在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块
【市级联考】福建省厦门市2024届高三第一学期质量检测全真演练物理试题

【市级联考】福建省厦门市2024届高三第一学期质量检测全真演练物理试题一、单项选择题(本题包含8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题关于热学现象,下列说法正确的是( )A.液体有表面张力,原因是液体表面分子间的平均距离比液体内部大B.物体内热运动速率大的分子数占总分子数比例与温度无关C.不可能从单一热库吸收热量,使之完全变成功D.给庄稼松土有助于将地下的水分引上来第(2)题一个不计重力的带正电荷的粒子,沿图中箭头所示方向进入磁场,图中标出了带电粒子所受洛伦兹力f的方向,其中正确的是A.B.C.D.第(3)题第24届北京“冬奥会”于2022年2月4日由北京市和张家口市联合举办。
在“冬奥会”冰上项目中,冰壶比赛是极具观赏性的一个项目。
如图所示,在一次训练中,冰壶(可视为质点)以某一速度沿虚线做匀减速直线运动,垂直进入四个完全相同的矩形区域,到达第四个矩形区域边缘的E点时速度恰好为零。
冰壶从A点运动到D点和从B点运动到E点的平均速度大小分别为v1和v2,则v1与v2之比为( )A.:1B.:1C.(-1):1D.(-1):1第(4)题2018年初,浙江气温低,冰冻现象严重.一小猫在爬一结冰的小山坡时,虽拼命攀爬,但由于打滑,其相对地面的位置没有发生变化,则在这一过程中,小猫受到的力有A.重力、支持力、静摩擦力B.重力、支持力、滑动摩擦力C.重力、支持力、攀爬力、静摩擦力D.重力、支持力、攀爬力、滑动摩擦力第(5)题2024年1月17日22时27分,天舟七号货运飞船乘坐长征七号运载火箭,从中国文昌航天发射场奔赴太空,为中国空间站送去物资。
18日01时46分,天舟七号货运飞船采用快速交会对接方式,成功对接于空间站天和核心舱后向端口,空间站组合体再次形成三舱两船的构型。
交会对接完成后,天舟七号将转入组合体飞行段,后续,神舟十七号航天员乘组进入舟七号货运飞船,按计划开展货物转运等相关工作。
高中物理经典力学练习题[1]
![高中物理经典力学练习题[1]](https://img.taocdn.com/s3/m/2bbbf697f80f76c66137ee06eff9aef8941e4883.png)
F高中物理经典力学练习题1.一架梯子靠在光滑的竖直墙壁上,下端放在水平的粗糙地面上,有关梯子的受力情况,下列描述正确的是 ( )A .受两个竖直的力,一个水平的力B .受一个竖直的力,两个水平的力C .受两个竖直的力,两个水平的力D .受三个竖直的力,三个水平的力2.如图所示, 用绳索将重球挂在墙上,不考虑墙的摩擦。
如果把绳的长度增加一些,则球对绳的拉力F 1和球对墙的压力F 2的变化情况是( )A .F 1增大,F 2减小B .F 1减小,F 2增大C .F 1和F 2都减小D .F 1和F 2都增大3.如图所示,物体A 和B 一起沿斜面匀速下滑,则物体A 受到的力是( )A .重力,B 对A 的支持力B .重力,B 对A 的支持力、下滑力C .重力,B 对A 的支持力、摩擦力D .重力,B 对A 的支持力、摩擦力、下滑力4.如图所示,在水平力F 的作用下,重为G 的物体保持沿竖直墙壁匀速下滑,物体与墙之间的动摩擦因数为μ,物体所受摩擦力大小为:( )A .μFB .μ()C .μ(F -G)D .G5.如图,质量为m 的物体放在水平地面上,受到斜向上的拉力F 的作用而没动,则( )A 、物体对地面的压力等于B 、地面对物体的支持力等于θC 、物体对地面的压力小于D 、物体所受摩擦力与拉力F 的合力方向竖直向上6.