最新23除草剂作用的种类和作用机理汇总
目前最全的除草剂讲解

目前最全的除草剂讲解
除草剂是一种用于控制杂草生长的化学性农药。
它们可以有效抑制植
物的生长发育,迫使它们凋亡,从而有效控制了杂草的生长发育,减少它
们对庄稼生长的干扰。
除草剂的种类繁多,常见的有植物生长调节剂、植物素剂、合成除草剂、植物激素除草剂、植物抗性除草剂等,其功能适用于不同的作物,以
及适用于控制不同类型的杂草。
植物素剂是一种仿生除草剂,其中的活性物质是植物素。
主要通过抑
制光合作用,抑制表皮的水分转移,以及抑制胞质的正常形成,从而达到
植物萎蔫凋亡的效果。
它适用于许多种类的杂草,如雏菊、蕨类植物等。
合成除草剂是一种专门用于除草的化学性农药,它可以像植物生长调
节剂一样抑制植物的生长发育,但比植物生长调节剂更加有效。
它的活性
成分有醋酸苯草醚、醋酸百草枯、醋酸苯唑等,可用于除根不完全的杂草,如蒲公英、蓬草等。
常见除草剂的应用原理是什么

常见除草剂的应用原理是什么1. 概述除草剂是一种可以有效阻止或抑制杂草生长的化学物质。
它们在农业、园艺和草坪护理等领域被广泛使用。
除草剂的应用原理是通过对杂草的内部生理过程产生干扰,从而使杂草受到伤害甚至死亡。
2. 常见除草剂分类常见除草剂可以按照不同的分类标准进行分类,例如化学结构、作用机制和使用对象等。
以下是根据作用机制的分类方式列出的常见除草剂:2.1. 草酮类除草剂草酮类除草剂作用于杂草的生物合成过程,通过阻断植物特定的酶活性,干扰脂肪和蛋白质的合成。
常见的草酮类除草剂包括:•哈拉(halosulfuron-methyl)•苏尔禾(sulfosulfuron)•嘉宝利(imazosulfuron)2.2. 芸苔类除草剂芸苔类除草剂抑制杂草的主要过程是破坏植物细胞壁的合成。
这类除草剂对杂草的选择性较好,可以削弱杂草的生长。
常见的芸苔类除草剂包括:•苯甲酰氨基二甲基异氰酸酯(isoxaben)•异草胺(dicamba)•百草枯(glyphosate)2.3. 唑类除草剂唑类除草剂抑制杂草的主要机制是阻止植物的特定蛋白质的合成,进而干扰杂草的生长和发育。
常见的唑类除草剂包括:•恶草灵(clodinafop-propargyl)•乙草胺(ethametsulfuron-methyl)•合成拟除草素(mesosulfuron-methyl)3. 除草剂的工作原理除草剂通过作用在杂草的特定生物过程,对杂草进行强化或抑制。
以下是常见除草剂的工作原理的简要说明:3.1. 草酮类除草剂的工作原理草酮类除草剂通过干扰植物酶的活性,抑制杂草的脂肪和蛋白质的合成。
这些除草剂主要靶向杂草的特定酶,例如靶向脱氢酶的草酮类除草剂可以抑制植物体内的某些氨基酸的生物合成。
3.2. 芸苔类除草剂的工作原理芸苔类除草剂干扰杂草的细胞壁的合成,这一过程是杂草生长的重要因素之一。
这些除草剂作用于杂草细胞壁合成的酶或蛋白质,从而削弱杂草的细胞壁,并进一步抑制其生长。
我国麦田常用除草剂的种类及使用技术

我国麦田常用除草剂的种类及使用技术麦田是我国重要的经济农作物之一,在麦田中进行科学的除草管理非常重要,可以有效地控制杂草的生长,保证麦田作物的正常生长和丰收。
本文将介绍我国麦田常用的除草剂种类及使用技术。
一、除草剂种类1.非选择性除草剂:广谱杀草剂,能够对各类杂草起草杀伤作用,通常用于麦田预除草。
