年产10万吨丙烯酸工艺的设计说明
年产10万吨丙烯酸工艺设计资料

1引言1.1 概述丙烯酸是一种重要的有机化工原料,主要用于生产丙烯酸酯类,还可用于生产高吸水性树脂、助洗涤剂和水处理剂等,广泛应用于涂料、化纤、纺织、皮革、塑料、粘合剂、石油开采等各个领域[1]。
20世纪20年代末,化学家Otto Rohm从2-氯乙醇制羟基丙腈转而生产丙烯酸,完成了对丙烯酸工业化生产工艺的研究[2]。
1939年,德国化学家Reppe发明了以乙炔、一氧化碳和水为原料,用羰基镍为催化剂合成出丙烯酸。
1969年,美国联碳公司从英国BP公司引进丙烯直接氧化经丙烯醛生产丙烯酸技术,并建立工业化生产装置。
经过多年不断改进,尤其是对丙烯氧化催化剂的改进,该法已成为制造丙烯酸的主导生产方法[3]。
1.2 丙烯酸生产工艺技术丙烯酸在20世纪30年代实现工业化生产,其生产方法经历了氰乙醇法、雷普(Reppe)法、烯酮法、丙烯腈水解法和丙烯氧化法[4,5]。
1.2.1 氰乙醇法氰乙醇法是最早工业化生产丙烯酸及其酯的方法。
德国和美国分别在1927年和1931年用此方法建成了工业化装置。
由于反应过程会生成各种聚合物,因此丙烯酸收率较低,仅为60~70%,且氰化物剧毒,严重污染环境,故采用此法的生产装置早在50年代就已关闭。
1.2.2 Reppe法20世纪30年代,德国的Walter Reppe博士发现利用自己发明的Reppe反应可以直接从乙炔生产丙烯酸和丙烯酸酯类。
在60年代以前,用Reppe法或改良Reppe 法生产丙烯酸及其酯的工艺曾占统治地位,随着石油化工技术的开发和环境保护要求的加强,到1976年改良Reppe法的装置已全部停产。
1.2.3 烯酮法以乙酸或丙酮为原料,磷酸三乙酯为催化剂,在700℃时裂解生成乙烯酮,然后与无水甲醛在AlCl3或BF3催化剂存在下,在25℃进行气相反应生成β-丙内酯,再与热的磷酸接触异构化生成丙烯酸。
乙烯酮法产品纯度高,收率也高,副产物和第 1 页共35页。
石化年产10万吨甲基丙烯酸甲酯项目 6-技术经济评价

目录概述 (1)1 投资估算 (2)1.1 投资估算编制依据 (2)1.2 建设投资估算 (3)1.2.1 估算方法 (3)1.2.2 固定资产 (3)1.2.3 无形资产 (12)1.2.4 递延资产 (12)1.2.5 预备费用 (13)1.2.6 建设投资汇总 (13)1.3 建设期利息 (14)1.4 流动资金 (14)1.5 项目总投资汇总 (15)2 资金筹措 (16)2.1 资金来源 (16)2.2 银行贷款还款方式 (16)2.3 资金使用计划 (16)3 产品成本和费用估算 (17)3.1 成本估算说明 (17)3.1.1 概述 (17)3.1.2 编制依据 (17)3.1.3 估算依据和说明 (17)3.2 产品总成本费用估算 (17)3.2.1 概述 (17)3.2.2 估算过程 (18)3.2.3 产品成本汇总 (22)4 销售收入和税金估算 (24)4.1 销售收入估算 (24)4.2 税金估算 (24)5 财务分析 (25)5.1 财务分析报表 (25)5.1.1 利润分配表 (25)5.1.2 财务损益表 (25)5.1.3 现金流量表 (26)5.2 盈利能力分析 (28)5.2.1 静态指标 (28)5.2.2 动态指标 (29)5.3 不确定性分析 (34)5.3.1 盈亏平衡分析 (34)5.3.2 敏感性分析 (35)6 技术经济指标 (38)6.1 主要技术经济指标 (38)7 财务评价结论 (40)概述本项目设计为中化泉州石化3万吨/年干气脱硫制二甲基亚砜项目。
本装置选址在福建省泉州市泉惠石化工业园区泉州石化总厂内,靠近总厂轻烃回收装置、循环水场、除盐水站、凝结水处理站、真空除气和制冷站、厂区给水及消防加压站,位置便利,原料干气与公用工程运输管线短。
本项目主要设施包括生产主车间、与工艺生产相适应的辅助生产设施、公用工程以及相关的生产管理等设施。
在可行性研究中,通过分析市场需求、生产规模、工艺技术方案、原材料、燃料及动力的供应、建厂条件和厂址方案、公用工程和辅助设施、环境保护、工厂组织和劳动定员及项目实施规划,对多种方案进行比较,可得到最佳方案。
年产10万吨异丁烯法甲基丙烯酸甲酯工艺设计

---------------------------------------------------------------范文最新推荐------------------------------------------------------ 年产10万吨异丁烯法甲基丙烯酸甲酯工艺设计设计说明:甲基丙烯酸甲酯(MMA)是合成有机玻璃及MBS树脂的单体。
我国MMA的生产以丙酮腈醇法(ACH法)为主,合成路线复杂,工艺流程长,多步反应后产率低,成本高。
该方法采用剧毒的氢氰酸为原料,产生大量难于处理的废酸,环境污染严重,因此开发新的MMA工艺路线很有必要。
近年来,很多国家采用异丁烯为原料来生产MMA并已实现工业化。
该方法生产绿色化、经济效益高,推广应用后能获得较大的经济效益和社会效益。
本文是对异丁烯制备MMA进行工艺设计。
