e,7,8 e,8,10

e,9,11 e,10,11 e,8,11 e,10,12 e,11,12 save 命令流(模型二) 二、利用ANSYS创建杆系或实体结构有限元模型 1、实验目的 掌握有限元建模的基本方法并能创建简单的杆系结构和实体结构有限元模型。 2、实验任务 (1)采用直接建模法创建上节平面桁架结构模型。 (2)采用间接建模法创建上节带孔平板实体模型。 3、实验方法 实验方法同操作演示。 三、有限元求解及结果后处理演示 1、实验目的 掌握基本参数的设置、荷载施加方法及后处理操作。 2、实验任务 (1)读入数据文件(命令流)的形式生成杆系结构有限元模型 (2)实常数、材料参数、求解参数设置演示 (3)位移约束、集中荷载施加方法演示 (4)计算求解与后处理操作演示。 3、实验方法 实验方法同课堂操作演示 附:后处理GUI操作及命令流操作 A、通过后处理提取节点计算结果 三种后处理操作: 1、plot results

有限元分析实验报告

武汉理工大学 学生实验报告书 实验课程名称机械中的有限单元分析 开课学院机电工程学院 指导老师姓名 学生姓名 学生专业班级机电研 1502班 2015—2016 学年第2学期

实验一方形截面悬臂梁的弯曲的应力与变形分析 钢制方形悬臂梁左端固联在墙壁,另一端悬空。工作时对梁右端施加垂直向下的30KN的载荷与60kN的载荷,分析两种集中力作用下该悬臂梁的应力与应变,其中梁的尺寸为10mmX10mmX100mm的方形梁。 1.1方形截面悬臂梁模型建立 建模环境:DesignModeler 15.0。 定义计算类型:选择为结构分析。 定义材料属性:弹性模量为2.1Gpa,泊松比为0.3。 建立悬臂式连接环模型。 (1)绘制方形截面草图:在DesignModeler中定义XY平面为视图平面,并正视改平面,点击sketching下的矩形图标,在视图中绘制10mmX10mm的矩形。(2)拉伸:沿着Z方向将上一步得到的矩阵拉伸100mm,即可得到梁的三维模型,建模完毕,模型如下图1.1所示。 图1.1 方形截面梁模型 1.2 定义单元类型: 选用6面体20节点186号结构单元。 网格划分:通过选定边界和整体结构,在边界单元划分数量不变的情况下,通过分别改变节点数和载荷大小,对同一结构进行分析,划分网格如下图1.2所示:

图1.2 网格划分 1.21 定义边界条件并求解 本次实验中,讲梁的左端固定,将载荷施加在右端,施以垂直向下的集中力,集中力的大小为30kN观察变形情况,再将力改为50kN,观察变形情况,给出应力应变云图,并分析。 (1)给左端施加固定约束; (2)给悬臂梁右端施加垂直向下的集中力; 1.22定义边界条件如图1.3所示: 图1.3 定义边界条件 1.23 应力分布如下图1.4所示: 定义完边界条件之后进行求解。