如图所示,在倾角为θ的斜面上,放一质量为m 的光滑小球,小球被竖直挡板挡住,则球对挡板的压力为( )θ B. θC. θD.7.如图所示,质量为50的某同学站在升降机中的磅秤上,某一时刻该同学发现磅秤的示数为40,则在该时刻升降机可能是以下列哪种方式运动?( )A.匀速上升B.加速上升C.减速上升D.减速下降8. 如图所示,用绳跨过定滑轮牵引小船,设水的阻力不变,则在小船匀速靠岸的过程中( )A. 绳子的拉力不断增大B. 绳子的拉力不变C. 船所受浮力增大D. 船所受浮力变小9.如图所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧。
牛顿第二定律应用的典型问题

牛顿第二定律应用的典型问题1. 力和运动的关系力是改变物体运动状态的原因,而不是维持运动的原因。
由F ma 知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。
速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。
在加速度为零时,速度有极值。
例1. 如图1所示,轻弹簧下端固定在水平面上。
一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。
在小球下落的这一全过程中,下列说法中正确的是( )A. 小球刚接触弹簧瞬间速度最大B. 从小球接触弹簧起加速度变为竖直向上C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 图1 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是( )A. 探测器加速运动时,沿直线向后喷气B. 探测器加速运动时,竖直向下喷气C. 探测器匀速运动时,竖直向下喷气D. 探测器匀速运动时,不需要喷气学生精练1.如右图所示,一物块在光滑的水平面上受一恒力F 的作用而运动,其正前方固定一个足够长的轻质弹簧,当物块与弹簧接触并将弹簧压至最短的过程中,下列说法中正确的是 【 】 A .物块接触弹簧后即做减速运动 B .物块接触弹簧后先加速后减速C .当弹簧处于最大压缩量时,物块的加速度不为零D .当弹簧的弹力等于恒力F 时,物块静止E .当物块的速度为零时,它受到的合力不为零2.如右图所示,弹簧左端固定,右端自由伸长到O 点并系住物体m ,现将弹簧压缩到A 点,然后释放,物体一直可以运动到B 点,如果物体受到的摩擦力大小恒定,则 【 】A .物体从A 到O 先加速后减速B .物体从A 到O 加速,从O 到B 减速C .物体在A 、O 间某点时所受合力为零D .物体运动到O 点时所受合力为零2瞬时问题【例1】如图如图(a )所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细线上,L 1的一端悬挂在天花板上,与竖直方向夹角为θ,L 2水平拉直,物体处于平衡状态.(1)现将图(a )中L 2线剪断,求剪断瞬间物体的加速度.(2)若将图(a )中的细线L 1改为质量不计的轻弹簧而其余情况不变,如图(b )所示,求剪断L 2瞬间物体的加速度.学生练习:如图所示剪断细绳的瞬间求 A 、B 两球的加速度的大小和方向;[思考1]如图所示,质量分别为m 1、m 2的物体P 、Q ,分别固定在质量不计的弹簧两端,将其竖直放在一块水平板上并处于静止状态。
弹簧连接物体的分离问题

弹簧连接物体的分离问题临界条件:①两物体仍然接触、但弹力为零;②速度和加速度相等。
