Ansys 电机电磁、震动和噪声分析流程ppt课件
合集下载
Ansys电机电磁震动和噪声分析流程

Maxwell 分析模型介绍
分析模型为 Prius 电机的二维分析模型。 瞬态分析模型的各项设置已经设置好。 如需要详细了解如何设置电机的瞬态分析模型,请查看其他相关培训文件。
定子铁心
Phase C Phase B 转子 轴 Phase A Phase C
磁钢
Maxwell 模型修改
为了精确分析定子齿部的径向电磁力,并将力密度的分布耦合到后续的谐响应分 析中。需要将定子齿部“分割”出来,并施加更细密的网格剖分。
调整仿真时间与步长
双击 Projects 管理窗口上的 Analysis>Setup1 设置仿真停止时间 Stop Time 为10ms 设置时间步长 Time Step 为 50us 点击 OK
激活瞬态电磁场与谐响应分析的耦合分析选项
激活瞬态电磁场与谐响应分析耦合分析选项 点击菜单Maxwell2D > Enable Harmonic Force Calculation 在弹出的Enable Harmonic Force Coulping 窗口中, 1. 选中Enable Force Calculation, 2. 在每一个齿尖模型的选择框中,打勾如下图。 3. 点击 OK 。 Maxwell将会在最后一个完整周期, 计算每一个选中物体的瞬时电磁力, 并通过傅里叶分析,转化成频域的 电磁力数据,频率范围是从直流到 DC to 1/(2*dT).
在弹出的 Element Length Based Refinement 窗口中, 1. 将 Name 改成 Length_ToothTips 2. Restrict length of Elements: 3. Maximum Length of Elements: 0.25 mm 4. 点击 OK 改善曲线网格剖分 选中所有的物体( Ctrl + A) 点击菜单 Maxwell 2D > Mesh Operations > Assign > Surface
《ANSYS教程》课件

2000年代
推出ANSYS Workbench,实 现多物理场耦合分析。
1970年代
ANSYS公司成立,开始开发有 限元分析(FEA)软件。
1990年代
扩展软件功能,增加流体动力 学、电磁场等分析模块。
2010年代
持续更新和优化,加强与CAD 软件的集成,提高计算效率和 精度。
软件应用领域
航空航天
2023
PART 07
后处理与可视化
REPORTING
结果查看与图表生成
结果查看
通过后处理,用户可以查看分析结果,如应力、应变、位移等。
图表生成
根据分析结果,可以生成各种类型的图表,如柱状图、曲线图、等值线图等,以便更直观地展示结果 。
可视化技术
云图显示
通过云图显示,可以清晰地展示模型 的应力、应变分布情况。
压力载荷等。
在设置边界条件和载荷 时,需要考虑实际工况 和模型简化情况,确保 分析的准确性和可靠性
。
求解和后处理
求解是ANSYS分析的核心步骤,通过求解可以得到模型在给定边界条件和 载荷下的响应。
ANSYS提供了多种求解器,如稀疏矩阵求解器、共轭梯度求解器等,可以 根据需要进行选择。
后处理是分析完成后对结果的查看和处理,ANSYS提供了丰富的后处理功 能,如云图显示、动画显示等。
VS
详细描述
非线性分析需要使用更复杂的模型和算法 ,以模拟结构的非线性行为。通过非线性 分析,可以更准确地预测结构的极限载荷 和失效模式,对于评估结构的可靠性和安 全性非常重要。
2023
PART 04
流体动力学分析
REPORTING
流体静力学分析
静力学分析用于研究流体在静 止或准静止状态下的压力、应
ANSYSWorkbench电磁场分析例子 PPT资料共38页

• Workbench Emag capability is mapped to & accessed via:
– ANSYS Emag (stand alone or enabled task) – ANSYS Multiphysics license keys.
© 2004 ANSYS, Inc.
• Fill Tool: Released at 9.0 (Beta at 8.1). Similar function to enclosure, but only fills interior cavities.
© 2004 ANSYS, Inc.
Example of a hemispherical enclosure around an electromagnet
• Benefits: Very easy to use, rapid creation of coil windings.
© 2004 ANSYS, Inc.