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

有限元分析程序设计

结构有限元分析程序设计 绪论 §0.1 开设“有限元程序设计”课程的意义和目的 §0.2 课程特点 §0.3 课程安排 §0.4 课程要求 §0.5 基本方法复习 $0.1 意义和目的 1.有限元数值分析技术本身要求工程设计研究人员掌握 1). 有限元数值分析技术的完善标志着现代计算力学的真正成熟和实用化,已在各种 力学中得到了广泛的应用。比如:,已杨为工程结构分析中最得以收敛的技术手段,现代功用大致有: a). 现代结构论证。对结构设计从内力,位移等方面进行优劣评定,从而进 行结构优化设计。 b)可取代部份实验,局部实验+有限元分析,是现代工程设计研究方法的一大 特点。 c)结构的各种功能分析(疲劳断裂,可靠性分析等)都以有限元分析工具作为 核心的计算工具。 2). 有限元数值分析本身包括着理论+技术实现(本身功用所绝定的) 有限元数值分析本身包括着泛函理论+分片插值函数+程序设计 2. 有限元分析的技术实现(近十佘年的事)更依赖于计算机程序设计 有限元分析的技术取得的巨大的成就,从某种意义上说,得益于计算机硬件技术的发展和程序设计技术的发展,这两者的依赖性在当代表现得更加突出。(如可视化技术) 3.从学习的角度,不仅要学习理论,而且要从程序设计设计角度对这些理论的技术实现有 一个深入的了解,应当致力于掌握这些技术实现能力,从而开发它,发展它。(理论本身还有待于进一步完美相应的程序设计必须去开发) 4.程序设计不仅是实现有限元数值分析的工具和桥梁,而且在以下诸方面也有意义: 1). 精通基本概念,深化理论认识; 2). 锻炼实际工程分析,实际动手的能力; 3). 获得以后工作中必备的工具。(作业+老师给元素库) 目的:通过讲述有限元程序设计的技术与技巧,便能达到自编自读的能力。 §0.2 课程特点 总描述:理论+算法+数据结构(程序设计的意义) 理论:有限元算法,构造,步骤,解的等外性,收敛性,稳定性,误差分析 算法;指求解过程的技术方法,含两方面的含义;a. 有限元数值分析算法,b, 与数据结构有关的算法(总刚稀疏存贮,提取,节点优化编号等) 数据结构:指各向量矩阵存贮管理与实现,辅助管理结构(指针,数据记录等) 具体特点: 理论性强:能量泛函理论+有限元构造算法+数据结构构造算法 内容繁杂:理论方法+技术方法+技术技巧 技巧性强:排序,管理结构(指针生成,整型运算等)

有限元上机实验报告

有限元上机实验报告结构数值分析与程序设计 上机实验 院系: 土木工程与力学学院专业: 土木工程 班级: 姓名: 学号: 指导教师: 1、调试教材P26-30程序FEM1。 1.1、输入数据文件为: 6,4,12,6,1.0E0,0.0,1.0,0.0,1 3,1,2 5,2,4 3,2,5 6,3,5 0.0,2.0 0.0,1.0 1.0,1.0 0.0,0.0 1.0,0.0 2.0,0.0

1,3,7,8,10,12 1.2、输出数据文件为: NN NE ND NFIX E ANU T GM NTYPE 6 4 12 60.1000E+01 0.000 1.0000.0000E+00 1 NODE X-LOAD Y-LOAD 1 0.000000E+00 -0.100000E+01 2 0.000000E+00 0.000000E+00 3 0.000000E+00 0.000000E+00 4 0.000000E+00 0.000000E+00 5 0.000000E+00 0.000000E+00 6 0.000000E+00 0.000000E+00 NODE X-DISP Y-DISP 1 -0.879121E-15 -0.325275E+01 2 0.879121E-16 -0.125275E+01 3 -0.879121E-01 -0.373626E+00 4 0.117216E-1 5 -0.835165E-15 5 0.175824E+00 -0.293040E-15 6 0.175824E+00 0.263736E-15 ELEMENT X-STR Y-STR XY-STR 1 -0.879121E-01 -0.200000E+01 0.439560E+00 2 0.175824E+00 -0.125275E+01 0.256410E-15 3 -0.879121E-01 -0.373626E+00 0.307692E+00 4 0.000000E+00 -0.373626E+00 -0.131868E+00 2、修改FEM1,计算P31例2-2。