情况1:弹簧与物体分离——弹簧原长时情况2:弹簧连接的B与固定的板C分离——B、C间弹力为零、弹簧拉力等于B重力向下分力1、如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A、B,它们的质量分别为m A、m B,弹簧的劲度系数为k,C为一个固定挡板.系统处于静止状态.现开始用一恒力F沿斜面方向拉物块A使之向上运动,求物块B刚要离开C时物块A的加速度a和从开始到此时物块A的位移d.(重力加速度为g)情况3:物块P与弹簧连接的M分离——P、M间弹力为零、P、M加速度相等2、一弹簧秤的秤盘质量M=1.5 kg,盘内放一物体P,物体P的质量m=10.5 kg,弹簧质量不计,其劲度系数为k=800N/m,系统处于静止状态,如图1—10—10所示.现给P施加一个竖直向上的力F,使P从静止开始向上做匀加速运动,已知在头0.2 s内F是变力,在0.2 s以后是恒力.求F的最小值和最大值各是多少?(g=10 m/s2)3、固定在水平面上的竖直轻弹簧,上端与质量为M的物块B相连,整个装置处于静止状态时,物块B位于P处,如图所示.另有一质量为m的物块C,从Q处自由下落,与B相碰撞后,立即具有相同的速度,然后B、C一起运动,将弹簧进一步压缩后,物块B、C被反弹.下列结论中正确的是()A.B、C反弹过程中,在P处物块C与B相分离B.B、C反弹过程中,在P处物C与B不分离C.C可能回到Q处D.C不可能回到Q处“弹簧与物块的分离”模型太原市第十二中学 姚维明模型建构:两个物体与弹簧组成的系统。
两个物体在运动到某一位置时就会分开,那么这个位置就是物体间的分离点。
【模型】弹簧与物块的分离【特点】①都要建立动力学方程;②分离条件是:相互作用的弹力F N =0 这个问题可以分成两类“模型”:【模型1】水平面上“弹簧与木块的分离”模型如图1,B 与弹簧相连,而A 、B 是紧靠在一起的两个物体,当弹簧原来处于压缩状态,如果地面是光滑的,则物体A 、B 在向左运动的过程中A 、B 何时分离。
牛顿运动定律应用(提高练习卷)

5、放在水平地面上的一物块,受到方向不变的水平推力F的作用,F的大小与时间t的关系和物块速度v与时间t的关系如图所示。
取重力加速度g=10m/s2。
由此两图线可以求得物块的质量m和物块与地面之间的动摩擦因数μ分别为多少?(请写出详细过程)解:由v—t图象可知,物块在0~3s内静止,3~6s内做匀加速运动,加速度为a, 6 ~9 s内做匀速运动,结合F—t图象可知f=4N=μmg,F3-f=ma,v2=6m/s=at=3a,由以上各式得m=lkg,μ=0.46、在倾角θ=37°的足够长的固定的斜面底端有一质量m=0.1kg的物体,物体与斜面间动摩擦因数μ=0.25.现用轻钢绳将物体由静止沿斜面向上拉动,拉力F=1.0N,方向平行斜面向上,经时间t=4.0s绳子突然断了,求:(1)绳断时物体的速度大小.(2)从绳子断了开始物体再返回到斜面底端的运动时间.(sin37°=0.6,cos37°=0.8,g=10m/s 2)解:(1)物体受拉力向上运动过程中,受拉力F重力mg和摩擦力f,设物体向上运动的加速度为a1,根据牛顿第二定律有因解得a1=2.0m/s2所以t=4.0s时物体的速度大小为v1=a1t=8.0m/s(2)绳断时物体距斜面底端的位移绳断后物体沿斜面向上做匀减速直线运动,设运动的加速度大小为a2,则根据牛顿第二定律,对物体沿斜面向上运动的过程有解得 a2= 8.0m/s2物体做减速运动的时间t2=v1/a2减速运动的位移此后物体将沿斜面匀加速下滑,设物体下滑的加速度为a3,根据牛顿第二定律对物体加速下滑的过程有解得a3=4.0m/s2设物体由最高点到斜面底端的时间为t3,所以物体向下匀加速运动的位移解得所以物体返回到斜面底端的时间为7、在光滑的桌面上叠放着一质量为mA=2.0kg的薄木板A和质量为mB=3 kg的金属块B.A的长度L=2.0m.B上有轻线绕过定滑轮与质量为mC=1.0 kg的物块C相连.B与A之间的滑动摩擦因数µ =0.10,最大静摩擦力可视为等于滑动摩擦力.忽略滑轮质量及与轴间的摩擦.