ANSYS, Inc. Proprietary
Winding Bodies
Tangent orientation vector (blue arrow) defines direction of current.
ANSYS, Inc. Proprietary
Winding Tool Example
Winding 1 highlighted with rotor
Complete DC Motor model
© 2004 ANSYS, Inc.
ANSYS, Inc. Proprietary
Winding Options
Winding cross-section displayed
– ANSYS Emag (stand alone or enabled task) – ANSYS Multiphysics license keys.
© 2004 ANSYS, Inc.
• Fill Tool: Released at 9.0 (Beta at 8.1). Similar function to enclosure, but only fills interior cavities.
© 2004 ANSYS, Inc.
Example of a hemispherical enclosure around an electromagnet
• Benefits: Very easy to use, rapid creation of coil windings.
© 2004 ANSYS, Inc.
ANSYS, Inc. Proprietary
Winding Bodies
Tangent orientation vector (blue arrow) defines direction of current.
ANSYS, Inc. Proprietary
Winding Tool Example
Winding 1 highlighted with rotor
Complete DC Motor model
© 2004 ANSYS, Inc.
ANSYS, Inc. Proprietary
Winding Options
Winding cross-section displayed
有限元ansys电磁场分析详解PPT课件

• 选择 OK
• 选择OK
第4页/共33页
• 重复这些步骤,定义定子磁体材料3
• 为转子磁体平行磁化方向定义11号局部坐标系 • 水平方向反时针30度(总体坐标+X 轴) • 局部坐标系原点与总体坐标系一致 Utility>workplane>local coord. systems>create local CS>at specified location
• 选择 OK • 与前面一样重新设置衔铁的关联 • 对除有约束方程的节点外的所有外部节点重新施加平行条件 • 执行求解
第29页/共33页
• 显示磁通密度和磁力线迭加图 – 由于衔铁位置改变,磁力线随 着变化 – 定子内最大磁密BSUM增大 – 模型交界处磁场连续
BSUM (T)
第30页/共33页
谢谢您的观看!
第33页/共33页
2.5-33
第17页/共33页
• 模拟有许多磁极的电机,周期性边界 条件非常有用
• 右图显示的是一个10极永磁电机
• 模拟转子的运动。当转子转动时,电 流会变化。
• 定子槽内显示电流密度
• 本模型也允许转子和定子相互独立
• 观看动画,可执行动画文件:
mach2d.avi
定子
第18页/共33页
转子
约束方程—不相同网格
• 将定子一侧边界上的节点建立组件. • 选择定子模型边界上线段 • 选择STATOR组件 • 再选择边界上线段 • 选择所选线段上的全部节点 • 建立单节点组件CE_N
第22页/共33页
定子内半径 全部节点
• 选择衔铁组件ARMATURE • 选择节点组件 CE_N • 应用约束方程生成器
Preproc>coupling/ceqn>adjacent regions
• 选择OK
第4页/共33页
• 重复这些步骤,定义定子磁体材料3
• 为转子磁体平行磁化方向定义11号局部坐标系 • 水平方向反时针30度(总体坐标+X 轴) • 局部坐标系原点与总体坐标系一致 Utility>workplane>local coord. systems>create local CS>at specified location
• 选择 OK • 与前面一样重新设置衔铁的关联 • 对除有约束方程的节点外的所有外部节点重新施加平行条件 • 执行求解
第29页/共33页
• 显示磁通密度和磁力线迭加图 – 由于衔铁位置改变,磁力线随 着变化 – 定子内最大磁密BSUM增大 – 模型交界处磁场连续
BSUM (T)
第30页/共33页
谢谢您的观看!