6718关键词:催化剂;直接氧化法;异丁烯;甲基丙烯酸甲酯A Process Design for 100,000 Tons Isobutane Conversion to Methyl Methacrylate by Two-Stage1 / 29Design notesMethyl methacrylate (MMA) is a monomer that is used to polymerize the organic glass and the MBS resin. MMA is produced by the method of acetone-cyanohydrin(ACH) mainly in our country. The synthetic route is complex, the technical line is long, and the yield is low with high cost after many steps. Hydrocyanic acid (seriously poisonous) is used as raw material, the treatment of numerous waste acid is difficult . Furthermore, concentrated sulfuric acid consumed in this method corrodes equipments and pollutes the environment seriously. Considering all of these, it is greatly necessary to develop a new chemical technology of MMA. Recently, in many countries isobutyl is used as raw material to produce MMA and the method already is industrialized. This is the synthesis of Isobutene Conversion to Methyl Methacrylate by Two-Stage process design.Keywords Catalyst;catalytic Direct Oxidative Esterification Process; Isobutane; Methyl Methacrylate---------------------------------------------------------------范文最新推荐------------------------------------------------------ 1 概述51.1 甲基丙烯酸甲酯的生产工艺及设计意义51.1.1 ACH法51.1.2 改进的ACH法64.2 反应器的设计544.2.1设计条件544.2.2基本物性数据544.2.3反应器的数学模型564.2.4反应管排布593 / 294.2.5壳程换热624.2.6管口设计634.2.7预热器644.2.8封头645 部分设备选型与计算665.1 MMA精馏塔665.1.1 各类尺寸的计算665.1.2 精馏塔塔顶冷凝器选型68 5.1.3 精馏塔塔底再沸器选型695.3.4 泵706 工艺流程图(见附录二)71---------------------------------------------------------------范文最新推荐------------------------------------------------------ 7 车间布臵设计图727.1生产车间平面布臵图(见附录三)727.2生产车间立面布臵图(见附录四)72致谢73参考文献741 概述1.1 甲基丙烯酸甲酯的生产工艺及设计意义[1]甲基丙烯酸甲酯(MMA)是一种重要的有机化工原料和化工产品,主要用于生产有机玻璃(PMMA),聚氯乙烯助剂ACR、甲基丙烯酸甲酯-苯乙烯-丁二烯共聚物(MBS)和用作腈纶生产的第二单体,也可用于制造其他树脂、塑料、涂料、粘合剂、润滑剂、木材和软木的5 / 29浸润剂、电机浅圈的浸透剂、纸张上光剂、印染助剂和绝缘灌注材料等,甲基丙烯酸甲酯的市场前景非常广阔。
年产10万吨丙烯酸丁酯合成工艺设计

课程设计题目年产10万吨丙烯酸丁酯合成工艺设计学院化学化工学院专业化学工程与工艺班级学生学号指导教师化学工程系课程指导小组二〇一五年十一月二十日学院专业化学工程与工艺学生学号设计题目年产10吨丙烯酸丁酯合成工艺设计一、课程设计的内容主要内容为年产10万吨丙烯酸丁酯的工艺设计。
通过工艺对比选择合适的方案,进行物料衡算和能量衡算,确定关键设备的选型和材料,绘制出工艺流程图、设备图等相关图纸,对生产过程中进行经济核算与分析。
二、课程设计的要求1.查阅国内外的相关文献不得少于15篇,完成课程设计任务。
2.独立完成给定的设计任务后编写出符合要求的课程设计说明书,要求工艺设计合理,将研究、开发的技术及过程开发的成果与过程建设、经济核算衔接起来;绘制出必要的设计图纸。