起始时令各物体都处于静止状态,绳被拉直,B位于A的左端(如图),然后放手,求经过多长时间t后B从A的右端脱离(设A的右端距滑轮足够远)(取g=10m/s2).解:以桌面为参考系,令aA表示A的加速度,aB表示B、C的加速度,sA和sB分别表示t时间A和B移动的距离,则由牛顿定律和匀加速运动的规律可得mCg-µmBg=(mC+mB)aBµ mBg=mAaAsB=0.5aBt2sA=0.5aAt2sB-sA=L由以上各式,代入数值,可得t=4.0s8、有一块木板静止在光滑且足够长的水平面上,木板质量为M=4kg,长为L=1.4m;木板右端放着一小滑块,小滑块质量为m=1kg.其尺寸远小于L,小滑块与木板之间的动摩擦因数为μ=0.4 (g=10m/s2)(1)现用恒力F作用在木板M上,为了使得m能从M上面滑落下来,问:F大小的范围是什么?(2)其他条件不变,若恒力F=22.8N,且始终作用在M上,最终使得m能从M上面滑落,问:m在M上滑动时间是多少?解:(1)小滑块受到的摩擦力提供加速度a=gu=4m/s^2因此,当木块的加速度a'大于a即可使得m从M上面滑下来a'=(F-mgu)/M解出,F>20N(2)当恒力F=22.8N时,木块的加速度a'=(22.8-4)/4=4.7m/s^2而小滑块的加速度a=4m/s^2设m在M上面滑动的时间为t有:1/2*a'*t^2-1/2*a*t^2=L解出,t^2=2L/(a'-a)=2.8/0.7解出,t=2s9、一水平的传送带AB长为20m,以2m/s的速度顺时针做匀速运动,已知物体与传送带间动摩擦因数为0.1,则把该物体由静止放到传送带的A端开始,运动到B端所需的时间是多少?解:Μmg = ma a = μg = 1m/s2 t1 = v/a =1sx1 = at2/2 = 2m x2 = x—x1=20m—2m=18mt2 = x2/v = 9st = t1+t2 = 11s10、一高度为h=0.8m粗糙的水平面在B点处与一倾角为θ=30°的斜面BC连接,一小滑块从水平面上的A点以v0=3m/s的速度在粗糙的水平面上向右运动。
2022-2023学年湖北省鄂州市市葛店高级中学高一物理上学期期末试题含解析

2022-2023学年湖北省鄂州市市葛店高级中学高一物理上学期期末试题含解析一、选择题:本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意1. (单选题)北京时间2006年7月12日凌晨,中国“飞人”刘翔在瑞士洛桑田径超级大奖赛男子110米栏的比赛中,以12秒88打破了世界记录。
刘翔在比赛中的平均速度约为( )A.7.00m/s B.7.76m/s C.8.54m/s D .10.00m/s参考答案:C2. 在下列图所示的四个图象中,表示匀速直线运动的是()A. B.C.D.参考答案:BC【考点】匀变速直线运动的图像;匀变速直线运动的速度与时间的关系.【分析】匀速直线运动的速度保持不变,x﹣t图象的斜率等于速度,v﹣t图象的斜率表示加速度,根据图象的形状分析物体的运动情况.【解答】解:A、x﹣t图象的斜率表示物体的速度,该图的斜率等于零,说明物体的速度为零,物体静止,故A错误.B、该图表示物体的速度保持不变,做匀速直线运动,故B正确.C、x﹣t图象的斜率表示物体的速度,该图的斜率不变,说明物体的速度保持不变,做匀速直线运动,故C正确.D、该图表示物体的速度随时间均匀增大,物体做匀加速直线运动,故D错误.故选:BC3. (单选)两个大小相同的小球带有同种电荷(均可看作点电荷),质量分别为m1和m2,电荷量分别为q1和q2,用两等长的绝缘细线悬挂后,因静电力而使两悬线张开,分别与竖直方向成夹角和,如图所示,若,则下述结论正确的是A.一定满足B.必定同时满足q1=q2,m1=m2C.q1一定等于q2,但m1不一定等于m2D.m1一定等于m2,但q1不一定等于q2参考答案:D4. 