第33页/共33页
2.5-33
第17页/共33页
• 模拟有许多磁极的电机,周期性边界 条件非常有用
• 右图显示的是一个10极永磁电机
• 模拟转子的运动。当转子转动时,电 流会变化。
• 定子槽内显示电流密度
• 本模型也允许转子和定子相互独立
• 观看动画,可执行动画文件:
mach2d.avi
定子
第18页/共33页
转子
约束方程—不相同网格
• 将定子一侧边界上的节点建立组件. • 选择定子模型边界上线段 • 选择STATOR组件 • 再选择边界上线段 • 选择所选线段上的全部节点 • 建立单节点组件CE_N
第22页/共33页
定子内半径 全部节点
• 选择衔铁组件ARMATURE • 选择节点组件 CE_N • 应用约束方程生成器
Preproc>coupling/ceqn>adjacent regions
Ansys基础教程PPT课件

ANSYS教程
ANSYS 结构分析
1
第一章 ANSYS主要功能与模块
ANSYS是世界上著名的大型通用有限元计算软件, 它包括热、电、磁、流体和结构等诸多模块,具有强大 的求解器和前、后处理功能,为我们解决复杂、庞大的 工程项目和致力于高水平的科研攻关提供了一个优良的 工作环境,是一个开放的软件,支持进行二次开发。
4)瞬态动力学分析 - 确定结构对随时间任意变化的 载荷的响应. 可以考虑与静力分析相同的结构非线 性行为.
5)谱分析 模态分析的拓广。
6)随机振动分析等
7)特征屈曲分析 - 用于计算线性屈曲载荷并确定屈 曲模态形状. (结合瞬态动力学分析可以实现非线性 屈曲分析.)
8)专项分析: 断裂分析, 复合材料分析,疲劳分析
另外,一个只由面及面以下层次组成的实体, 如壳或二维平面模型,在ANSYS中仍称为实体。
体
面
线及关键点 体
面 线 关键点
实体建模 A. 定义
建立实体模型可以通过两个途径:
– 自顶向下 – 自底向上
自顶向下建模;首先建立高级图元(体或面),对这些高级图元(体或 面)按一定规则组合得到最终需要的形状.
直接建模
直接创建节点和单元,模型中没有实体(点、线、面) 出现。
优点:适用于小型、简单、规律性较强的模型,能实现 对每个节点和单元编号的完全控制。
缺点:对复杂、大型的模型,需人工处理的数据量大, 效率低。
二 实体建模概述
主要内容:
– A. 定义 – B. 自顶向下建模
• 前言 • 工作平面 • 布尔运算
– C. 例题 – D. 自底向上建模
• 关键点 • 坐标系 • 线,面,体 • 操作
– E. 例题
ANSYS 结构分析
1
第一章 ANSYS主要功能与模块
ANSYS是世界上著名的大型通用有限元计算软件, 它包括热、电、磁、流体和结构等诸多模块,具有强大 的求解器和前、后处理功能,为我们解决复杂、庞大的 工程项目和致力于高水平的科研攻关提供了一个优良的 工作环境,是一个开放的软件,支持进行二次开发。
4)瞬态动力学分析 - 确定结构对随时间任意变化的 载荷的响应. 可以考虑与静力分析相同的结构非线 性行为.
5)谱分析 模态分析的拓广。
6)随机振动分析等
7)特征屈曲分析 - 用于计算线性屈曲载荷并确定屈 曲模态形状. (结合瞬态动力学分析可以实现非线性 屈曲分析.)
8)专项分析: 断裂分析, 复合材料分析,疲劳分析
另外,一个只由面及面以下层次组成的实体, 如壳或二维平面模型,在ANSYS中仍称为实体。
体
面
线及关键点 体
面 线 关键点
实体建模 A. 定义
建立实体模型可以通过两个途径:
– 自顶向下 – 自底向上
自顶向下建模;首先建立高级图元(体或面),对这些高级图元(体或 面)按一定规则组合得到最终需要的形状.
直接建模
直接创建节点和单元,模型中没有实体(点、线、面) 出现。
优点:适用于小型、简单、规律性较强的模型,能实现 对每个节点和单元编号的完全控制。
缺点:对复杂、大型的模型,需人工处理的数据量大, 效率低。
二 实体建模概述
主要内容:
– A. 定义 – B. 自顶向下建模
• 前言 • 工作平面 • 布尔运算
– C. 例题 – D. 自底向上建模
• 关键点 • 坐标系 • 线,面,体 • 操作
– E. 例题
ANSYSWorkbench电磁场分析例子-38页PPT精品文档

Winding Tool
Complex coil windings may be created using the Winding Tool: • The Winding Tool inserts a “Winding#” into the model tree. • A “Details” view is used for geometric placement.