数值分析实验报告

数值分析实验报告 姓名:周茹 学号: 912113850115 专业:数学与应用数学 指导老师:李建良

线性方程组的数值实验 一、课题名字:求解双对角线性方程组 二、问题描述 考虑一种特殊的对角线元素不为零的双对角线性方程组(以n=7为例) ?????????? ?????? ? ???? ?d a d a d a d a d a d a d 766 55 44 3 32 211??????????????????????x x x x x x x 7654321=?????????? ? ???????????b b b b b b b 7654321 写出一般的n (奇数)阶方程组程序(不要用消元法,因为不用它可以十分方便的解出这个方程组) 。 三、摘要 本文提出解三对角矩阵的一种十分简便的方法——追赶法,该算法适用于任意三对角方程组的求解。 四、引言 对于一般给定的d Ax =,我们可以用高斯消去法求解。但是高斯消去法过程复杂繁琐。对于特殊的三对角矩阵,如果A 是不可约的弱对角占优矩阵,可以将A 分解为UL ,再运用追赶法求解。

五、计算公式(数学模型) 对于形如????? ?? ????? ??? ?---b a c b a c b a c b n n n n n 111 2 2 2 11... ... ...的三对角矩阵UL A =,容易验证U 、L 具有如下形式: ??????? ????? ??? ?=u a u a u a u n n U ...... 3 3 22 1 , ?? ????? ? ?? ??????=1 (1) 1132 1l l l L 比较UL A =两边元素,可以得到 ? ?? ??-== = l a b u u c l b u i i i i i i 111 i=2, 3, ... ,n 考虑三对角线系数矩阵的线性方程组 f Ax = 这里()T n x x x x ... 2 1 = ,()T n f f f f ... 2 1 = 令y Lx =,则有 f Uy = 于是有 ()?????-== --u y a f y u f y i i i i i 1 1 11 1 * i=2, 3, ... ,n 再根据y Lx =可得到

中南大学ANSYS上机实验报告

ANSYS上机实验报告 小组成员:郝梦迪、赵云、刘俊 一、实验目的和要求 本课程上机练习的目的是培养学生利用有限单元法的商业软件进行数值计算分析,重点是了解和熟悉ANSYS的操作界面和步骤,初步掌握利用ANSYS建立有限元模型,学习ANSYS分析实际工程问题的方法,并进行简单点后处理分析,识别和判断有限元分析结果的可靠性和准确性。 二、实验设备和软件 台式计算机,ANSYS10.0软件 三、基本步骤 1)建立实际工程问题的计算模型。实际的工程问题往往很复杂,需要采用适当的模型在计算精度和计算规模之间取得平衡。常用的建模方法包括:利用几何、载荷的对称性简化模型,建立等效模型。 2)选择适当的分析单元,确定材料参数。侧重考虑一下几个方面:是否多物理耦合问题,是否存在大变形,是否需要网格重划分。 3)前处理(Preprocessing)。前处理的主要工作内容如下:建立几何模型(Geometric Modeling),单元划分(Meshing)与网格控制,给定约束(Constraint)和载荷(Load)。在多数有限元软件中,不能指定参数的物理单位。用户在建模时,要确定力、长度、质量及派生量的物理单位。在建立有限元模型时,最好使用统一的物理单位,这样做不容易弄错计算结果的物理单位。建议选用kg,N,m,sec;常采用kg,N,mm,sec。 4)求解(Solution)。选择求解方法,设定相应的计算参数,如计算步长、迭代次数等。 5)后处理(Postprocessing)。后处理的目的在于确定计算模型是否合理、计算结果是否合理、提取计算结果。可视化方法(等值线、等值面、色块图)显

机械零件有限元分析——实验报告

中南林业科技大学机械零件有限元分析 实验报告 专业:机械设计制造及其自动化 年级: 2013级 班级:机械一班 姓名:杨政 学号:20131461 I

一、实验目的 通过实验了解和掌握机械零件有限元分析的基本步骤;掌握在ANSYS 系统环境下,有限元模型的几何建模、单元属性的设置、有限元网格的划分、约束与载荷的施加、问题的求解、后处理及各种察看分析结果的方法。体会有限元分析方法的强大功能及其在机械设计领域中的作用。 二、实验内容 实验内容分为两个部分:一个是受内压作用的球体的有限元建模与分析,可从中学习如何处理轴对称问题的有限元求解;第二个是轴承座的实体建模、网格划分、加载、求解及后处理的综合练习,可以较全面地锻炼利用有限元分析软件对机械零件进行分析的能力。