下列关于机械能守恒的说法中正确的是()A.物体做匀速直线运动,它的机械能一定守恒B.物体所受的合力的功为零,它的机械能一定守恒C.物体所受的合力不等于零,它的机械能可能守恒D.物体所受的合力等于零,它的机械能一定守恒多项选择题:本题共5 小题,每小题4分,共20分,每小题有多个选项符合题意.全部选对的得4分,选对但不全的得2 分,错选或不答的得0分.参考答案:C5. 气象卫星是用来拍摄云层照片、观测气象资料和测量气象数据的,我国先后自行成功研制和发射了“风云一号”和“风云二号”两颗气象卫星.“风云一号”卫星轨道与赤道平面垂直,通过两极,每12小时巡视一周,称为“极地圆轨道”;“风云二号”气象卫星轨道平面在赤道平面内,是“地球同步轨道”卫星,则“风云二号”卫星比“风云一号”卫星A.在轨道上的运行周期长 B.在轨道上的运行速度大C.在轨道上的向心加速度大 D.在地面上的发射速度大参考答案:二、填空题:本题共8小题,每小题2分,共计16分6. 一探月卫星在地月转移轨道上运行,某一时刻正好处于地心和月心的连线上,卫星在此处所受地球引力与月球引力之比为4∶1.已知地球与月球的质量之比约为81∶1,则该处到地心与到月心的距离之比约为.参考答案:9 : 2解析:由万有引力定律,卫星受到地球和月球的万有引力分别为 F 地= G ,F 月= G ,代入题目给定的数据可得R 地: R 月="9" : 2 。
弹簧高质量块模型过程分析报告
过程分析之弹簧如图11所示,两个木块质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态,现缓慢向上提上面的木块,直到它刚离开上面的弹簧,在这过程中下面木块移动的距离A .11k g m B. 22k gm C.21k gm D.22k g m如图所示,劲度系数为2k 的轻弹簧B 竖直固定在桌面上.上端连接一个质量为m 的物体,用细绳跨过定滑轮将物体m 与另一根劲度系数为1k 的轻弹簧C 连接。
当弹簧C 处在水平位置且没发生形变时.其右端点位于a 位置。
现将弹簧C 的右端点沿水平方向缓慢拉到b 位置时,弹簧B 对物体m 的弹力大小为mg 32,则ab 间的距离为________。
如图所示,两根轻弹簧AC 和BD ,它们的劲度系数分别为k1和k2,它们的D 端分别固定在质量为m 的物体上,A 、B 端分别固定在支架和正下方地面上,当物体m 静止时,上方的弹簧处于原长;若将物体的质量增加了原来的2倍,仍在弹簧的弹性限度,当物体再次静止时,其相对第一次静止时位置下降了 ( )A .B .C .D .如图10所示,劲度系数为k 1的轻质弹簧两端分别与质量为m 1 、m 2 的物块1、2拴接,劲度系数为k 2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
现施力将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面,在此过程中物块2的重力势能增加了多少?物块1的重力势能增加了多少?m 1m 2K 2 K 1 图11m 1m 21 2 k 1 K 2图10如图所示,重80N 的物体A 放在倾角为30°的粗糙斜面上,有一根原长为10cm ,劲度系数为1000N/m 的弹簧,其一端固定在斜面底端,另一端放置物体A 后,弹簧长度缩短为8cm 。
现用一测力计沿斜面向上拉物体。
若物体与斜面间的最大静摩擦力为25N ,当弹簧的长度仍为8cm 时,测力计的示数可能为A .10NB .20NC .40ND .60N如图所示,在水平板的左端有一固定挡板,挡板上连接一轻质弹簧.紧贴弹簧放一质量为m 的滑块,此时弹簧处于自然长度.已知滑块与板之间的动摩擦因数为,且最大静摩擦力等于滑动摩擦力.现将板的右端缓慢抬起(板与水平面的夹角为θ),直到板竖直,此过程中弹簧弹力的大小F 随夹角θ的变化关系可能是( )A B C D用轻弹簧竖直悬挂质量为m 的物体,静止时弹簧伸长量为L 。
