废水蒸发方案

合集下载

高盐废水蒸发工艺选择:单效多效MVR

高盐废水蒸发工艺选择:单效多效MVR

高盐废水蒸发工艺选择:单效/多效/MVR 概述高盐废水是在工业生产、化学合成、冶炼等领域中产生的,其处理难度较大。

常规的废水处理方法如生物降解、化学沉淀等难以处理高浓度盐水废水。

而蒸发技术可以将水分从高浓度废水中挥发掉,达到削减体积、提高浓度的目的。

本文将介绍三种高盐废水蒸发工艺:单效、多效、MVR,并分析其优缺点以及适用场景。

单效蒸发工艺单效蒸发工艺是最简单的一种蒸发技术。

其原理是将高盐废水加热到沸点,使水分蒸发,然后冷凝回收。

这种工艺适用于废水浓度较低的场景,废水的挥发量较小,需要较长的处理时间。

通常单效蒸发器的处理效率在15%~25%之间。

优点•设备简单,操作简单;•能够良好地处理一些浓度较低的废水。

缺点•废水处理时间较长,效率较低;•废水处理成本较高,能耗较大。

适用场景•废水浓度较低,不含有毒害物质;•废水处理量较小,处理的时限不紧。

多效蒸发工艺多效蒸发工艺是将单效蒸发器连接成多级,将蒸发失去的热量通过热量交换器传递给下一级蒸发器,达到节能的目的。

多效蒸发技术通常分为二效、三效、四效等,能够加添废水处理的效率,提高蒸发器的处理水平,将废水浓缩度提高至50%~70%。

优点•处理效率高,能够快速处理高浓度废水,节省处理时间;•设备占地面积小,能耗低。

缺点•设备多而杂,运行成本高,维护、保养难度较大;•对废水浓度变化较为敏感,需要搭配调整。

适用场景•废水浓度较高,需要快速处理;•废水处理量较大,需要较短的处理周期。

MVR蒸发工艺MVR(Mechanical Vapor Recompression )蒸发工艺是基于机械压缩对低级蒸汽进行加热,实现蒸发过程的再循环利用,使蒸汽压力渐渐上升来完成水的蒸发,并以小型离心压缩机为核心设备。

MVR蒸发与其他工艺相比,具有能耗低、设备体积小、处理效率高、操作易于自动化掌控等优点。

MVR 蒸发器处理效率相对于其他工艺高出很多,除了节省电力外也更环保。

同时MVR的出水质量高,最后的浓缩效率也特别高。

高盐废水蒸发结晶设计方案

高盐废水蒸发结晶设计方案

高盐废水蒸发结晶设计方案1.设计条件:1.处理量:每小时处理量3000Kg/h。

2.湿盐产量:240Kg/h;湿盐含水量按8%计算3.设备蒸发水量:2800Kg/h。

4.蒸发出的水洁净程度能达到污水管网排放标准,可用于生产。

2.设备选型2.1 选择依据(1)溶液在蒸发过程中有结晶产生并分离出结晶。

(2)溶液从8%浓缩到饱和状态(27.3%)并结晶。

2.2 工艺及设备1.蒸发工艺:考虑到蒸发能耗大,因此选用采用并流三效蒸发工艺。

由于原料浓度较大,需要蒸发少量水份,到饱和时才能产生结晶.第二、三效采用强制外循环OSLO结晶蒸发器形式,物料经过三效蒸发,溶液在末效达到饱和并产生结晶,温度在70℃左右。

晶浆经过泵输送到结晶罐,在罐内冷却到40~45℃并进一步结晶,然后出料进入离心机进行固液分离,母液则返回蒸发器。

2.设备形式:外循环三效蒸发器,第二、三效采用强制外循环OSLO结晶蒸发器形式,出料采用泵送方式,晶浆送入结晶罐内降温结晶,然后经过离心机分离晶体和母液,母液则返回第三效蒸发器内蒸发。