实验一、受内压作用的球体的有限元建模与分析 对一承受均匀内压的空心球体进行线性静力学分析,球体承受的内压为 1.0×108Pa ,空 心球体的内径为 0.3m ,外径为 0.5m ,空心球体材料的属性:弹性模量 2.1×1011,泊松比 0.3。 承受内压:1.0×108 Pa 受均匀内压的球体计算分析模型(截面图) 1、进入 ANSYS →change the working directory into yours →input jobname: Sphere 2、选择单元类型 ANSYS Main Menu : Preprocessor →Element Type →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element Types window)→ Options… →select K3: Axisymmetric →OK →Close (the Element Type window) 3、定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3→ OK 4、生成几何模型生成特征点 ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input :1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3)→OK 生成球体截面 ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Spherical ANSYS Main Menu: Preprocessor →Modeling →Create →Lines →In ActiveCoord → 依次连接 1,2,3,4 点生成 4 条线→OK Preprocessor →Modeling →Create →Areas →Arbitrary →By Lines →依次拾取四条线→OK ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Cartesian 5、网格划分 ANSYS Main Menu : Preprocessor →Meshing →Mesh Tool →(Size Controls) lines: Set

数值计算实验报告

(此文档为word格式,下载后您可任意编辑修改!) 2012级6班###(学号)计算机数值方法 实验报告成绩册 姓名:宋元台 学号: 成绩:

数值计算方法与算法实验报告 学期: 2014 至 2015 第 1 学期 2014年 12月1日课程名称: 数值计算方法与算法专业:信息与计算科学班级 12级5班 实验编号: 1实验项目Neton插值多项式指导教师:孙峪怀 姓名:宋元台学号:实验成绩: 一、实验目的及要求 实验目的: 掌握Newton插值多项式的算法,理解Newton插值多项式构造过程中基函数的继承特点,掌握差商表的计算特点。 实验要求: 1. 给出Newton插值算法 2. 用C语言实现算法 二、实验内容 三、实验步骤(该部分不够填写.请填写附页)

1.算法分析: 下面用伪码描述Newton插值多项式的算法: Step1 输入插值节点数n,插值点序列{x(i),f(i)},i=1,2,……,n,要计算的插值点x. Step2 形成差商表 for i=0 to n for j=n to i f(j)=((f(j)-f(j-1)(x(j)-x(j-1-i)); Step3 置初始值temp=1,newton=f(0) Step4 for i=1 to n temp=(x-x(i-1))*temp*由temp(k)=(x-x(k-1))*temp(k-1)形成 (x-x(0).....(x-x(i-1)* Newton=newton+temp*f(i); Step5 输出f(x)的近似数值newton(x)=newton. 2.用C语言实现算法的程序代码 #includeMAX_N) { printf("the input n is larger than MAX_N,please redefine the MAX_N.\n"); return 1; } if(n<=0) { printf("please input a number between 1 and %d.\n",MAX_N); return 1; } printf("now input the (x_i,y_i)i=0,...%d\n",n); for(i=0;i<=n;i++) { printf("please input x(%d) y(%d)\n",i,i);