高中物理滑块练习及答案解析
高中物理滑块练习及答案解析一、计算题(每空?分,共?分)1、如下图中甲所示为传送装置的示意图。
绷紧的传送带长度L=2.0m,以v=3.0m/s的恒定速率运行,传送带的水平部分AB距离水平地面的高度h=0.45m。
现有一行李箱(可视为质点)质量m=10kg,以v0=1.0 m/s的水平初速度从A端滑上传送带,被传送到B端时没有被及时取下,行李箱从B端水平抛出,行李箱与传送带间的动摩擦因数m=0.20,不计空气阻力,重力加速度g取l0 m/s2。
(1)求行李箱从传送带上A端运动到B端过程中摩擦力对行李箱冲量的大小;(2)传送带与轮子间无相对滑动,不计轮轴处的摩擦,求为运送该行李箱电动机多消耗的电能;(3)若传送带的速度v可在0~5.0m/s之间调节,行李箱仍以v0的水平初速度从A端滑上传送带,且行李箱滑到B 端均能水平抛出。
请你在图乙中作出行李箱从B端水平抛出到落地点的水平距离x与传送带速度v的关系图象。
(要求写出作图数据的分析过程)2、如图所示,质量M= 4.0kg的长木板B静止在光滑的水平地面上,在其右端放一质量m= 1.0kg的小滑块A(可视为质点)。
初始时刻,A、B分别以v0= 2.0m/s向左、向右运动,最后A恰好没有滑离B板。
已知A、B之间的动摩擦因数μ = 0.40,取g=10m/s2。
求:⑴A、B相对运动时的加速度a A和a B的大小与方向;⑵A相对地面速度为零时,B相对地面运动已发生的位移x;⑶木板B的长度l。
3、水平放置的传送带AB间的距离L=10m,传送带在电动机带动下以v=2m/s的速度匀速运动,如下图所示。
在A点轻轻放上一个质量为m=2kg的小物块,物块向右运动s=2m后和传送带保持静止(取g=10m/s2)求:(1)物块与传送带间的动摩擦因数.(2)若在A点,每隔1s放上一个初速为零的物块,经过相当长的时间稳定后,传送带上共有几个物块?此时电动机的功率比不放物块时增加多少?(3)若在A点由静止释放第一个物块,3s后再释放第二个物块,为使第二个物块在传送带上与第一个物块碰撞,第二个物块释放时的初速度v0至少需要多大?4、利用皮带运输机将物体由地面运送到高出水平地面的C平台上,C平台离地面的竖直高度为5m,已知皮带和物体问的动摩擦因数为0.75,运输机的皮带以2m/s的速度匀速顺时针运动且皮带和轮子之间不打滑。
高考物理重点难点例析专题1共点力作用下物体的平衡
专题一共点力作用下物体的平衡重点难点1.动态平衡:若物体在共点力作用下状态缓慢转变,其进程可近似以为是平衡进程,其中每一个状态均为平衡状态,这时都可用平衡来处置.2.弹力和摩擦力:平面接触面间产生的弹力,其方向垂直于接触面;曲面接触面间产生的弹力,其方向垂直于过接触点的曲面的切面;绳索产生的弹力的方向沿绳指向绳收缩的方向,且绳中弹力处处相等(轻绳);杆中产生的弹力不必然沿杆方向,因为杆不仅可以产生沿杆方向的拉、压形变,也可以产生微小的弯曲形变.分析摩擦力时,先应按照物体的状态分清其性质是静摩擦力仍是滑动摩擦力,它们的方向都是与接触面相切,与物体相对运动或相对运动趋势方向相反.滑动摩擦力由F f = μF N公式计算,F N为物体间彼此挤压的弹力;静摩擦力等于使物体产生运动趋势的外力,由平衡方程或动力学方程进行计算.3.图解法:图解法可以定性地分析物体受力的转变,适用于三力作历时物体的平衡.此时有一个力(如重力)大小和方向都恒定,另一个力方向不变,第三个力大小和方向都改变,用图解法即可判断两力大小转变的情况.4.