常见的非选择性除草剂有草甘膦、草铵膦等。
2.选择性除草剂:对麦类作物有一定选择性,在防除杂草的同时尽量避免对庄稼产生负面影响。
常见的选择性除草剂有草胺清、草禾胺、氯吡草胺等。
3.土壤处理剂:常用于麦田前田间整地前后处理,可杀除土壤中存在的杂草和种子。
常见的土壤处理剂有苯醚甲烷、四氯化碳等。
4.溶解型液体除草剂:通过灌溉灌入土壤中,通过溶解和透水作用杀灭杂草。
常见的溶解型液体除草剂有噻唑隆、草甘膦等。
5.慢速释放型除草剂:在麦田中定期施用,能够一定程度上抑制杂草的生长发育。
常见的慢速释放型除草剂有三嗪、吡他唑等。
6.有机除草剂:采用天然植物提取物和微生物菌剂作为活性成分,对杂草起到杀伤作用。
常见的有机除草剂有百草枯、草甘把等。
以上提到的除草剂种类都是我国麦田中常用的,各种除草剂在不同生长期和不同杂草类型下使用效果可能会有所不同,具体使用时需要根据实际情况调整剂量和使用方法。
二、除草剂使用技术1.剂量控制:除草剂的剂量控制对于除草效果至关重要,剂量过量会导致作物受害,剂量不足则无法达到杀伤效果。
应根据实际情况和产品使用说明合理调整剂量,防止过量使用。
2.喷洒技术:喷洒是常见的除草剂使用方式,要保证均匀喷洒,避免漏洒或过度喷撒。
喷洒前应调整好喷雾器的喷雾角度和喷雾压力,并根据风向和天气条件,选择适宜的天气进行喷洒。
3.春季和秋季施用:春季施用以预防和控制杂草的生长发育,秋季施用则主要针对冬季的杂草问题。
春季施药一般在麦田作物萌芽前进行,秋季施药则要根据杂草生长发育情况进行。
4.混合施用:根据实际需要,可将不同除草剂进行混合施用,以扩大杂草的防控范围。
2 除草剂基础知识及化学除草技术【2024版】

磺酰脲类 苄嘧磺隆 醚磺隆 胺苯磺隆 乙氧磺隆 啶嘧磺隆 氟吡嘧磺隆 唑吡嘧磺隆 甲磺隆 烟嘧磺隆 吡嘧磺隆 噻吩磺隆
酰胺类 甲草胺 乙草胺 丙草胺 丁草胺 异丙甲草胺 异丙草胺 去草胺 苯噻酰草胺 二甲草胺 二甲吩草胺 吡唑草胺
某种除草剂的生物学特性
作用机理 症状变化 吸收和传导 选择性 除草谱 作物的安全性 影响药效的因子 展着剂 喷药后的田水管理 兑水量 喷药叶的水层 温度 雨水 混用性
草甘膦对目标作物的作用机理
组织死亡
抑制莽草素 合成酶
从茎叶深入 植物体内
蛋白质合成 受阻
目标作物中毒症状变化
喷施农达
出现中毒症状
(2) 抑制呼吸作用
解偶联剂: 五氯酚钠、溴苯腈、敌稗、氯苯胺灵等
(3) 抑制植物的生物合成
3.1 抑制色素的合成 A抑制叶绿素的生物合成,造成脂质过氧化 叶绿素合成途径见P174图5-12
原卟啉原氧化酶Ⅸ抑制剂: 对硝基二苯醚、恶草灵等能抑制原卟啉原氧化酶Ⅸ活性,造成原卟啉原Ⅸ在叶绿体内积累,后向细胞质渗漏,在氧化酶的作用下,氧化为原卟啉Ⅸ,原卟啉Ⅸ为光敏化合物,光照后呈激发态并将能量传递给氧,使之产生单线态氧,单线态氧可氧化细胞内的高分子化合物,最终个体死亡。
计算题--草甘膦含量计算和表示方法(附件7)
种类
浓度
以盐计
以酸计
(克/升)
(克/公斤)
(克/升)
(克/公斤 )
农达 (41%异丙胺盐AS)
480
41%
350
?%
泰草达 (500钾盐SL)
620
43%
500
?%
农达和泰草达的比重分别为1.17和1.43. 200ml农达草甘膦酸的含量相当于140ml泰草达 泰草达150ml兑2桶水均均喷雾。 或泰草达应稀释200倍施用。