3.流程:顺流(并流)方式,即原料由第一效进入,经过第二效再到第三效。

与加热蒸汽及二次蒸汽的流动方向相同。

4.预热:第三效二次蒸汽进入冷凝器之前先经过原料预热器,作为原料的第一级预热。

第一效加热蒸汽产生的冷凝水作为原料的第二级预热。

原料经过两次预热后,原料温度大约可以上升到72℃左右。

5.OSLO结晶蒸发器属于强制外循环蒸发结晶器。

操作时,料液自循环管下部加入,与离开结晶室底部的晶浆混合后,由泵送往加热室。

晶浆在加热室内升温(通常为2~3℃),但不发生蒸发。

OSLO是制盐行业中常用的一种典型的结晶器。

蒸发式OSLO结晶器是由外部加热器对循环料液加热进入真空闪蒸室蒸发达到过饱和,再通过垂直管道进入悬浮床使晶体得以成长,由OSLO结晶器的特殊结构,体积较大的颗粒首先接触过饱和的溶液优先生长,依次是体积较小的溶液;因此OSLO结晶器生产出的晶体具有体积大、颗粒均匀、生产能力大。

高盐废水蒸发结晶设计方案

高盐废水蒸发结晶设计方案

高盐废水蒸发结晶设计方案1.设计条件:1.处理量:每小时处理量3000Kg/h。

2.湿盐产量:240Kg/h;湿盐含水量按8%计算3.设备蒸发水量:2800Kg/h。

4.蒸发出的水洁净程度能达到污水管网排放标准,可用于生产。

2.设备选型2.1 选择依据(1)溶液在蒸发过程中有结晶产生并分离出结晶。

(2)溶液从8%浓缩到饱和状态(27.3%)并结晶。

2.2 工艺及设备1.蒸发工艺:考虑到蒸发能耗大,因此选用采用并流三效蒸发工艺。

由于原料浓度较大,需要蒸发少量水份,到饱和时才能产生结晶.第二、三效采用强制外循环OSLO结晶蒸发器形式,物料经过三效蒸发,溶液在末效达到饱和并产生结晶,温度在70℃左右。

晶浆经过泵输送到结晶罐,在罐内冷却到40~45℃并进一步结晶,然后出料进入离心机进行固液分离,母液则返回蒸发器。

2.设备形式:外循环三效蒸发器,第二、三效采用强制外循环OSLO结晶蒸发器形式,出料采用泵送方式,晶浆送入结晶罐内降温结晶,然后经过离心机分离晶体和母液,母液则返回第三效蒸发器内蒸发。

3.流程:顺流(并流)方式,即原料由第一效进入,经过第二效再到第三效。

与加热蒸汽及二次蒸汽的流动方向相同。

4.预热:第三效二次蒸汽进入冷凝器之前先经过原料预热器,作为原料的第一级预热。

第一效加热蒸汽产生的冷凝水作为原料的第二级预热。

原料经过两次预热后,原料温度大约可以上升到72℃左右。

5.OSLO结晶蒸发器属于强制外循环蒸发结晶器。

操作时,料液自循环管下部加入,与离开结晶室底部的晶浆混合后,由泵送往加热室。

晶浆在加热室内升温(通常为2~3℃),但不发生蒸发。

OSLO是制盐行业中常用的一种典型的结晶器。

蒸发式OSLO结晶器是由外部加热器对循环料液加热进入真空闪蒸室蒸发达到过饱和,再通过垂直管道进入悬浮床使晶体得以成长,由OSLO结晶器的特殊结构,体积较大的颗粒首先接触过饱和的溶液优先生长,依次是体积较小的溶液;因此OSLO结晶器生产出的晶体具有体积大、颗粒均匀、生产能力大。