分析平衡问题的大体方式:①合成法或分解法:当物体只受三力作用途于平衡时,此三力必共面共点,将其中的任意两个力合成,合力一定与第三个力大小相等方向相反;或将其中某一个力(一般为已知力)沿另外两个力的反方向进行分解,两分力的大小与另两个力大小相等.②正交分解法:当物体受三个或多个力作用平衡时,一般用正交分解法进行计算.规律方式【例1】如图所示,轻绳的两头别离系在圆环A和小球B上,圆环A套在粗糙的水平直杆MN上现用水平力F拉着绳索上的一点O,使小球B从图示实线位置缓慢上升到虚线位置,但圆环A始终维持在原位置不动则在这一进程中,环对杆的摩擦力F f和环对杆的压力F N的转变情况( B )A.F f不变,F N不变B.F f增大,F N不变C.F f增大,F N减小D.F f不变,F N减小训练题如图所示,轻杆BC一端用铰链固定于墙上,另一端有一小滑轮C,重物系一绳经C固定在墙上的A点,滑轮与绳的质量及摩擦均不计若将绳一端从A点沿墙稍向上移,系统再次平衡后,则 ( C )A .轻杆与竖直墙壁的夹角减小B .绳的拉力增大,轻杆受到的压力减小C .绳的拉力不变,轻杆受的压力减小D .绳的拉力不变,轻杆受的压力不变【例2】如图所示,在倾角为θ的滑腻斜面上有两个用轻质弹簧相连接的物块A 、B ,它们的质量别离为m A 、m B ,弹簧的劲度系数为k ,C 为一固定挡板.系统处于静止状态.现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,求物块B 刚要离开C 时物块A 的加速度a 和从开始到此时物块A 的位移d .(重力加速度为g )【解】系统静止时,弹簧处于紧缩状态,分析A 物体受力可知:F 1 = m A g sin θ,F 1为此时弹簧弹力,设此时弹簧紧缩量为x 1,则F 1 = kx 1,得x 1 = k g m Asin在恒力作用下,A 向上加速运动,弹簧由紧缩状态逐渐变成伸长状态.当B 刚要离开C 时,弹簧的伸长量设为x 2,分析B 的受力有:kx 2 = m B g sin θ,得x 2 = m B g sin θk设此时A 的加速度为a ,由牛顿第二定律有:F -m A g sin θ-kx 2 = m A a ,得a = F -(m A +m B )g sin θm AA 与弹簧是连在一路的,弹簧长度的改变量即A 上移的位移,故有d = x 1+x 2,即:d = (m A +m B )g sinθk训练题 如图所示,劲度系数为k 2的轻质弹簧竖直放在桌面上,其上端压一质量为m 的物块,另一劲度系数为k 1的轻质弹簧竖直地放在物块上面,其下端与物块上表面连接在一路要想使物块在静止时,下面簧产生的弹力为物体重力的23,应将上面弹簧的上端A 竖直向上提高多少距离?答案:d = 5(k 1+k 2) mg/3k 1k 2【例3】如图所示,一个重为G 的小球套在竖直放置的半径为R 的滑腻圆环上,一个劲度系数为k ,自然长度为L (L <2R )的轻质弹簧,一端与小球相连,另一端固定在大环的最高点,求小球处于静止状态时,弹簧与竖直方向的夹角φ.【解析】小球受力如图所示,有竖直向下的重力G ,弹簧的弹力F ,圆环的弹力N ,N 沿半径方向背离圆心O .利用合成法,将重力G 和弹力N 合成,合力F 合应与弹簧弹力F 平衡观察发现,图中力的三角形△BCD 与△AOB 相似,设AB 长度为l 由三角形相似有:mg F = ABAO = R l ,即得F = mgl R 另外由胡克定律有F = k (l -L ),而l = 2R cos φ联立上述各式可得:cos φ = kL 2(kR -G ),φ = arcos kL2(kR -G )训练题如图所示,A 、B 两球用劲度系数为k 的轻弹簧相连,B 球用长为L 的细绳悬于0点,A 球固定在0点正下方,且O 、A 间的距离恰为L ,此时绳索所受的拉力为F 1,现把A 、B 间的弹簧换成劲度系数为k 2的轻弹簧,仍使系统平衡,此时绳索所受的拉力为F 2,则F 1与F 2大小之间的关系为 ( C )A .F 1<F 2B . F 1>F 2C .F 1=F 2D .