除草剂的分类及除草原理

除草剂的分类及除草原理一、除草剂分类、按除草剂的作用方式分类1、选择性除草剂除草剂在不同植物间具有选择性,即能毒害或杀死杂草而不伤害作物,甚至只毒杀某种杂草,而不损害作物和其他杂草,凡具有这种选择性作用的除草剂称为选择性除草剂。
通俗地讲就是能用于某种作物、杀死其中的一部分杂草的除草剂。
如精喹能用于花生、大豆、西红柿等阔叶作物田防除狗尾草等禾本科杂草,而不能用于玉米田,否则它会将玉米当成禾本科杂草杀死,它也不能杀死阔叶杂草。
再如莠去津能用于玉米田防除阔叶杂草和部分禾本科杂草,而即使用量稍高也不伤害玉米。
精喹和莠去津的这种性质就叫选择性。
但是选择性对用量是有要求的,如果提高莠去津的用量到一定程度,不仅可以轻易地杀死玉米,甚至可以杀死大片的灌木林。
2、灭生性除草剂这种除草剂对植物缺乏选择性或选择性小,草苗不分,“见绿就杀”。
灭生性除草剂能杀死所有植物,如百草枯见绿就杀,既不区分作物和杂草,也不区分杂草所属种类。
再如前面所述的提高莠去津用量杀死灌木林,这时的莠去津就成了灭生性除草剂。
、按使用方法分类1、土壤处理剂土壤处理剂也叫做苗前封闭剂,施用于土壤中,通过杂草的根、芽鞘或下胚轴等部位吸收而发挥除草作用,可防除未出土杂草,对已出土的杂草效果差一些,一般在作物播前、播后苗前或移栽前施用,如乙草胺、异丙甲草胺、氟乐灵等。
2、茎叶处理剂指用于杂草苗后,施用在杂草茎叶上而起作用的除草剂,如精喹、烟嘧磺隆。
很多除草剂既可作为土壤处理剂也可作为茎叶处理剂,被称为土壤处理剂是因为它在土壤中的药效更强些,如氰草津,以根吸收为主,也可由茎叶吸收。
应该说明,这种分类中所讲的苗前苗后中的“苗”严格地讲是“杂草苗”,而不是“作物苗”。
“作物苗前”施用的不一定全是土壤处理剂,比如玉米田播后苗前为了杀死已经出苗的大草,可以喷施百草枯,这是在作茎叶处理而不是土壤处理;同样,“作物苗后”施用的也不一定全是茎叶处理剂,比如在玉米苗后早期施用莠去津,此时的莠去津仍多为杂草根部吸收,所以仍然应归为土壤处理剂。
除草剂的作用

除草剂的作用
除草剂经过植物的根、茎、叶或芽吸收后会干扰和破坏之屋内的某些生理生化过程,抑制生长发育,最后造成死亡。
杀死杂草的机理主要有以下几种:
1、抑制光合作用:光合作用是绿色植物赖以生存的基础,而许多除草剂能强烈地抑制杂草的光合作用而促使杂草死亡。
2、抑制能量代谢:许多除草剂能搅乱或中断杂草呼吸过程中的氧化磷酸化过程,使得早操不能利用能量而中毒四强死亡。
3、搅乱植物的激素平衡:急速型除草剂进入植物体内后,打破了原有的急速平衡,是受害株同时表现为刺激与抑制的状态,表现为扭曲畸形,形成瘤状物,填塞疏导组织而致全株死亡。
4、代谢颉颃作用:有些除草剂进入植物体内后,常与植株内其重要作用的成分或结构相似的物质发生颉颃作用,从而停止其正常生命活动。
5、失绿:有些除草剂本身不影响光合作用但对植株内叶绿素的形成有强烈的抑制作用或对已形成的叶绿体其分解作用,使杂草失绿变黄,不能进行光合作用而死亡。
除草剂的作用机理

除草剂的作用机理除草剂(herbicide)是一种用于控制或杀死杂草的化学物质。
除草剂的作用机理取决于其种类和化学成分。
不同的除草剂通过不同的作用机制对杂草产生影响。