3. 综合应用化学工程和相关学科的理论知识与技能,分析和解决实际问题。
4. 完成课程设计的撰写。
三、文献查询方向及范围1.利用学校的清华同方数据库、万方学位论文全文数据库、ScienceDirect、ACS(美国化学学会)数据库查询丙烯酸酯工业制备方法等中英文文献与硕博论文。
2.主要参考文献[1] 夏涛. 丙烯酸正丁酯合成反应的新型催化剂及工艺研究[D]. 长沙: 湖南大学2002.[2] 杨召启,李石磊,方晓明.丙烯酸丁酯最佳反应条件的选择[J].甘肃科技, 2010,26(1):41-43.[3]徐金文,丁鹏飞. 降低精制塔底重组份中丁酯含量[J]. 山东化工, 2015,44(16): 119-120.[4] 李汝新. 丙烯酸及酯的市场分析[J].甘肃科技, 2006,22(5):1-8.[5] 邵艳秋,张桂芳. 丙烯酸丁酯合成方法的改进[J]. 浓阳化工, 2000, 29(2), 70-75.[6] Acrylic acid technology, Chemical Week, 2003, 165(21):25-26.[7] Acrylic acid, European Chemical News, 2002, 77(2021): 17.目录1.1产品的性质、用途、价格及其变化趋势......................................................... - 1 -1.1.1产品的性质及用途.................................................................................. - 1 -1.1.2产品价格及变化趋势.............................................................................. - 1 -1.2产品历史、现状及发展趋势............................................................................. - 2 -1.3世界范围内产品的生产厂家、产量......................................................... - 2 -1.4世界范围内生产工艺及分析..................................................................... - 2 -1.4.1氰乙醇法.................................................................................................. - 3 -1.4.2丙烯腈水解法.......................................................................................... - 3 -1.4.3β—丙内酯法........................................................................................... - 4 -1.4.4改良雷珀法.............................................................................................. - 4 -1.4.5酯交换法.................................................................................................. - 5 -1.4.6直接酯化法.............................................................................................. - 5 -2工艺设计................................................................................................................ - 6 -2.1工艺路线设计..................................................................................................... - 6 -2.2工艺流程设计..................................................................................................... - 7 -3可行性分析............................................................................................................ - 