ANSYS, Inc. Proprietary
Workbench Emag Markets
Target markets: • Solenoid actuators • Permanent magnet devices • Sensors • Rotating Electric machines
– Synchronous machines – DC machines – Permanent magnet machines
– Winding Bodies: Used to represent wound coils for source excitation. The advantage of these bodies is that they are not 3D CAD objects, and hence simplify modeling/meshing of winding structures.
– Simulation
© 2004 ANSYS, Inc.
ANSYS, Inc. Proprietary
Winding Bodies & Tool
• Feature: Design Modeler (DM) includes two new tools to allow a user to easily create current carrying coils:
电机电磁场的仿真分析(精选PPT)

6
电机电磁场的理论基础
边界条件:
电机电磁场问题中,边界条件一般有一类、二类及周期
性边界条件,混合的三类边界条件很少遇到。
第一类边界条件:用标量位 求解时,边界上 为 已知值,
即
C
这时,边界上磁场强度的切向分量 H为t 已知。当用矢量
磁位 A求解时,边界上为已知值,即 A C
这时,边界上磁通密度的法向分量为已知。由于磁力线
10
ANSYS电磁场分析简介
ANSYS磁场分析的有限元公式是麦克斯韦尔方程 组导出,计算的主要未知量(自由度)是磁势或磁通 量,其它磁场量则由这些自由度得来。
ANSYS程序提供了丰富的线性和非线性材料的表 达方式,包括各向同性或各向异性的线性磁导率,材料 的B-H曲线和永磁体的退磁曲线。后处理功能允许用户 显示磁力线、磁通密度和磁场强度,并可以进行力、力 矩、源输入能量、感应系数、端电压和其它参数的计 算。 11
电机电磁场的仿真分析
̶ ̶ ANSYS软件应用
1
电机电磁场的仿真分析
电机内的电磁场 ANSYS电磁场分析简介 一个应用实例
2
电机内的电磁场
电机内的电磁场从它的分布区域及其作用来看,大致可 分为:(1)气隙磁场;(2)凸极同步电机磁极间的漏磁场 或直流电机主磁极与换向极间的漏磁场;(3)槽内漏磁 场;(4)绕组端部电磁场;(5)铁心中的磁场;(6)实 心转子中的电磁场等。按照是否随时间变化,电机内的电磁 场可分为:(1)恒定磁场;(2)时变电磁场。
外加磁场 令AZ等于一非零值,或用GUI路径操作
18
ANSYS电磁场分析简介
加载荷: 对于谐性场,谐波载荷假定任何外加载荷都是随时间
呈谐波(正弦)变化的,这样的载荷要说明幅值、相位角和 工作频率。幅值即为所加载荷的最大值;相位角即为载荷落 后于参考的时间,只有存在着多个彼此不同相的载荷时才需 用到相位角。工作频率就是交流电的频率。
电机电磁场的理论基础
边界条件:
电机电磁场问题中,边界条件一般有一类、二类及周期
性边界条件,混合的三类边界条件很少遇到。
第一类边界条件:用标量位 求解时,边界上 为 已知值,
即
C
这时,边界上磁场强度的切向分量 H为t 已知。当用矢量
磁位 A求解时,边界上为已知值,即 A C
这时,边界上磁通密度的法向分量为已知。由于磁力线
10
ANSYS电磁场分析简介
ANSYS磁场分析的有限元公式是麦克斯韦尔方程 组导出,计算的主要未知量(自由度)是磁势或磁通 量,其它磁场量则由这些自由度得来。
ANSYS程序提供了丰富的线性和非线性材料的表 达方式,包括各向同性或各向异性的线性磁导率,材料 的B-H曲线和永磁体的退磁曲线。后处理功能允许用户 显示磁力线、磁通密度和磁场强度,并可以进行力、力 矩、源输入能量、感应系数、端电压和其它参数的计 算。 11
电机电磁场的仿真分析
̶ ̶ ANSYS软件应用
1
电机电磁场的仿真分析
电机内的电磁场 ANSYS电磁场分析简介 一个应用实例
2
电机内的电磁场