下面将介绍一些常见的除草剂作用机理。
非选择性除草剂是广谱杂草控制剂,可以杀死各种类型的植物,包括作物和杂草。
它的作用机理通常是通过抑制植物的生长和发育过程来实现。
a. 草甘膦(Glyphosate)是一种常用的非选择性除草剂。
它通过抑制植物中的类氨基酸磷酸化酶(EPSP酶)来起作用。
该酶在植物体内起着调节氨基酸合成的重要作用。
草甘膦的使用会导致植物无法合成足够的氨基酸,最终导致植物无法生长。
b. 百草枯(Paraquat)是另一种非选择性除草剂。
它通过直接与植物的叶绿体中的电子传递链相互作用,引起氧化应激,造成细胞膜脂质过氧化。
这会导致植物细胞膜的损伤,导致植物死亡。
选择性除草剂是专门设计用于杀死杂草而对作物没有或只有轻微影响的化学物质。
a. 拉草酮(Lactofen)是一种广泛用于大豆田等作物的选择性除草剂。
它通过影响植物叶绿素的合成来起作用。
拉草酮被吸收到植物细胞中,然后在光合体系II中与植物叶绿素结合,导致光合作用的光反应受阻,最终导致植物的死亡。
b. 但草除(Fluazifop-P-butyl)是一种常用于玉米田和其他谷类作物的选择性除草剂。
它通过抑制植物草酸的合成来起作用。
草酸是一种重要的能量转移分子,参与植物细胞的代谢过程。
但草除通过干扰草酸合成的途径而导致植物死亡。
微生物除草剂是一种利用微生物生物体来控制杂草生长的方法。
常见的微生物除草剂是利用细菌和真菌的作用来控制杂草。
a. 菌核菌(Xanthomonas campestris pv. Poae)是一种常见的细菌,用于控制泽泻科的杂草。
它产生一种可能抑制泽泻科杂草的化合物,从而阻止其发芽和生长。
b. 拮抗性真菌(Antagonistic fungus)是一种产生具有杀灭杂草活性的化合物的真菌。
除草剂的分类及除草原理

除草剂的分类及除草原理除草剂是用于防治杂草的化学药剂,根据其不同的化学组成和除草原理,可以分为非选择性除草剂和选择性除草剂两大类。
下面将对这两种类型的除草剂进行详细介绍。
非选择性除草剂是指对所有植物都有较强的杀伤作用的除草剂。
它们能够杀死任何接触到它们的植物,包括作物、花草和杂草。
非选择性除草剂的主要成分是广谱杀草剂如草甘膦、草铵膦和百草枯等。
这些杀草剂在植物体内能够阻断蛋白质合成,导致植物生长停止,最终死亡。
除草剂的选择性取决于植物体内的生化特性。
因此,选择性除草剂是指只对一些特定的植物具有杀伤作用的除草剂。
选择性除草剂可以通过不同的方式作用于植物体内,包括药物吸收、药物转运和蛋白质靶标的特异性等。
以下是几种常见的选择性除草剂及其作用机制:1.拟除草剂:对禾本科杂草具有较高的选择性。
其作用机制是模拟植物激素的作用,干扰植物生长,导致禾本科杂草死亡,如草胺和苯醚草酮。
2.杂草利:对阔叶杂草具有较高的选择性。
其作用机制是通过破坏植物叶绿体内的光合作用,导致植物缺乏能量无法生存而死亡。
3.敌草隆:对禾本科杂草具有很高的选择性。
其作用机制是通过抑制植物体内垂直生长的组织的分裂和伸长,从而阻止其生长。
4.除草异构体:对禾本科杂草具有较高的选择性。
其作用机制是通过影响植物源汇转运系统,干扰植物养分的平衡和营养物质在植物体内的转移,导致禾本科杂草死亡。
此外,除草剂还可以根据用途进一步分为土壤处理剂和非土壤处理剂两类。