9 -3.1工艺可行性分析................................................................................................. - 9 -3.1.1原料来源.................................................................................................. - 9 -3.1.2设备、工艺操作条件............................................................................ - 10 -3.13收率、产品质量和对环境的影响......................................................... - 10 -3.2经济效益可行性分析....................................................................................... - 11 -3.2.1可变成本、固定成本及总成本............................................................ - 11 -3.2.2年产值、年利润.................................................................................... - 12 -3.2.3投资利润率............................................................................................ - 12 -4总结...................................................................................................................... - 13 -5参考文献.............................................................................................................. - 14 -1前言1.1产品的性质、用途、价格及其变化趋势本设计主要产品为丙烯酸丁酯(CH2=CHCOO(CH2)3CH3)以其特有的性质,包括易于配制,黏接性,耐水性,耐久性,常被用作有机合成中间体、粘合剂、乳化剂、涂料等。
年产10万吨丙烯精制塔的工艺设计2范文

年产10万吨丙烯精制塔的工艺设计一、说明书(1) 丙烯生产概况简述。
(略)(2) 设计方案的确定与论证。
(略)(3) 本设计的工艺流程图(看附件),及流程说明(略)。
(4)工艺设计计算结果汇总,附属设备一览表,工艺管线接管尺寸汇总表,设计结果评价。
(略)(5)工艺计算。
(6)设备计算及选型。
(略)(7)参考文献。
二、丙烯精制塔的工艺计算(1)物料衡算1. 关键组分按多组分精馏确定关键组分;挥发度高的丙烯作为轻关键组分在塔顶分出;挥发度低的丙烷作为重关键组分在塔底分出。
原始数据见表一表一原始数据操作压力 p=1.74MPa (表压)。
年生产能力t 丙烯2. 计算每小时塔顶产量,每年的操作时间按8000h 计算。
由题目给定/8000=12500kg /h3.计算塔釜组成设计比丙烷重的全部在塔底,比丙烷轻的全部在塔顶。
以100kg /h 进料为基准,进行物料衡算见表二。
表二 物料衡算F=D+W%2.15100125.0004.025.7125.0=⎪⎪⎩⎪⎪⎨⎧+=+-WD W D W 或 ⎩⎨⎧+=+=D W W D 100125.0996.075.92解得: W=8.116k g /h D=100-8.1161=91.8839 k g /h丙烷 x 83H WC =34.82125.0004.025.7004.005.7=+--WD D﹪丁烷x 104H WC =46.2125.0004.025.72.0=+-WD ﹪式中 F −原料液流量,k g /h;D —塔顶产品(馏出液)流量,k g /hW —塔底产品(釜残液)流量,k g /h x W—釜液中各组分的质量分数。
4. 将质量分数换算成摩尔分数按下式计算: x A =CC B B M x M x M x M x W W A WAAWA ++式中 x A ——液相中A 组分的摩尔质量;A M 、MB 、MC ——A 、B 、C 组分的摩尔质量,kg/mol; x WA x WB x WC ——液相中A 、B 、C 组分的质量分数。
毕业设计:年产10万吨聚丙烯聚合工段工艺设计

毕业设计:年产10万吨聚丙烯聚合工段工艺设计1. 引言聚丙烯是一种广泛应用于塑料制品、纺织品、药品、包装材料等领域的重要聚合物。