有限元实验报告模板

有限元实验报告 T1013-5 20100130508 蔡孟迪

ANSYS有限元上机报告(一) 班级:T1013-5 学号:20100130508 姓名:蔡孟迪 上机题目: 图示折板上端固定,右侧受力F=1000N,该力均匀分布在边缘各节点上;板厚t=2mm 材料选用低碳钢,弹性模量E=210Gpa,μ=0.33. 一、有限元分析的目的: 1.利用ANSYS构造实体模型; 2.根据结构的特点及所受载荷的情况,确定所用单元类型;正确剖分网格并施加外界条件;3.绘制结构的应力和变形图,给出最大应力和变形的位置及大小;并确定折板角点A处的应力和位移; 4.研究网格密度对A处角点应力的影响; 5.若在A处可用过渡圆角,研究A处圆角半径对A处角点应力的影响。 二、有限元模型的特点: 1.结构类型 本结构属于平面应力类型 2.单位制选择 本作业选择N(牛),mm(毫米),MPa(兆帕)。 3.建模方法 采用自左向右的实体建模方法。 4.定义单元属性及类型 1)材料属性:弹性模量:EX=2.10E5MPa, 泊松比:PRXY=0.33 2)单元类型:在Preferences选Structural,Preprocessor>ElemmentType>Add/Edit/Delete中定义单元类型为:Quad4 node 182,K3设置为:平面薄板问题(Plane strs w/thk) 3)实常数:薄板的厚度THK=2mm 5.划分网格 在MeshTool下选set,然后设置SIZE Element edge length的值,再用Mesh进行网格划分。6.加载和约束过程:在薄板的最上端施加X、Y方向的固定铰链,在薄板的最右端施加1000N 的均匀布置的载荷。

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

数值分析实验报告模板

数值分析实验报告模板 篇一:数值分析实验报告(一)(完整) 数值分析实验报告 1 2 3 4 5 篇二:数值分析实验报告 实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。即若x0 偏离所求根较远,Newton法可能发散的结论。并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收

敛,但精度不够。熟悉Matlab语言编程,学习编程要点。体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk) 产生逼近解x*的迭代数列{xk},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 xk?1?xk?rf(xk) 'f(xk) 其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x);

有限元课程实训结课上机参考例题

有限元课程实训结课上机参考例题 题 1:图1所示薄板左边固定,右边受均布压力P=100Kn/m 作用,板厚度为0.3cm ;试采用如下方案,对其进行有限元分析,并对结果进行比较。 (1)三节点三角形单元;(2个和200个单元) (2)四节点矩形单元; (1个和50个单元) (3)八节点等参单元。 (1个和20个单元) 图 1 题 2:图2所示为一带圆孔的单位厚度(1M )的正方形平板,在x 方向作用均布压力0.25Mpa ,试用三节点常应变单元和六节点三角形单元对平板进行有限元分析,并对以下几种计算方案的计算结果进行比较: (1) 分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; (2)分别采用不同数量的三节点常应变单元计算; 注:在y 轴上,孔边应力的精确解为:MPa x 75.0-=σ,在x 轴上,孔边应力的精确解为:MPa y 25.0=σ 图 2

题 3:图3所示为带方孔(边长为80mm)的悬臂梁,其上受部分均布载荷(p=10Kn/m)作用,试采用一种平面单元,对图示两种结构进行有限元分析,并就方孔的布置进行分析比较,如将方孔设计为圆孔,结果有何变化?(板厚为1mm,材料为钢) 图 3 题 4:图4所示为一隧道断面,其内受均布水压力q,外受土壤均布压力p;试采用不同单元计算断面内的位移及应力,并分别分析q=0或p=0时的位移和应力分布情况。(材料为钢,隧道几何尺寸和压力大小自行确定) 图 4

题 5:图5所示一简化直齿轮轮齿截面,高h=60mm,齿根宽b=60mm,齿顶宽c=25mm,齿顶作用力P=10Kn;试采用不同单元分析轮齿上位移及应力分布,并只指出最大应力位置。 图 5 题 6:图6所示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: (1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; (2)分别采用不同数量的三节点常应变单元计算; (3)当选常应变三角单元时,分别采用不同划分方案计算。 图 6