废水蒸发方案范文

废水蒸发方案范文

废水蒸发方案范文废水蒸发是一种常用的处理废水的方法,其原理是通过加热和蒸发将废水中的水分蒸发掉,将残留的固体物质集中处理或再利用。

该方法适用于处理含有高浓度溶解性固体物质的废水,如盐水、有机溶剂废水等。

下面将详细介绍废水蒸发的原理、设备及应用情况。

废水蒸发的原理是利用能量将水蒸发掉,达到浓缩废水的目的。

通常采用蒸发器作为主要设备,通过加热废水使其达到沸点,水分蒸发形成水蒸气,然后将水蒸气冷凝成为液体水,与未蒸发的废水进行分离。

经过多次循环蒸发,逐渐浓缩废水。

最终获得的蒸发液体呈浓缩状态,固体物质含量较高。

废水蒸发的设备主要有多效蒸发器和单效蒸发器。

多效蒸发器是将废水分为多个蒸发效,一个效区内的蒸发产生的水蒸气作为下一效区的加热介质,使得能耗得到有效回收和利用。

而单效蒸发器则是废水在一个蒸发器内进行一次蒸发,较为简单。

此外,还有一些辅助设备如预加热器、冷凝器等可以提高废水蒸发的效率。

废水蒸发在实际应用中具有很大的优势。

首先,它适用于处理高浓度废水,可以将废水浓缩到较小的体积,减少后续处置的成本。

其次,废水蒸发过程中,水分蒸发而固体物质得以集中,方便进行固体物质的处理或再利用,例如从浓缩后的蒸发液中提取有价值的物质。

同时,废水蒸发也可以减少废水的体积,从而减少排放量,达到环境保护的效果。

废水蒸发主要应用于工业废水的处理,特别是一些含有高浓度溶解性固体物质的废水。

例如,印染废水、盐水、有机溶剂废水等。

这些废水通常难以通过传统的化学处理方法进行处理,而废水蒸发则能够有效地去除废水中的水分,将固体物质集中处理。

此外,废水蒸发还可以用于一些特殊场合的处理,如舰船的废水处理等。

尽管废水蒸发具有很多优势,但也存在一些局限性。

首先,废水蒸发需要大量的能源供应,特别是在一些大规模蒸发的情况下,能耗较高。

其次,废水蒸发可能会产生一定数量的废热和废气,需要采取相应的措施进行处理或利用。

此外,废水蒸发过程中,废水中的一些挥发性有机物可能会排放到大气中,对环境造成一定的污染。

废水蒸发方案

废水蒸发方案

废水蒸发方案随着工业化进程的不断加速,大量废水排放成为了许多地区面临的严重问题。

废水蒸发是一种处理废水的方法,具有诸多优势,如操作简单、节能环保等。

本文将重点介绍废水蒸发方案的设计原理、实施方法及案例分析,旨在为相关领域的工程技术人员提供有益的参考。

一、废水蒸发方案设计原理废水蒸发的基本原理是将废水加热至沸腾状态,使水分子从液态转化为气态,并利用气态水的扩散作用将废水中的有害物质带出。

在废水蒸发过程中,主要涉及三个基本过程:加热、沸腾和扩散。

其中,加热过程是利用热源将废水从常温加热至沸腾状态;沸腾过程则是水分子从液态转变为气态的过程;扩散过程则是通过气态水的扩散作用将废水中的有害物质带出。

在废水蒸发方案的设计过程中,需要考虑的主要因素包括废水的来源、性质、处理目标、能源消耗以及环保要求等。

设计时需要结合具体实际情况,选择合适的热源、设备结构及操作参数,以达到最佳的处理效果。

二、废水蒸发方案实施方法1. 确定废水性质和处理目标在实施废水蒸发方案之前,需要对废水进行全面的检测和分析,了解废水的来源、成分、浓度等性质。

根据处理目标的不同,如去除有害物质、降低COD(化学需氧量)或BOD(生物需氧量)等指标,制定相应的处理计划。

2. 选择合适的热源热源是废水蒸发过程中的重要因素,其选择应根据废水的处理量、性质以及能源消耗等因素进行综合考虑。

常见的热源包括蒸汽、燃气、导热油等,根据实际情况进行选择。

3. 设计设备结构设备结构的设计应充分考虑废水的处理量、水质以及操作便利性等因素。

根据实际需要,可采用不同的设备结构形式,如列管式、盘管式、浸没式等蒸发器结构。

同时,设备材质的选择也非常重要,应选择耐腐蚀、耐高温的优质材料。

4. 确定操作参数操作参数的确定包括温度、压力、蒸发量等。

温度和压力应根据废水的性质和处理目标进行设定;蒸发量应根据废水的处理量和设备的蒸发能力进行确定。