随着市场需求的增加,对聚丙烯的产量也有着不断增长的要求。
本文旨在设计一种年产10万吨聚丙烯的聚合工段工艺,以满足市场对聚丙烯的需求。
2. 聚丙烯聚合工段工艺概述聚丙烯的聚合工艺一般分为以下几个工段:催化剂制备、聚合反应、分离纯化和产品制造。
在年产10万吨的规模下,这些工段需要设计成高效、稳定和可持续的工艺流程。
2.1 催化剂制备催化剂是聚合反应的核心组成部分,直接影响聚丙烯产物的质量和产量。
催化剂应采用高效、稳定和可再生的催化剂,例如Ziegler-Natta催化剂。
本文设计的工艺中,催化剂制备工段将包括催化剂激活、载体处理、催化剂添加等步骤。
2.2 聚合反应聚合反应是将丙烯单体转化为聚丙烯的关键步骤。
聚合反应可采用不同的反应方式,如气相聚合、溶液聚合或乳液聚合。
在设计年产10万吨的聚合工段工艺时,应选择适合规模化生产的聚合反应方式。
本文中,将采用气相聚合的工艺流程,并详细设计反应器的结构和工艺参数。
2.3 分离纯化在聚合反应后,产生的混合物中可能含有未反应的单体、溶剂、催化剂和杂质等。
分离纯化工段将对产物进行纯化处理,以获得高纯度的聚丙烯产品。
分离纯化的工艺流程包括溶剂回收、蒸馏、结晶等步骤。
本文设计的工艺将采用先蒸馏再结晶的方式,以实现高效的分离纯化效果。
2.4 产品制造经过分离纯化后,得到的聚丙烯产品可以通过注塑、挤出、吹塑等方式进行塑料制品的生产。
产品制造工段将根据市场需求和产品质量要求,设计相应的生产线和工艺参数。
本文将重点考虑注塑和挤出两种生产方式,并给出相应的工艺设计和参数。
3. 工艺参数和设备选择设计年产10万吨聚丙烯聚合工段的工艺时,需要根据规模、产品质量要求和经济效益等因素,确定相应的工艺参数和设备选择。
3.1 工艺参数对于聚合反应工段,工艺参数需要考虑反应温度、反应压力、催化剂用量等因素。
年产10万吨聚丙烯的工艺设计论文初稿

年产10万吨聚丙烯的工艺设计摘要聚丙烯是丙烯单体聚合而形成的高分子聚合物,是一种通用合成树脂。
它作为一种高分子塑料,在现代化工生产中占有重要的地位,是五大工程塑料之一。
聚丙烯之所以是各种聚丙烯烃材料中发展最快的一种,关键在于其催化剂技术的飞速发展。
本设计中就详细介绍了聚丙烯随催化剂的发展而发展的情况。
本设计是以中原石化的S-PP工艺为设计基础,设定年产量为两万吨,然后进行物料衡算、热量衡算、设备选型等过程,最终完成的一份比较完整的设计说明书。
另外聚丙烯来源丰富,价格便宜,易于加工成型,产品综合性能优良,因此被广泛地应用于化工、化纤、轻工、家电、建筑、包装、农业、国防、交通运输、民用塑料制品等各个领域,在聚烯烃树脂中,是仅次于聚氯乙烯、聚乙烯之后的第三大通用塑料。
关键词:聚丙烯 S-PP工艺液相本体聚合催化剂ABSTRACTPolypropylene is a generic synthetic resin ,which is polymerizated by propylene monomer .As a polymer plastic, in the modern chemical production it occupies an important position and was one of the five major engineeringplastics.Polypropylene is the fastest developing material in variety of hydrocarbon materials .The key reason is the catalyst’s rapid dev elopment. This design introduced polypropylene’s development with the development of catalyst.The design is based on the Zhongyuan Petrochemical S-PP technology and set for 20,000 tons of annual output .Then proceed to the material balance 、energy balance and equipment selection, Finally reached a more complete design specification.Another, Because of its rich resource, low price, easy to process takes shape, fine productoverall performance,therefore it is widely applied to chemical,the chemical fiber, the light industry, the electrical appliances, the building, the packing, agricultural, the national defense, thetransportation, the civil