电机内的电磁场从它的分布区域及其作用来看,大致可 分为:(1)气隙磁场;(2)凸极同步电机磁极间的漏磁场 或直流电机主磁极与换向极间的漏磁场;(3)槽内漏磁 场;(4)绕组端部电磁场;(5)铁心中的磁场;(6)实 心转子中的电磁场等。按照是否随时间变化,电机内的电磁 场可分为:(1)恒定磁场;(2)时变电磁场。
外加磁场 令AZ等于一非零值,或用GUI路径操作
18
ANSYS电磁场分析简介
加载荷: 对于谐性场,谐波载荷假定任何外加载荷都是随时间
呈谐波(正弦)变化的,这样的载荷要说明幅值、相位角和 工作频率。幅值即为所加载荷的最大值;相位角即为载荷落 后于参考的时间,只有存在着多个彼此不同相的载荷时才需 用到相位角。工作频率就是交流电的频率。
ANSYS电磁场教程电磁模拟PPT课件

用 ANSYS/Emag进行电磁场分析ANSYS/Emag进行电磁场分析ANSY版S本/Em5.a5g(进00行11电72磁) 场分析ANSYS/Emag进行电磁场分析ANSYS/Emag进行电2.1磁-8场分析
– 三维(3D)模拟功能包括三种单元列式类型 – 标量势单元列式(静态1 )[SOLID96]
ANSYS电磁场培训教程 第四章
4-1 三维电磁模拟
用 ANSYS/Emag进行电磁场分析ANSYS/Emag进行电磁场分析ANSY版S本/Em5.a5g(进00行11电72磁) 场分析ANSYS/Emag进行电磁场分析ANSYS/Emag进行电2.1磁-1场分析
三维(3D)模拟
• 在很多情况下,电磁场分析要以三维(3D)方式进行模拟 – 没有完全轴对称的模型
• 缺省的线性材料为各向同性(只赋予MURX值) • 三维(3D)材料选项包括对于所有三个方向的正交各向异性选项
MURn 和RSVn(n表示X、Y、Z三个方向) – BH磁化曲线能用于磁导率正交各向异性的任一个方向,其余方向 为常数 – 在某正交各向异性方向应用BH曲线时,该方向的MURn应设置为 零(只在正交各向异性材料中要求如此)
Preproc>real constants
• 选择 ADD
• 选择 sourc36单元类型. • 选择 OK
用 ANSYS/Emag进行电磁场分析ANSYS/Emag进行电磁场分析ANSY版S本/Em5.a5g(进00行11电72磁) 场分析ANSYS/Emag进行电磁场分析ANSYS/Emag进行2电.1-磁16场分析
• 三维模拟使用多种单元列式
• 单元列式直接影响到模拟的各个方面 – 施加通量垂直和平行边界条件 • 何为自然边界条件? • 何为自由度约束? – BH数据对收敛敏感性的影响 • ν - B2 曲线与μ - H 曲线 – 模拟激励的方法(绞线圈) – 可在模型中包含铁磁区 – 模型中的铁磁-空气界面 – 后处理 • 通量计算(电动势(EMF)计算的起始点) • “磁力线”显示
– 三维(3D)模拟功能包括三种单元列式类型 – 标量势单元列式(静态1 )[SOLID96]
ANSYS电磁场培训教程 第四章
4-1 三维电磁模拟
用 ANSYS/Emag进行电磁场分析ANSYS/Emag进行电磁场分析ANSY版S本/Em5.a5g(进00行11电72磁) 场分析ANSYS/Emag进行电磁场分析ANSYS/Emag进行电2.1磁-1场分析
三维(3D)模拟
• 在很多情况下,电磁场分析要以三维(3D)方式进行模拟 – 没有完全轴对称的模型
• 缺省的线性材料为各向同性(只赋予MURX值) • 三维(3D)材料选项包括对于所有三个方向的正交各向异性选项
MURn 和RSVn(n表示X、Y、Z三个方向) – BH磁化曲线能用于磁导率正交各向异性的任一个方向,其余方向 为常数 – 在某正交各向异性方向应用BH曲线时,该方向的MURn应设置为 零(只在正交各向异性材料中要求如此)
Preproc>real constants
• 选择 ADD
• 选择 sourc36单元类型. • 选择 OK
用 ANSYS/Emag进行电磁场分析ANSYS/Emag进行电磁场分析ANSY版S本/Em5.a5g(进00行11电72磁) 场分析ANSYS/Emag进行电磁场分析ANSYS/Emag进行2电.1-磁16场分析
• 三维模拟使用多种单元列式
• 单元列式直接影响到模拟的各个方面 – 施加通量垂直和平行边界条件 • 何为自然边界条件? • 何为自由度约束? – BH数据对收敛敏感性的影响 • ν - B2 曲线与μ - H 曲线 – 模拟激励的方法(绞线圈) – 可在模型中包含铁磁区 – 模型中的铁磁-空气界面 – 后处理 • 通量计算(电动势(EMF)计算的起始点) • “磁力线”显示