在操作过程中,应定期检测和调整各项参数,以保证处理效果和设备的正常运行。

含盐废水蒸发工艺流程

含盐废水蒸发工艺流程

含盐废水蒸发工艺流程
《含盐废水蒸发工艺流程》
含盐废水蒸发工艺是一种常见的废水处理方法,主要用于处理含有高浓度盐类物质的废水。

这种蒸发工艺通过将含盐废水在特定条件下进行蒸发,最终将盐类物质浓缩并分离出来,从而达到废水处理和资源回收的目的。

在含盐废水蒸发工艺中,首先需要将废水经过预处理,去除其中的悬浮物、沉淀物和其他杂质,以保证后续蒸发过程顺利进行。

接下来,预处理后的废水被送入蒸发设备中,通常采用的蒸发设备有多效蒸发器、膜蒸发器和闪蒸器等。

在蒸发设备中,含盐废水会在高温和低压下进行蒸发,水分逐渐蒸发出去,而盐类物质则被浓缩。

在多效蒸发器中,含盐废水会在多级蒸发器中循环蒸发,提高蒸发效率;而在膜蒸发器中,废水则通过膜的筛选,使得水分和盐类物质得以分离。

最终,通过蒸发工艺,所得到的浓缩盐类物质可以通过结晶、凝固等方法得到固体盐料,而剩余的蒸发水则可以进行进一步处理,用于循环利用或者排放。

这种蒸发工艺有效地将废水中的盐类物质分离出来,实现了资源的有效回收和废水的处理。

总的来说,含盐废水蒸发工艺流程相对简单且高效,通过控制蒸发条件和采用合适的蒸发设备,可以有效地处理含盐废水,并实现盐类物质的资源化回收。

这种工艺在化工、矿业和食品等行业中具有较广泛的应用前景。

废水浓缩蒸发方案对比

废水浓缩蒸发方案对比

1 概述目前,我国燃煤电厂90%以上加装了石灰石-石膏湿法烟气脱硫装置。

这些脱硫装置在运行中要产生一定量的废水,废水中含有部分重金属、氟化物,且悬浮固体含量(SS)和化学需氧量(COD)较高,必须经过处理后才能排放。

1.1 国内外烟气脱硫废水处理方式1) 处理后回用针对脱硫废水的水质特点,设置 1 套完整的化学处理系统,可通过氧化、中和、沉淀、絮凝等方法去除脱硫废水中的污染物,形成的泥饼送到灰场堆放,处理后的水用于厂内干灰调湿或场外灰场喷洒。

目前国内已建电厂绝大部分均采用该方式。

2) 灰场堆放该方法是将脱硫废水与经浓缩的副产物石膏混合后排至电厂干灰场堆放,飞灰中的CaO 成分可以作为粘合剂固化脱硫石膏,或者在石膏中掺入飞灰和石灰的混合物,将石膏固化为硅酸钙,固化处理后的石膏坚硬,不易渗水。

目前,灰场堆放在国外燃用劣质煤的电厂用得较多,国内主要有珞璜电厂等少数电厂采用。

3) 排入渣水系统脱硫废水经过二级旋流达到一定含固率后,直接排入电厂湿除渣系统,脱硫废水中的重金属或酸性物质与碱性的渣水反应,生成固体物并去除,从而达到以废治废的目的。

目前,国内少数电厂采用该方式,如浙江嘉兴电厂、大唐淮南洛河电厂、天津国华盘山发电有限责任公司(2×500MW)、中电国华北京热电分公司、浙江浙能钱清发电有限责任公司,内蒙古岱海发电有限责任公司、河南新密电厂、贵州福泉电厂2×600MW工程等。

4) 蒸发脱硫废水该方法通过蒸发及干燥装置可以使脱硫废水分离为高品质的水(蒸汽)和固体废物,有利于水的重复利用,便于实现全厂废水的零排放。

脱硫废水蒸发目前主要有三种类型:自然蒸发、烟道余热蒸发、浓缩干燥蒸发。

自然蒸发主要利用大面积废水池,依靠自然干燥气候使水蒸发,该方式由于具有占地极大、效果差,而且受气象条件等诸多因素制约而很少采用;烟道余热蒸发是利用电除尘器(ESP)和空气预热器之间的烟道间隙来加热脱硫废水,使废水完全蒸发,所含的固体物与飞灰一起收集处置。

废水蒸发方案

废水蒸发方案

废水蒸发方案废水处理一直是环境保护领域的重要课题之一。

废水中的有害物质如果不得到适当的处理和处置,将对生态环境产生严重的影响。

废水蒸发方案是一种常用的废水处理技术,它通过将废水转化为蒸汽, 进而实现废水的处理和净化。

本文将为您介绍废水蒸发方案的原理、应用场景以及优势。

一、废水蒸发方案的原理废水蒸发方案的原理是利用蒸发的方式将废水中的水分转化为水蒸气,以达到净化废水的目的。

在废水蒸发过程中,废水被加热,水中的有机物、无机物和悬浮固体等污染物质随着蒸汽一同升腾,经过适当的处理,废水中的无害成分被分离出来,而有害物质则集中处理或进一步处理。