土壤处理剂是能够在土壤中长时间留存并发挥除草作用的除草剂,如土壤处理除草剂草甘膦和草铵膦。
非土壤处理剂则是指除草剂在土壤中迅速降解,并在植物体内快速传导和吸收,对植物进行除草作用,如叶面喷雾的除草剂。
综上所述,除草剂根据其选择性和化学组成可以分为非选择性除草剂和选择性除草剂两大类。
非选择性除草剂通过阻断植物体内蛋白质合成来杀死植物,而选择性除草剂则是通过模拟植物激素、破坏光合作用或影响养分平衡等机制作用于植物体内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光合光合作用的电子传递系统
光合作用的电子传递系统位于叶绿 体内类囊体的膜上。
电子传递系统的作用有两个:
– 还原NADP+; – 形成跨膜的氢离子浓度梯度,为下一
步光合磷酸化系统的运作创造条件。
1. 作用于光合系统的除草剂
苯胺(aniline):甲氯酰草胺(pentanochlor), 敌稗(propanil) Benzothiadiazinone:苯达松(bentazon) 二苯醚(diphenylether):三氟消草醚(flurodifen),除草醚
(nitrofen),乙氧氟草醚(oxyfluorfen) 羟基苄腈(hydroxylbenzonitrile):碘苯腈(ioxynil), 溴苯腈
(bromoxynil) 苯脲(N-phenylurea):敌草隆(diuron), 灭草隆(monouron), 异
丙隆(isoproturon), 绿麦隆(chlortoluron) 三嗪(s-triazine):阿特拉津(atrazine), 西玛津(simazine) 三嗪酮(triazinone):嗪草酮(metribuzin), 苯嗪草酮
dichlormate
pyrichlor
O CH 3 NHC N
CH 3
NH N
NH 2
difunon
fluometuron
aminotriazole
类胡罗卜素合成
类胡罗卜素有双重功能:一是为光合作 用吸收光能;二是作为光保护剂,防止 激发态的三体叶绿素和由其产生的单体 氧。
用氟草敏(metflurazon)处理过的植物, 胡罗卜素前体八氢番茄红素 (phytoene)出现积累。
3. 生物合成抑制剂
类胡罗卜素 脂肪 氨基酸 蛋白质
抑制类胡罗卜素合成
氟草敏 metflurazon, SAN 6706)
CH 3
N
N
CH 3
CF 3
N
Cl
O
氟草敏 (norflurazon, SAN 9789)
metflurazon
氟啶草酮
CH3
(fluridone)
N Cl
苄氨灵
三氟消草醚(fluorodifen)
光合磷酸化是由ADP和Pi生成ATP的过程。如果 电子传递及由此形成的跨膜电位不存在,磷酸化 反应就不能发生。
已证实胺类除草剂中的perfluidone和二苯醚类除 草剂中的除草醚(nitrofen)和精吡氟草灵 (fluazifop-butyl)能够渗入类囊体膜,使氢离 子浓度梯度消失,光合磷酸化无法进行。
diquat dibromide salt 乙氧氟草醚(oxyfluorfen)
2. 作用于呼吸系统的除草剂
生物体内的氧化作用主 要是通过脱氢来实现的。 代谢物在脱氢酶的作用 下脱落的氢原子不能直 接与氧结合成水,而需 要经一系列传递体的传 递把氢原子传递给分子 氧结合成水。这样由递 氢体和递电子体按一定 顺序排列成的整个体系 称为呼吸链,又称电子 传递链或电子传递体系。