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• Maxwell 分析模型介绍
• 分析模型为 Prius 电机的二维分析模型。 • 瞬态分析模型的各项设置已经设置好。 • 如需要详细了解如何设置电机的瞬态分析模型,请查看其他相关培训文件。
定子铁心
转子 轴
Phase C Phase B
Phase A Phase C
磁钢
• Maxwell 模型修改
• 为了精确分析定子齿部的径向电磁力,并将力密度的分布耦合到后续的谐响应分析中。 需要将定子齿部“分割”出来,并施加更细密的网格剖分。
ANSYS 中国
3
电机电磁、震动和噪声耦合分析流程
• 几何模型修改 • 修改选择模式 1. 选择菜单 Edit > Select > Objects ; 2. 或从键盘,点击快捷键 “O” 。 • 复制定子铁心 1. 用鼠标,在图形窗口点击定子铁心。
ANSYS 中国2源自电机电磁、震动和噪声耦合分析流程
• 启动 Maxwell
• 导入 Maxwell 文件成功后,在 Workbench 的工作区会出现一个Maxwell Design。 • 启动 Maxwell
• 双击 Maxwell Design 上的 Maxwell 2D 标签,弹出 Maxwell 2D界面。
Based • 在弹出的 Element Length Based Refinement 窗口中,
1. 将 Name 改成 Length_ToothTips 2. Restrict length of Elements: 3. Maximum Length of Elements: 0.25 mm 4. 点击 OK • 改善曲线网格剖分 • 选中所有的物体( Ctrl + A) • 点击菜单 Maxwell 2D > Mesh Operations > Assign > Surface Approximation • 在弹出的 Surface Approximation 窗口中, 1. 将名字改成 SurfApprox_ToothTips 2. 设置 maximum surface deviation (length) 为 0.001 mm 3. 点击 OK
ANSYS 中国
4
电机电磁、震动和噪声耦合分析流程
• 网格剖分
• 在原有网格剖分的基础上,加密网格剖分 • 加密定子齿尖网格剖分
• 按住Ctrl 键,依次选择6个定子齿尖模型 • 点击菜单Maxwell 2D > Mesh Operations > Assign > OnSelection > Length
• dX:84 ; dY:0 ; dZ:0 ;点击回车键确定。 4. 在模型列表里面,会出现新部件 Circle3 。 • 建立定子齿尖部分模型 1. 按住Ctrl 键,先选择物体Stator1,再选择Circle3 2. 点击菜单, Modeler > Boolean > Intersect 3. 点击 OK 按钮 • 建立定子背板模型 1. 按住Ctrl 键,先选择物体Stator1,再选择Stator1 2. 点击菜单, Modeler > Boolean > Subtract 3. 在弹出的窗口中,选择Blank Parts:Stator1;Tool Parts: Stator1 4. 选择 Clone tool objects before subtracting: 5. 点击 OK 按钮 • 修改定子齿尖模型属性 1. 在模型列表选择物体Stator1,右键点击Properties 2. 在弹出的属性窗口中,将 Name 改成 ToothTips 3. 点击菜单 Modeler > Boolean > Separate Bodies
ANSYS 中国
1
电机电磁、震动和噪声耦合分析流程
w 启动ANSYS Workbench
w 启动Workbench w 选择 Windows 开始菜单,点击 All Programes > ANSYS 15.0 > Workbench 15.0
w 确保Maxwell 2D、Harmonic Response 等求解器,显示在Workbench左侧的窗 口中,如右图。