二、废水蒸发方案的应用场景废水蒸发方案的应用场景广泛,包括但不限于以下几个方面:1. 工业废水处理:工业生产中产生的大量废水,常常含有高浓度的有机物和无机物。

通过废水蒸发方案,可以将废水中的有害物质转化为水蒸气,从而实现废水的净化和资源化利用。

2. 污水处理厂余热利用:在城市污水处理厂中,一部分废水蒸发方案采用了余热回收技术。

通过利用燃烧产生的余热,加热废水,提高蒸发效率,减少能源消耗。

3. 盐水处理:一些地区的水资源短缺,但又存在大量的咸水资源。

废水蒸发方案可以将咸水中的水分转化为水蒸气,从而实现盐水的淡化和资源回收。

4. 化工废液处理:在化工行业生产过程中,会产生大量的废液。

废水蒸发方案可以将废液中的水分蒸发掉,使得废液中的有害物质浓缩,便于后续的处理和排放。

三、废水蒸发方案的优势1. 高效净化:废水蒸发方案可以将废水中的水分转化为水蒸气,从而实现废水的蒸发和净化。

相比传统的化学处理方法,废水蒸发方案具有更高的净化效率。

2. 资源回收:在废水蒸发过程中,水分变成了水蒸气,而有机物、无机物和悬浮固体等污染物质则集中处理或进一步处理。

这使得废水中的有害成分被分离出来,废水的处理和净化更加彻底。

3. 余热利用:在一些废水蒸发方案中,采用了余热回收技术。

通过利用废热加热废水,不仅减少了能源的消耗,还实现了能源的回收利用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

废水蒸发结晶方案随着环保要求的逐步提高,同时含有氯化钠氯化钾的废水处理要求也就越来越严格,为了实现收益最大化,能够将溶液中的两种盐分离提纯无疑是极好的。

本文以处理量5t/h,含氯化钠,含氯化钾的混盐溶液为例,给出了其中一种蒸汽耗量较低的多效蒸发分离方案。

一.工艺原理利用氯化钠和氯化钾在不同温度的溶解度不同原理,根据NaCL-KCL-H20四元体系相图的基本原理,在高温浓缩结晶析出氯化钠,在低温浓缩结晶析出氯化钾,温度范围为30~120℃。

111001621.71212516.324.9131501627.7二.多效蒸发将几个蒸发器串联运行的蒸发操作,使蒸汽热能得到多次利用,从而提高热能的利用率,多用于水溶液的处理。

在多效蒸发操作的流程(见图)中,第一个蒸发器(称为第一效)以生蒸汽作为加热蒸汽,其余称为第二效、第三效,均以其前一效的二次蒸汽作为加热蒸汽,从而可大幅度减少生蒸汽的用量。

每一效的二次蒸汽温度总是低于其加热蒸汽,故多效蒸发时各效的操作压力及溶液沸腾温度沿蒸汽流动方向依次降低。

依据二次蒸汽和溶液的流向,多效蒸发的流程可分为:①并流流程。

溶液和二次蒸汽同向依次通过各效。

由于前效压力高于后效,料液可借压差流动。

但末效溶液浓度高而温度低,溶液粘度大,因此传热系数低。

②逆流流程。

溶液与二次蒸汽流动方向相反。

需用泵将溶液送至压力较高的前一效,各效溶液的浓度和温度对粘度的影响大致抵消,各效传热条件基本相同。

③错流流程。

二次蒸汽依次通过各效,但料液则每效单独进出,这种流程适用于有晶体析出的料液。

在生蒸汽温度与末效冷凝器温度相同(即总温度差相同)条件下,将单效蒸发改为多效蒸发时,蒸发器效数增加,生蒸汽用量减少,但总蒸发量不仅不增加,反而因温度差损失增加而有所下降。

多效蒸发节省能耗,但降低设备的生产强度,因而增加设备投资。

在实际生产中,应综合考虑能耗和设备投资,选定最佳的效数。

烧碱等电解质溶液的蒸发,因其温度差损失大,通常只采用2~3效(见彩图);食糖等非电解质溶液,温度差损失小,可用到4~6效;海水淡化所蒸发的水量大,在采取了各种减少温度差损失的措施后,可采用20~30效三、物料的特性及蒸发形式选型原始物料说明:根据溶液内主要含有氯化钾,氯化钠,要求出料结晶。