plastic product and so on. In the polyolefine resin,it is only inferior after the PVC、PE the third general plastic.KEY WORDS:Polypropylene S-PP craft liquid phase polymerization catalyst目录前言 (1)第1章工艺流程确定 (13)§1.1催化剂的配置和计量 (13)§1.2丙烯预精制和丙烯保安精制及氢气压缩 (15)§1.3 预聚合与液相本体聚合 (17)§1.4 聚合物闪蒸和脱气 (18)§1.5 聚合物的汽蒸和干燥 (19)§1.6 生产原材料的规格 (20)第2章物料衡算 (26)§2.1计算基础 (26)§2.1.1设计条件 (26)§2.1.2丙烯进料量 (27)§2.1.3催化剂用量 (27)§2.1.4氢气用量 (28)§2.2原材料消耗定额 (28)§2.3主要设备物料衡算 (29)§2.3.1 CO汽提塔T701物料衡算 (29)§2.3.2预聚合反应器R200物料衡算 (30)§2.3.3聚合反应器R201物料衡算 (31)§2.3.4闪蒸罐D301物料衡算 (32)§2.3.5汽蒸罐D501物料衡算 (34)§2.3.6干燥器D502物料衡算 (35)§2.3.7挤压造粒单元物料衡算 (36)§2.3.8总物料平衡表 (37)第3章热量衡算 (37)§3.1主要设备热量衡算 (37)§3.1.1预聚合反应器R200热量衡算 (37)§3.1.2聚合反应器R201热量衡算 (41)§3.1.3闪蒸罐D301热量衡算 (43)§3.1.4汽蒸罐D501热量衡算 (46)§3.1.5干燥器D502热量衡算 (49)§3.1.6总热量平衡表 (52)第4章设备选型 (52)§4.1主要设备选型 (52)§4.1.1预聚合反应器R200 (52)§4.1.2聚合反应器R201 (53)§4.1.3汽蒸罐D501 (54)§4.1.4干燥器D502 (60)第5章聚丙烯装置的安全生产 (63)§5.1静电的危害与防范 (63)§5.1.1静电的危害 (63)§5.1.2静电的防范措施 (64)§5.2其他安全措施 (64)第6章“三废”处理与环境保护 (65)§6.1废水 (66)§6.2废气 (66)§6.3废渣 (66)参考文献 (66)致谢 (68)前言聚丙烯(Polypropylene,常缩写为PP)是丙烯(Proplylene,缩写为PR)单体聚合而形成的高分子聚合物,是一种通用合成树脂(或通用合成塑料)。
年产吨丙烯酸悬浮聚合间歇操作工艺的设计

年产吨丙烯酸悬浮聚合间歇操作工艺的设计悬浮聚合是一种常用的聚合工艺,可用于合成多种聚合物。
本文将介绍年产吨丙烯酸悬浮聚合的间歇操作工艺的设计。
简介丙烯酸是一种重要的有机化工原料,广泛应用于合成聚丙烯酸、聚酰胺等高分子材料。
悬浮聚合是一种将丙烯酸在悬浮体系中进行聚合的工艺,其特点是操作简单、容易控制反应条件。
本文设计的悬浮聚合工艺以年产吨为目标,旨在达到高产出、高质量和节约能源的目标。
原料准备在悬浮聚合过程中,需要准备以下原料:1.丙烯酸(纯度99%以上)2.甲基丙烯酸甲酯(MMA)(纯度99%以上)3.乙酸乙酯(纯度99%以上)4.过硫酸铵(AP)(纯度98%以上)5.水(纯度大于18MΩ/cm的去离子水)以上原料需要按一定的配比准备,保证反应中所需的化学计量比。
反应器设计本工艺采用玻璃反应器作为反应容器。
玻璃反应器具有优良的化学稳定性和高透明性,在悬浮聚合反应中使用较为常见。
反应器的设计原则是能够控制反应温度、压力和搅拌速度,以确保反应的顺利进行。
同时,反应器应具有足够的容积,以容纳所需的反应物和反应产物。
工艺流程本工艺的悬浮聚合工艺流程如下:1.将反应器内注入一定量的水,并加热至70℃左右。
2.加入一定量的丙烯酸和甲基丙烯酸甲酯以及乙酸乙酯,继续加热至预定温度。
3.在反应物料达到所需温度之后,将一定量的过硫酸铵溶液加入反应器中,并开始搅拌。
4.反应进行一段时间后,可以逐渐将悬浮剂(如聚乙烯醇溶液)加入反应器中,以维持悬浮体系的稳定性。
5.继续反应一段时间后,可以停止加热并继续搅拌,以保持反应的均匀性。
6.当达到所需的反应时间后,将反应物料冷却至室温。
7.拆卸反应器,对反应产物进行加工和分离,得到纯度较高的丙烯酸聚合物。
工艺参数为了达到年产吨级的目标,需要合理选择和控制工艺参数。
以下是建议的工艺参数范围:•反应温度:50-90℃•反应时间:8-12小时•反应压力:常压•搅拌速度:100-500 rpm•过硫酸铵加入量:0.5-1.5%(相对于丙烯酸和MMA的总质量)以上参数应根据实际情况进行调整,以达到最佳的反应效果和产物质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1引言1.1 概述丙烯酸是一种重要的有机化工原料,主要用于生产丙烯酸酯类,还可用于生产高吸水性树脂、助洗涤剂和水处理剂等,广泛应用于涂料、化纤、纺织、皮革、塑料、粘合剂、石油开采等各个领域[1]。