2. 点击,菜单 Edit > Copy 3. 点击,菜单 Edit > Paste 4. 在模型列表里面,会多出来一个物体 Stator1。 • 建一个辅助圆 1. 点击菜单 Draw > Circle ; 2. 在坐标输入区域,输入圆心的坐标点
• X:0 ; Y:0 ; Z:0 ;点击回车键确定。 3. 在坐标输入区域,输入半径
• 在Workbench中,Maxwell中计算的定子内表面径向和切向磁拉时域力密度分布, 作为激励源,耦合到Mechanical 中进行频域的谐响应分析;谐响应分析的结果, 作为激励耦合到ANSYS Mechanical ACT 中,作为噪声分析的激励。
• 本例目的在于展示电磁场、谐响应以及声场的耦合分析和数据传递流程,描述关 键步骤。如要查看具体操作,可查看ANSYS公司的其他相关培训教程。
w 导入Maxwell Project 文件
w 用户可以在 Workbench 中启动 Maxwell 2D,并新建分析 project;也 可以在Workbench 导入已有的 Maxwell project 文件。本例采用后者。
•导入Maxwell 文件 •选择 Workbench 菜单 File > Import •将默认的文件类型改为 Maxwell Project File (*.mxwl) •浏览到 Maxwell 文件保存的路径 •选择文件 “Ex_MaxwellTransient_ Harmonic _Acoustic.mxwl”,并打开。
• 软件要求
• 本例中的电磁、震动和噪声的耦合分析,需要需要使用Maxwell V2014 、ANSYS Mechanical R15版本。
• 需要安装ANSYS Workbench ,并且Maxwell、 Mechanical都集成到Workbench 界面中。
• 需要安装并激活 Acoustics ACT 选项
电机电磁、震动和噪声耦合分析流程
• 电机电磁、震动和噪声分析流程简介
• 本例将重点展示,如何在ANSYS Workbench平台下,电机的电磁、震动和噪声的 耦合分析流程。
• 本例以永磁同步电机模型为例。在Maxwell 2D中,利用该电机的1/8模型,计算定 子内表面径向和切向磁拉力;然后在ANSYS Mechanical中进行该电机三维定子的 谐响应分析;最后在ANSYS Mechanical ACT中进行三维声场分析。
• 分析模型为 Prius 电机的二维分析模型。 • 瞬态分析模型的各项设置已经设置好。 • 如需要详细了解如何设置电机的瞬态分析模型,请查看其他相关培训文件。
定子铁心
转子 轴
Phase C Phase B
Phase A Phase C
磁钢
• Maxwell 模型修改
• 为了精确分析定子齿部的径向电磁力,并将力密度的分布耦合到后续的谐响应分析中。 需要将定子齿部“分割”出来,并施加更细密的网格剖分。
ANSYS 中国
3
电机电磁、震动和噪声耦合分析流程
• 几何模型修改 • 修改选择模式 1. 选择菜单 Edit > Select > Objects ; 2. 或从键盘,点击快捷键 “O” 。 • 复制定子铁心 1. 用鼠标,在图形窗口点击定子铁心。
ANSYS 中国2源自电机电磁、震动和噪声耦合分析流程
• 启动 Maxwell
• 导入 Maxwell 文件成功后,在 Workbench 的工作区会出现一个Maxwell Design。 • 启动 Maxwell
• 双击 Maxwell Design 上的 Maxwell 2D 标签,弹出 Maxwell 2D界面。
Based • 在弹出的 Element Length Based Refinement 窗口中,
1. 将 Name 改成 Length_ToothTips 2. Restrict length of Elements: 3. Maximum Length of Elements: 0.25 mm 4. 点击 OK • 改善曲线网格剖分 • 选中所有的物体( Ctrl + A) • 点击菜单 Maxwell 2D > Mesh Operations > Assign > Surface Approximation • 在弹出的 Surface Approximation 窗口中, 1. 将名字改成 SurfApprox_ToothTips 2. 设置 maximum surface deviation (length) 为 0.001 mm 3. 点击 OK