晶体析出要过饱和蒸发,使晶体长大。

含有晶体的溶液在蒸发系统运行,流量小了会造成堵管现象,为此我们必须采用强制循环的方式让晶体混合溶液在蒸发系统流动。

多效强制循环蒸发系统是最佳的选择。

废水的沸点升高为9°,为此每效温差不能小于15°才能有效持续蒸发。

我们采用四效在真空状态下工作。

每效的真空度不同,沸点不同,每效的蒸发温度不同。

这样达到了节约能源的效果,利用前一效二次蒸汽加热物料,在真空状态下持续蒸发,一个生蒸汽的进量,使用四次,完全吸收蒸汽的热焓值。

因为目前国内做的蒸汽在压缩离心风机的额定蒸发量最小的为2.5t/h,我们的量达不到最小额定值,为此蒸发结晶首选的是多效。

蒸发形式选型:根据氯化钾,氯化纳结晶特性,采用四效蒸发高温出氯化钠,饱和氯化钾卤水冷却析钾工艺,达到分离钾、钠,得到合格氯化钾和氯化钠产品。

材质选择依据:SUS304 成份0Cr18Ni9SUS316L 成份00Cr17Ni14Mo22205双相钢成份00Cr22Ni5Mo3N(国标)Ta2钛合金材质使用范围SUS304中性或弱碱性Cl 和F 均小于1×102ppmSUS316L弱酸性:Cl 和F 均小于1×103ppm中性:Cl 和F 无要求弱碱性:Cl 和F 无要求2205双相钢弱酸性:Cl 和F 均小于2×103ppm中性:Cl 和F 无要求弱碱性:Cl 和F 无要求Ta2钛合金强酸性:Cl 和F 均小于5×103ppm弱酸性:Cl 和F 无要求中性:Cl 和F 无要求弱碱性:Cl 和F 无要求强碱性:Cl 和F 无要求根据表格数据,过料部分采用2205,其他采用SUS316L材质比较合适。

但考虑到高氯根对设备的腐蚀及强制循环冲刷,加热器高温特点,一效列管用T10,二、三、四效列管用T2.四、强制循环蒸发器流程说明1、物料流程:物料经进料泵由原料罐进入板式预热器和冷凝水热交换器后进入四效强制循环蒸发加热室,循环加热,再通过切线喷入分离器,进行蒸发、汽液分离。

水份蒸发后的二次蒸汽作为热源对二效进行加热,物料则通轴流泵送至三效强制循环加热室。

同样的方式在三效完成蒸发后,物料连续送入第二效强制循环系统,在第二效再次蒸发后,进入一效蒸发、结晶系统,氯化钠晶体由出料泵打出,然后进入离心机上方旋液分离器。

送至离心机脱水,母液回到一效强制循环系统。

一效结晶器饱和上清液溢流至五效闪发降温结晶器经降温析出KCl,由出料泵打出,然后进入离心机上方旋液分离器。

送至离心机脱水,母液回到五效强制循环系统。

五效析钾上清液回流至四效。

2、蒸汽流程:蒸汽首先进入一效强制循环加热室,和物料热交换,加热后的物料进入一效气液分离器,产生二次蒸汽进入二效强制循环加热室,同样方式进入三效强制循环加热室,三效气液分离器产生的二次蒸汽进入四效,四效气液分离器产生的二次蒸汽进入冷凝器。

最后由真空泵排除系统。

五效产生的二次蒸汽进入冷凝器。

最后由真空泵排除系统3、冷凝水流程:一效至板式预热器和原料热交换后。

送回锅炉回用。

、二效、三效、四效加热室产生的冷凝水汇集到冷凝水罐,用冷凝水泵送至洗料回用。

4、不凝性气体流程:各个加热室效体上下侧端都开有不凝性气体出口,蒸发中产生的不凝性气体经真空泵抽走并排出.(详见工艺流程图)五、设备的技术参数技术方案内的参数为参考数据。