20世纪20年代末,化学家Otto Rohm从2-氯乙醇制羟基丙腈转而生产丙烯酸,完成了对丙烯酸工业化生产工艺的研究[2]。
1939年,德国化学家Reppe发明了以乙炔、一氧化碳和水为原料,用羰基镍为催化剂合成出丙烯酸。
1969年,美国联碳公司从英国BP公司引进丙烯直接氧化经丙烯醛生产丙烯酸技术,并建立工业化生产装置。
经过多年不断改进,尤其是对丙烯氧化催化剂的改进,该法已成为制造丙烯酸的主导生产方法[3]。
1.2 丙烯酸生产工艺技术丙烯酸在20世纪30年代实现工业化生产,其生产方法经历了氰乙醇法、雷普(Reppe)法、烯酮法、丙烯腈水解法和丙烯氧化法[4,5]。
1.2.1 氰乙醇法氰乙醇法是最早工业化生产丙烯酸及其酯的方法。
德国和美国分别在1927年和1931年用此方法建成了工业化装置。
由于反应过程会生成各种聚合物,因此丙烯酸收率较低,仅为60~70%,且氰化物剧毒,严重污染环境,故采用此法的生产装置早在50年代就已关闭。
1.2.2 Reppe法20世纪30年代,德国的Walter Reppe博士发现利用自己发明的Reppe反应可以直接从乙炔生产丙烯酸和丙烯酸酯类。
在60年代以前,用Reppe法或改良Reppe 法生产丙烯酸及其酯的工艺曾占统治地位,随着石油化工技术的开发和环境保护要求的加强,到1976年改良Reppe法的装置已全部停产。
1.2.3 烯酮法以乙酸或丙酮为原料,磷酸三乙酯为催化剂,在700℃时裂解生成乙烯酮,然后与无水甲醛在AlCl3或BF3催化剂存在下,在25℃进行气相反应生成β-丙酯,再与热的磷酸接触异构化生成丙烯酸。
乙烯酮法产品纯度高,收率也高,副产物和未反应的物料能循环使用,适用于连续生产,但原料乙酸或丙酮价格高且β-丙酯为致癌物质。
1.2.4 丙烯腈水解法这是法国Societed’Ugine和美国Sohio开发的工业制备方法。
该法工艺简单,反应条件温和,设备投资不大,可同时生产丙烯酸胺。
缺点是污染严重,副产大量低价值的硫酸铵。
该流程至今只有日本旭化成和英国联合胶体仍有运行,墨西哥的塞拉纳斯装置已于1993年停产。
1.2.5 丙烯氧化法20世纪60年代末,随着石油化工的高速发展,丙烯价格日趋便宜,由于高度活泼、高度选择性和长使用寿命的催化剂的开发,使得丙烯直接氧化制丙烯酸的工业化方法为工业界所接受[6]。
丙烯氧化法起初分为一步法和两步法,但分两步进行更有助于通过优化催化剂的组成和反应条件而提高催化剂的选择性。
所谓丙烯两步氧化法是在复合金属氧化物催化剂存在下,经空气氧化先生成丙烯醛,再进一步催化氧化成丙烯酸[7,8]。
丙烯酸的工业生产方法主要为丙烯两步氧化法。
工业生产中应用的技术主要有:美国索亥俄(Sohio)技术、日本触媒技术、日本三菱油化技术、日本化药技术、德国BASF技术[9]。
(1)美国索亥俄( Sohio) 技术60年代末70年代初在美国和日本具有一定的市场。
Sohio技术的特点是丙烯氧化采用两台反应器串联操作,吸收塔顶出来的废气不循环;废气中未反应的丙烯不回收;催化剂寿命为2年。
(2)日本触媒化学(NSKK) 技术日本触媒公司是世界上首先实现工业二步法生产丙烯酸的厂家。
其催化剂为中空圆柱状,其形状增加了几何外表面,转化率得到提高的同时,也提高了生成物自催化剂微孔中扩散出来的路径,减少了深度氧化,因而提高了产物的单程收率及选择性,同时降低了热点,减少了床层阻力,使催化剂的寿命得以延长。
其工艺特点是在Mo-Bi系催化剂中加入了元素Co,从而提高了丙烯醛的选择性和单程收率;采用废气催化焚烧炉,不需消耗燃料气。
(3)日本三菱油化(MPCL) 技术日本三菱石油化学公司公司对其原来的工艺和催化剂不断研究和改进,改进后的催化剂可适应比日本触媒公司二段催化剂更低的反应温度,活性高、选择性高、寿命也长。
其工艺特点是以高浓度丙烯为原料,丙烯酸单程收率高于87%,未反应的丙烯或丙烯醛不循环使用。
两台串联的固定床反应器中分别采用Mo-Bi系、Mo-V 系氧化物为催化剂,寿命均为6 年。
(4)日本化药技术采用的催化剂为涂裹型催化剂,形状规则,利于装填,机械强度较好,目的产物选择性好。
缺点是反应热点温度较高,如果飞温容易烧坏催化剂。
丙烯氧化制丙烯醛采用Mo、Bi、Ni、Co、Fe 系催化剂,丙烯醛氧化制丙烯酸采用Mo、V、Cu、Sb 系催化剂[10]。
反应器均为固定床列管式反应器。
主要应用在华谊、裕廊和石化等部分装置上。
(5)德国巴斯夫(BASF) 技术巴斯夫的丙烯酸生产装置是目前世界上单系列装置中规模最大的,其技术也是采用固定床二步氧化法。
丙烯氧化用Mo-Bi系或Mo-Co系催化剂,丙烯醛的单程收率为80%左右;丙烯醛进一步催化氧化用Mo、W、V、Fe 系催化剂,丙烯酸单程收率高于90%[11]。
其技术特点为:丙烯氧化反应气不用水吸收,而是用一种高沸点有机溶剂作为吸收剂;丙烯氧化反应循环气体中不用水蒸汽,而是用氮气,可减少废水的生成。
1.3 丙烯酸工业生产概况20世纪90年代,丙烯酸系单体面临一个扩展的热潮,随着聚丙烯酸型超吸收剂和家用洗涤剂增量剂的开发和普及,在世界上形成了一个投资兴建丙烯酸及酯单体装置的热潮。