有限元实验报告

一、实验目的 通过上机对有限元法的基本原理和方法有一个更加直观、深入的理解;通过对本实验所用软件平台Ansys 的初步涉及,为将来在设计和研究中利用该类大型通用CAD/CAE 软件进行工程分析奠定初步基础。 二、实验设备 机械工程软件工具包Ansys 三、实验内容及要求 1) 简支梁如图3.1.1所示,截面为矩形,高度h=200mm ,长度L=1000mm ,厚 度t=10mm 。上边承受均布载荷,集度q=1N/mm2,材料的E=206GPa ,μ=0.29。平面应力模型。 X 方向正应力的弹性力学理论解如下: 图3.1.1 ①在Ansys 软件中用有限元法探索整个梁上x σ,y σ的分布规律。 ②计算下边中点正应力x σ的最大值;对单元网格逐步加密,把x σ的计算值与理论解对比,考察有限元解的收敛性。 ③针对上述力学模型,对比三节点三角形平面单元和4节点四边形平面等参元的求解精度。 2) 一个正方形板,边长L = 1000mm ,中心有一小孔,半径R = 100mm ,左右边 受均布拉伸载荷,面力集度q = 25MPa ,如图 3.2.1所示。材料是 206E GPa =,0.3μ=,为平面应力模型。当边长L 为无限大时,x = 0截面上理论解为: ) 534()4 (6222 23-+-=h y h y q y x L h q x σ

)32(2|44 220r R r R q x x ++==σ 其中R 为圆孔半径,r 为截面上一点距圆心的距离。x = 0截面上孔边(R r =)应力q x 3=σ。所以理论应力集中系数为3.0。 图3.2.1 用四边形单元分析x = 0截面上应力的分布规律和最大值,计算孔边应力集中系数,并与理论解对比。利用对称性条件,取板的四分之一进行有限元建模。 3) 如图3.3.1所示,一个外径为0.5m ,内径为0.2m ,高度为0.4m 的圆筒,圆 筒的外壁施加100MPa 的压强,圆筒的内部约束全部的自由度,材料参数是密度。 使用平面单元,依照轴对称的原理建模分析。 q

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

数值分析2016上机实验报告

序言 数值分析是计算数学的范畴,有时也称它为计算数学、计算方法、数值方法等,其研究对象是各种数学问题的数值方法的设计、分析及其有关的数学理论和具体实现的一门学科,它是一个数学分支。是科学与工程计算(科学计算)的理论支持。许多科学与工程实际问题(核武器的研制、导弹的发射、气象预报)的解决都离不开科学计算。目前,试验、理论、计算已成为人类进行科学活动的三大方法。 数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。现在面向数值分析问题的计算机软件有:C,C++,MATLAB,Python,Fortran等。 MATLAB是matrix laboratory的英文缩写,它是由美国Mathwork公司于1967年推出的适合用于不同规格计算机和各种操纵系统的数学软件包,现已发展成为一种功能强大的计算机语言,特别适合用于科学和工程计算。目前,MATLAB应用非常广泛,主要用于算法开发、数据可视化、数值计算和数据分析等,除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。 本实验报告使用了MATLAB软件。对不动点迭代,函数逼近(lagrange插值,三次样条插值,最小二乘拟合),追赶法求解矩阵的解,4RungeKutta方法求解,欧拉法及改进欧拉法等算法做了简单的计算模拟实践。并比较了各种算法的优劣性,得到了对数值分析这们学科良好的理解,对以后的科研数值分析能力有了极大的提高。