抑制脂肪合成
主要是一些硫代氨基甲酸酯类化合物,如, 茵草敌(EPTC)、燕麦敌(diallate)、燕麦 畏(triallate)等。
CH3CH2CH2 CH3CH2CH2
O NCSCH2CH3
(CH3)2CH
O
NCSCH2CCl CHCl (CH3)2CH
(CH3)2CH O NCSCH2CCl CC2l
除草醚(nitrofen)
精吡氟草灵(fluazifop-butyl)
双吡啶类的百草枯
(paraquat)和敌草 快(diquat),二苯
醚类除草剂乙氧氟草
醚(oxyfluorfen)与 PSⅠ电子传递链上的
铁氧化还原蛋白
(Ferredoxin, Fd)争 夺电子,使NADP+的 还原过程受到抑制。
硫代氨基甲酸酯类除草剂还是脂肪酸脱氢反应的抑制 剂,这类除草剂还抑制不饱和脂肪酸,特别是亚麻酸 的生成。
不饱和脂肪酸合成
抑制氨基酸合成
草甘磷的作用方式是抑制莽草酸途径中催化莽草酸-3-磷酸 (shikimate-3-phosphate)和磷酸烯醇丙酮酸 (phosphoenolpyruvate)反应的5-烯醇丙酮酸莽草酸-3-磷酸
呼吸系统的电子传递链位于线粒体的内膜上。 NADH+和FADH2的氧化还原反应使氢离子释 放到线粒体双层膜间隙内,使膜间隙和线粒 体内腔之间形成氢离子浓度差。与叶绿体一 样,此浓度差导致ATP的形成。
地乐酚(dinoseb) 二硝酚(DNOC) 敌草腈(dichlobenil) Perfluidone
(metamitron); 尿嘧啶(uracil):环草定(lenacil), isocil
二苯醚类除草剂三氟消草醚(fluorodifen)的 作用位点(受体)被证实位于光系统Ⅱ(PS Ⅱ )和质体醌(plastoquinone, PQ)之间。 该受体浸没于脂蛋白膜内。
除草剂分子与受体发生作用后改变了后者的电 位,使电子传递无法进行。
CF 3
(dichlomate)
Cl
O
Pyrichlor
difuron(EMD-IT 5914)
fluridone
氟草隆 (fluometuron) H 3C
CN
CF 3
N CH O O
H 3C
CH 3
N
N
H
CF 3
N
Cl
O
norflurazon
OH
Cl
Cl
O
CH 2 O C NHCH 3
N Cl
(CH3)2CH
EPTC
diallate
triallate
植物表面由蜡质保护。蜡质主要由酯(低级醇和高级 脂肪酸)和长链烷烃组成。可见高级脂肪酸是蜡质的 重要组份。任何干扰高级脂肪酸碳链延长的化合物都 会使植物失去保护层。
研究表明,除草剂只阻止乙酸基与长链烷烃的结合, 乙酸基与短链烷烃的结合不受影响,表明除O 2
CHC2H5
CH 3
NO 2
dinoseb
OH
NO 2
CH 3
NO 2 DNOC
碘苯腈(ioxynil) 溴苯腈(bromoxynil)
CN
CN
I
I
OH
ioxynil
Br Br OH
bromoxynil
CN
Cl
Cl
dichlobenil
O
O
S
NS C3F
O
O
perfluidone
这些除草剂可以渗入线粒体内膜,导致相应的底物氧化反应失控, 使细胞经济利用能量的特性丧失。