由于其品种繁多、用途广泛、产品附加值高等优点,现在已形成了独立的丙烯酸化工体系[12]。
1.3.1 国外工业生产概况目前,世界上的丙烯酸生产装置已有93%以上采用丙烯二步氧化法。
在吸收、开发和推广丙烯气相氧化方面,日本是世界上做出最大贡献的国家,尤其是日本触媒化学公司和日本三菱化学公司,他们所采用的方法比较先进,更有竞争力,因此目前国外新建丙烯酸装置大多引进它们的技术,世界上大约80%的丙烯酸生产装置采用了日本的技术[13]。
沿用其它生产方法较为有名的公司,仅有BASF在德国的一套由一氧化碳乙炔路线的改良Reppe法装置。
世界上丙烯酸的生产主要集中在美国、西欧和日本。
就总的生产能力来讲,BASF、Rohm&Hass、Celanese和日本触媒化学公司四大生产商就占66%。
BASF 以丙烯酸的生产规模和产量位居世界丙烯酸工业首位,在欧洲丙烯酸生产能力达42万吨/年。
在东南亚,BASF与马来西亚的Petronas合作建设的一套16万吨/年丙烯酸装置已于2000年投产。
在欧洲,Rohm&Hass公司与德国Stockhausen GmbH 组成全球性的丙烯酸产品伙伴关系,2006年其丙烯酸的生产能力可达33万吨/年[14]。
Celanese是世界上第三大丙烯酸的生产者,在美国德克萨斯州的ClearLake有27.2万吨/年丙烯酸装置,并于2001年在此地增加丙烯酸能力8万吨/年。
日本触媒化学公司的丙烯酸最大的装置是在日本姬路有22万吨/年丙烯酸。
在印度尼西亚与Tripolyta合资建设的一套6万吨/年的丙烯酸装置已于1999年投产。
在美国德克萨斯州的Bay Port与法国Elf Atochem公司合资建设的一套12万吨/年丙烯酸装置在2001年投产,其丙烯酸及其酯的生产能力达到53.5万吨/年[15]。
1.3.2 国工业生产现状我国丙烯酸的工业化生产起步于20世纪50年代,珊瑚化工厂对氯乙醇和丙烯酸水解法生产丙烯酸工艺进行了研究。
60年代初,丙烯酸水解法几乎成为国唯一的生产方法,规模小、品种少,化学公司建成第一套500吨/年丙烯氧化法的恒产丙烯酸的中试装置,当时全国产量最多的年份也仅为3500吨,品种仅限于丙烯酸和丙烯酸甲酯[16]。
我国大规模生产丙烯酸始于20世纪70年代末期,1978年,化工厂首次从日本触媒化学公司引进全套以丙烯二步氧化法工艺生产丙烯酸的装置,1984年建成投产丙烯酸2.05万吨/年[17]。
20世纪90年代初以来,国丙烯酸供需缺口逐年增大,中国丙烯酸市场的巨大潜力和良好发展前景,提高了国外投资者建设丙烯酸项目的积极性。
1992年,石化从日本三菱化学公司引进生产技术,建成投产设计能力2.72万吨/年;1994年,华谊丙烯酸亦从日本三菱化学公司引进全套装置,其设计能力为3万吨/年[18]。
随后,化工厂又扩大规模,陆续引进第二、三套丙烯酸及酯类装置,使我国的丙烯酸生产有了长足的发展。
2000年以来,丙烯酸行业发展更加迅速。
华谊丙烯酸厂在引进技术消化吸收的基础上,与自主开发丙烯选择氧化催化剂的石化研究院合作,建成3万吨/年的丙烯酸项目。
2004年,BASF-扬子石化合资丙烯酸项目投产,生产能力为16万吨/年。
由日本三菱化学公司转让丙烯酸技术,为石蜡化工公司建设的8万吨/年丙烯酸装置,也于2006年底建成。
卫星企业集团的后期丙烯酸装置和石化的8万吨/年丙烯酸装置也陆续投产[19]。
从长远看,中国将成为丙烯酸需求增长的主要地区,中国丙烯酸产品仍有较大发展空间。
1.4 丙烯酸生产工艺技术的发展前景目前,国丙烯酸生产企业的工艺技术大多从日本引进,投资额较高。
采用国技术、设备和催化剂,将会大幅降低投资和生产成本,提高产品竞争力。
在丙烯酸工艺技术的改进过程中,因为催化剂费用占了生产成本的相当比例,提高选择性和转化率,延长催化剂寿命成为研究的关键[20]。
当前形势下,我国丙烯酸行业应加快丙烯酸生产工艺及催化剂的国产化,形成自主知识产权,将有利于丙烯酸行业的健康发展。
1.5 研究的目的及意义随着经济的飞速发展,丙烯酸需求量逐年增长,我国丙烯酸行业面临良好的发展机遇与技术挑战。
目前全球以丙烯氧化制丙烯酸为首要技术,几乎占据了所有的生产量,选择最优的氧化工艺技术,从而扩大生产能力、节省设备投资迫在眉睫。
基于此,本课题采用丙烯气相两步氧化法制备丙烯酸的生产技术,借鉴国外的先进经验,选择高效能催化剂,以此建一10万吨/年丙烯酸生产车间,使生产产品的综合性能在原有基础上明显提高,生产效率进一步提升,工艺、控制更加优化,生产成本明显下降。
2丙烯酸工艺流程的确定2.1 丙烯酸生产原理丙烯直接氧化生产丙烯酸有一步法和两步法之分。
一步法具有反应装置简单、工艺流程短、只需一种催化剂、投资少等优点,但存在几个突出缺点[21]:①一步法是在一个反应器进行两个氧化反应,强制一种催化剂去适应两个不同反应的要求,影响了催化作用的有效发挥,丙烯酸收率低;②把两个反应合并为一步进行,反应热效应大。
要降低反应放热量,只能通过降低丙烯的浓度来实现,因此生产能力低;③催化剂寿命短,导致经济上不合理。
鉴于以上原因,目前工业上主要采用两步法生产,即第一步丙烯氧化生成丙烯醛,第二步丙烯醛氧化生成丙烯酸。