目录 序言 (1) 问题一非线性方程数值解法 (3) 1.1 计算题目 (3) 1.2 迭代法分析 (3) 1.3计算结果分析及结论 (4) 问题二追赶法解三对角矩阵 (5) 2.1 问题 (5) 2.2 问题分析(追赶法) (6) 2.3 计算结果 (7) 问题三函数拟合 (7) 3.1 计算题目 (7) 3.2 题目分析 (7) 3.3 结果比较 (12) 问题四欧拉法解微分方程 (14) 4.1 计算题目 (14) 4.2.1 方程的准确解 (14) 4.2.2 Euler方法求解 (14) 4.2.3改进欧拉方法 (16) 问题五四阶龙格-库塔计算常微分方程初值问题 (17) 5.1 计算题目 (17) 5.2 四阶龙格-库塔方法分析 (18) 5.3 程序流程图 (18) 5.4 标准四阶Runge-Kutta法Matlab实现 (19) 5.5 计算结果及比较 (20) 问题六舍入误差观察 (22) 6.1 计算题目 (22) 6.2 计算结果 (22) 6.3 结论 (23) 7 总结 (24) 附录

ansys实验报告

有限元上机实验报告 姓名柏小娜 学号0901510401

实验一 一 已知条件 简支梁如图所示,截面为矩形,高度h=200mm ,长度L=1000mm ,厚度t=10mm 。上边承受均布载荷,集度q=1N/mm 2,材料的E=206GPa ,μ=0.29。平面应力模型。 X 方向正应力的弹性力学理论解如下: )534()4 (6222 23-+-=h y h y q y x L h q x σ 二 实验目的和要求 (1)在Ansys 软件中用有限元法探索整个梁上x σ,y σ的分布规律。 (2)计算下边中点正应力x σ的最大值;对单元网格逐步加密,把x σ的计算值与理论解对比,考察有限元解的收敛性。 (3)针对上述力学模型,对比三节点三角形平面单元和4节点四边形平面等参元的求解精度。 三 实验过程概述 (1) 定义文件名 (2) 根据要求建立模型:建立长度为1m ,外径为0.2m ,平行四边行区域 (3) 设置单元类型、属性及厚度,选择材料属性: (4) 离散几何模型,进行网格划分 (5) 施加位移约束 (6) 施加载荷 (7) 提交计算求解及后处理 (8) 分析结果 四 实验内容分析 (1)根据计算得到应力云图,分析本简支梁模型应力分布情况和规律。主要考察x σ和y σ,并分析有限元解与理论解的差异。 由图1看出沿X 方向的应力呈带状分布,大小由中间向上下底面递增,上下底面应力方向相反。由图2看出应力大小是由两侧向中间递增的,得到X 方向

上最大应力就在下部中点,为0.1868 MPa 。根据理论公式求的的最大应力值为0.1895MPa 。由结果可知,有限元解与理论值非常接近。由图3看出Y 的方向应力基本相等,应力主要分布在两侧节点处。 图 1 以矩形单元为有限元模型时计算得出的X 方向应力云图 图 2 以矩形单元为有限元模型时计算得出的底线上各点x 方向应力图 (2)对照理论解,对最大应力点的x σ应力收敛过程进行分析。列出各次计算 应力及其误差的表格,绘制误差-计算次数曲线,并进行分析说明。 答:在下边中点位置最大应力理论值为: MPa h y h y q y x L h q x 1895.0)5 34()4(622223=-+-=σ

数值分析实验报告

学生实验报告实验课程名称 开课实验室 学院年级专业班 学生姓名学号 开课时间至学年学期

if(A(m,k)~=0) if(m~=k) A([k m],:)=A([m k],:); %换行 end A(k+1:n, k:c)=A(k+1:n, k:c)-(A(k+1:n,k)/ A(k,k))*A(k, k:c); %消去end end x=zeros(length(b),1); %回代求解 x(n)=A(n,c)/A(n,n); for k=n-1:-1:1 x(k)=(A(k,c)-A(k,k+1:n)*x(k+1:n))/A(k,k); end y=x; format short;%设置为默认格式显示,显示5位 (2)建立MATLAB界面 利用MA TLAB的GUI建立如下界面求解线性方程组: 详见程序。 五、计算实例、数据、结果、分析 下面我们对以上的结果进行测试,求解:

? ? ? ? ? ? ? ? ? ? ? ? - = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - - - - 7 2 5 10 13 9 14 4 4 3 2 1 13 12 4 3 3 10 2 4 3 2 1 x x x x 输入数据后点击和,得到如下结果: 更改以上数据进行测试,求解如下方程组: 1 2 3 4 43211 34321 23431 12341 x x x x ?? ???? ?? ???? ?? ???? = ?? ???? - ?? ???? - ???? ?? 得到如下结果:

ansys 上机实验指导书

实验一ANSYS软件环境 一、实验目的: 熟悉ANSYS软件菜单、窗口等环境、软件分析功能及解题步骤。 二、实验设备: 微机,ANSYS软件。 三、实验内容: ANSYS软件功能、菜单、窗口及解题步骤介绍。 四、实验步骤: 1、ANSYS界面介绍: ANSYS软件功能非常强大,应用范围很广,并具有友好的图形用户界面(GUI)和优秀和程序架构。基于Motif标注的GUI主要由主窗口和输出窗口组成。随着版本的不断升级,ANSYS界面不断改进,不同版本间的界面存在着较大差别。下面介绍ANSYS的用户界面。 (1)主窗口 图1-1 ANSYS主窗口 ANSYS的主窗口主要由以下5个部分组成。 ①Utility菜单 这些菜单主要通过ANSYS的相关功能组件起作用,比如文件控制、参数选择、图像参数控制及参数输入等。 ②Input Line(Input Window命令输入窗口) 命令输入窗口(也称为命令栏)用于显示程序的提示信息并允许用户直接输入命令,简化分析过程。

③工具栏(Toolbar) 工具栏主要由按钮组成,这些按钮都是ANSYS中的常用命令。用户可以根据工作类型定义自己的工具栏以提高分析效率。 ④主菜单(Main Menu) 主菜单包括了ANSYS最主要的功能,分为前处理器(Preprocessor)、求解器(Solution)、通用后处理器(General Postprocessor)、设计优化器(Design Optimizer)。展开主菜单可以看到非常多的树状建模命令,这也是ANSYS7.0版本和以前版本的一个显著差别。虽然菜单的外观改变了,但是菜单结构没有变化,这对ANSYS用户平滑升级非常有利。 ⑤图形窗口(Graphic Windows) 图形窗口用于显示分析过程的图形,实现图形的选取。在这里可以看到实体建模各个过程的图形并可查看随后分析的结果。 (2)输出窗口(Output Windows) 输出窗口用于显示程序的文本信息,即以简单表格形式显示过程数据等信息。通常,输出窗口被主窗口遮盖,当然,如果需要随时可以将输出窗口拖到前面。 注意: 应该在ANSYS分析的各个步骤中随时查看输出窗口中的信息,检验分析过程是否正确,以便及时调整。 通过GUI可以方便地交互式访问程序的各种功能、命令、用户手册和参考材料,一步步地完成整个分析,很好地体现出ANSYS的易用性。同时,ANSYS软件也提供了完整的在线说明和帮助文件,以协助有经验的用户进行高级应用。 在用户界面中,ANSYS软件提供了4种通用的命令输入方式:菜单、对话框、工具栏和直接输入命令。 2、ANSYS分析过程: 一个典型的ANSYS分析过程包含3个主要步骤,每个主要步骤及其子步骤如下: (1)建立有限元模型 在ANSYS中建立有限元模型的过程大致可分为以下3个主要步骤: ①建立或导入几何模型 ②定义材料属性 ③划分网格建立有限元模型 (2)施加载荷并求解 在ANSYS中施加载荷及求解的过程大致可以分为以下3个主要步骤: ①定义约束 ②施加载荷 ③设置分析选项并求解 (3)查看分析结果 在ANSYS中查看分析结果的过程大致可以分为以下2个主要步骤: ①查看分析结果 ②检验分析结果(验证结果是否正确)

相关文档
最新文档