以合同协议参数为准六、产品配置清单:七、设备制造标准非标设备1)GB151-1999《管壳式换热器》2)JB/T4710-2005《钢制塔式容器》3)JB/T4735-1997《钢制焊接常压容器》4)JB/T4731-2005《钢制卧式容器》5)HG20580-1998《钢制化工容器设计基础规定》6)HG20581-1998《钢制化工容器材料选用规定》7)HG20582-1998《钢制化工容器强度计算规定》8)HG20583-1998《钢制化工容器结构设计规定》9)HG20584-1998《钢制化工容器制造技术要求》10)HG205920~20635-97《钢制管法兰、垫片、紧固件》11)JB/T4736-2002《补强圈》12)JB/T4712、4713、4724、4725-1992《容器支座》13)JB/T4718~4720-92《管壳式换热器用垫片》14)GB/T983-1995《不锈钢焊条》15)GB/T5117-1995《碳钢焊条》16)GB/T5118-1995《低合金钢焊条》17)HG/T21514~21535-2005《钢制人孔和手孔》18)HG21537.7~8-1995《搅拌传动装置》19)HG21505-1992《组合式视镜》20)HG/T21619~620-1986《视镜》、《带颈视镜》21)HG20652-1998《塔器设计技术规定》22)HG/T21618-1998《丝网除沫器》23)HG/T21639-1980《塔顶吊柱》24)HG/T21574-94《设备吊耳》25)JB/T1205-2001《塔盘技术条件》26)HG/T21512-95《梁型气体喷射式填料支承板》27)GB/T13148-1991《不锈钢复合钢板焊接技术条件》28)HG/T20678-2000《衬里钢壳设计技术规定》29)GB/T12459-2005《钢制对焊无缝管件》30)GB50316-2000《工业金属管道设计规范》31)GB50264-97《工业设备及管道绝热工程设计规范》机泵1)API610《石油、化工和天然气工业用离心泵》2)API682《离心泵和旋转泵的轴密封系统》3)GB3215《炼油厂、化工及石油化工流程用离心泵通用技术条件》4)GB3216《离心泵、混流泵、轴流泵和旋涡泵试验方法》5)GB/T5656《离心泵技术条件》6)GB/T5659《多级离心泵技术条件》7)HG20592B《钢制管法兰、垫片、紧固件》8)GB/T3214《水泵流量的测定方法》9)GB13006《离心泵、混流泵和轴流泵汽蚀余量》10)GB13007《离心泵效率》11)GB9239《刚性转子平衡品质许用不平衡的确定》12)JB/T8097《泵的振动测量与评价方法》13)JB/T8098《泵的噪声测量与评价方法》14)JB/T4297 《泵产品涂漆技术条件》15)JB/T6879《离心泵铸件过流部位尺寸公差》16)GB2100《不锈耐酸钢铸件技术条件》管道、管件阀门与法兰1)GB/T8163-1999《输送流体用无缝钢管》2)GB/T14976-2002《流体输送用不锈钢无缝钢管》3)JB/T81-88《法兰、垫片、紧固件》4)JB/T2769-2008《阀门零部件螺纹法兰》5)HG20553-1993《化工配管用无缝及焊接钢管尺寸选用系(公制II系列)》电动机及电气设备1)GB755-2000《旋转电机基本技术要求》2)GB50054-1995《低压配电设计规范》3)GB50058-1992《爆炸和火灾危险环境电力装置设计规范》仪表1)GB50093-2002《工业自动化仪表工程施工及验收规范》2)HG/T20505-2000《过程测量和控制仪表的功能标志及图形符号》3)HG/T20507-2000《自动化仪表选型设计规定》4)HG/T20511-2000《信号报警,安全连锁系统设计规定》5)HG/T20512-2000《仪表配管配线设计规定》6)HG/T20513-2000《仪表系统接地设计规定》7)HG/T21581-95《自控安装图册》8)SH 3005-1999《石油化工自动化仪表选型设计规范》9)SH/T 3018-2003《石油化工安全仪表系统设计规范》10)SHJ19-90《石油化工企业仪表配管配线设计规范》11)SHJ521-91《石油化工企业仪表工程施工技术规程》保温《GB50264-97工业设备及管道绝热工程设计规范》八、蒸发器安装、调试、培训现场安装严格按照安装图纸进行施工,记录了施工过程的实施人、检查人,无论哪个环节出现问题,都可追溯责任者的责任。

组织优秀的施工人员参加施工,选派技术素质好从事工程施工多年的工人参加施工。

严把材料质量关:现场采购或汽运到现场的框架材料,必须具有合格证、质保书。

总之,施工中不得使用任何不合格材料。

严格遵守公司的安全制度,确保安全文明施工。

试车调试在工程安装完工后,对设备进行详细检查后,其后进行单机试车,然后以水代料试运转,正常后正式投料试车,进行72小时验收调试。

相关文档
最新文档