ANSYS 中国
4
电机电磁、震动和噪声耦合分析流程
• 网格剖分
• 在原有网格剖分的基础上,加密网格剖分 • 加密定子齿尖网格剖分
• 按住Ctrl 键,依次选择6个定子齿尖模型 • 点击菜单Maxwell 2D > Mesh Operations > Assign > OnSelection > Length
• dX:84 ; dY:0 ; dZ:0 ;点击回车键确定。 4. 在模型列表里面,会出现新部件 Circle3 。 • 建立定子齿尖部分模型 1. 按住Ctrl 键,先选择物体Stator1,再选择Circle3 2. 点击菜单, Modeler > Boolean > Intersect 3. 点击 OK 按钮 • 建立定子背板模型 1. 按住Ctrl 键,先选择物体Stator1,再选择Stator1 2. 点击菜单, Modeler > Boolean > Subtract 3. 在弹出的窗口中,选择Blank Parts:Stator1;Tool Parts: Stator1 4. 选择 Clone tool objects before subtracting: 5. 点击 OK 按钮 • 修改定子齿尖模型属性 1. 在模型列表选择物体Stator1,右键点击Properties 2. 在弹出的属性窗口中,将 Name 改成 ToothTips 3. 点击菜单 Modeler > Boolean > Separate Bodies
ANSYS 中国
1
电机电磁、震动和噪声耦合分析流程
w 启动ANSYS Workbench
w 启动Workbench w 选择 Windows 开始菜单,点击 All Programes > ANSYS 15.0 > Workbench 15.0
w 确保Maxwell 2D、Harmonic Response 等求解器,显示在Workbench左侧的窗 口中,如右图。
2. 点击,菜单 Edit > Copy 3. 点击,菜单 Edit > Paste 4. 在模型列表里面,会多出来一个物体 Stator1。 • 建一个辅助圆 1. 点击菜单 Draw > Circle ; 2. 在坐标输入区域,输入圆心的坐标点
• X:0 ; Y:0 ; Z:0 ;点击回车键确定。 3. 在坐标输入区域,输入半径
• 在Workbench中,Maxwell中计算的定子内表面径向和切向磁拉时域力密度分布, 作为激励源,耦合到Mechanical 中进行频域的谐响应分析;谐响应分析的结果, 作为激励耦合到ANSYS Mechanical ACT 中,作为噪声分析的激励。
• 本例目的在于展示电磁场、谐响应以及声场的耦合分析和数据传递流程,描述关 键步骤。如要查看具体操作,可查看ANSYS公司的其他相关培训教程。
w 导入Maxwell Project 文件
w 用户可以在 Workbench 中启动 Maxwell 2D,并新建分析 project;也 可以在Workbench 导入已有的 Maxwell project 文件。本例采用后者。
•导入Maxwell 文件 •选择 Workbench 菜单 File > Import •将默认的文件类型改为 Maxwell Project File (*.mxwl) •浏览到 Maxwell 文件保存的路径 •选择文件 “Ex_MaxwellTransient_ Harmonic _Acoustic.mxwl”,并打开。
• 软件要求
• 本例中的电磁、震动和噪声的耦合分析,需要需要使用Maxwell V2014 、ANSYS Mechanical R15版本。
• 需要安装ANSYS Workbench ,并且Maxwell、 Mechanical都集成到Workbench 界面中。
• 需要安装并激活 Acoustics ACT 选项
电机电磁、震动和噪声耦合分析流程
• 电机电磁、震动和噪声分析流程简介
• 本例将重点展示,如何在ANSYS Workbench平台下,电机的电磁、震动和噪声的 耦合分析流程。
• 本例以永磁同步电机模型为例。在Maxwell 2D中,利用该电机的1/8模型,计算定 子内表面径向和切向磁拉力;然后在ANSYS Mechanical中进行该电机三维定子的 谐响应分析;最后在ANSYS Mechanical ACT中进行三维声场分析。