无法肯定【例4】如图有一半径为r = 0.2m 的圆柱体绕竖直轴OO ′以ω = 9rad/s 的角速度匀速转动.今使劲F 将质量为1kg 的物体A 压在圆柱侧面,使其以v 0 = 2.4m/s的速度匀速下降.若物体A 与圆柱面的摩擦因数μ = ,求力F 的大小.(已知物体A 在水平方向受滑腻挡板的作用,不能随轴一路转动.)【解析】在水平方向圆柱体有垂直纸面向里的速度,A 相对圆柱体有纸垂直纸面向外的速度为υ′,υ′ = ωr = 1.8m/s ;在竖直方向有向下的速度υ0 = 2.4m/sA 相对于圆柱体的合速度为υ= υ20+υ′2 = 3m/s合速度与竖直方向的夹角为θ,则cosθ = υ0υ = 45A 做匀速运动,竖直方向平衡,有F f cos θ = mg ,得F f =mg cos θ = 另F f =μF N ,F N =F ,故F = fF = 50N训练题 质量为m 的物体,静止地放在倾角为θ的粗糙斜面上,现给物体一个大小为F 的横向恒力,如图所示,物体仍处于静止状态,这时物体受的摩擦力大小是多少?答案: f={F 2+(mgsin θ)2}1/2能力训练1.如图所示,在用横截面为椭圆形的墨水瓶演示坚硬物体微小弹性形变的演示实验中,能观察到的现象是( B )A.沿椭圆长轴方向压瓶壁,管中水面上升;沿椭圆短轴方向压瓶壁,管中水面下降B.沿椭圆长轴方向压瓶壁,管中水面下降;沿椭圆短轴方向压瓶壁,管中水面上升C.沿椭圆长轴或短轴方向压瓶壁,管中水面均上升D.沿椭圆长轴或短轴方向压瓶壁,管中水面均下降2.欲使在粗糙斜面上匀速下滑的物体静止,可采用的方式是( B )A.在物体上叠放一重物B.对物体施一垂直于斜面的力C.对物体施一竖直向下的力D.增大斜面倾角3.弹性轻绳的一端固定在O点,另一端拴一个物体,物体静止在水平地面上的B点,并对水平地面有压力,O点的正下方A处有一垂直于纸面的滑腻杆,如图所示,OA为弹性轻绳的自然长度此刻用水平力使物体沿水平面运动,在这一进程中,物体所受水平面的摩擦力的大小的转变情况是( C )A.先变大后变小B.先变小后变大C.维持不变D.条件不够充分,无法肯定4.在水平天花板下用绳AC和BC悬挂着物体m,绳与竖直方向的夹角别离为α = 37°和β = 53°,且∠ACB为90°,如图1-1-13所示.绳AC能经受的最大拉力为100N,绳BC 能经受的最大拉力为180N.重物质量过大时会使绳索拉断.现悬挂物的质量m为14kg.(g = 10m/s2,sin37° = ,sin53° = )则有)( C )A.AC绳断,BC不断B.AC不断,BC绳断C.AC和BC绳都会断D.AC和BC绳都不会断5.如图所示在倾角为37°的斜面上,用沿斜面向上的5N的力拉着重3N的木块向上做匀速运动,则斜面对木块的总作使劲的方向是( A )A.水平向左B.垂直斜面向上C.沿斜面向下D.竖直向上6.当物体从高空下落时,所受阻力会随物体的速度增大而增大,因此通过下落一段距离后将匀速下落,这个速度称为此物体下落的扫尾速度。
高考物理整体法隔离法解决物理试题试题(有答案和解析)
高考物理整体法隔离法解决物理试题试题(有答案和解析)一、整体法隔离法解决物理试题1.在如图所示的电路中,闭合开关,将滑动变阻器的滑片向右移动一段距离,待电路稳定后,与滑片移动前比较A.灯泡L变亮B.电容器C上的电荷量不变C.电源消耗的总功率变小D.电阻R0两端电压变大【答案】C【解析】A、C、滑动变阻器的滑片向右移动一点,变阻器接入电路的电阻增大,外电路总电阻增大,根据闭合电路欧姆定律分析得知,流过电源的电流减小,则由知电源的总功率变小,且流过灯泡的电流减小,灯泡L亮度变暗,故A错误,C正确;B、电源的路端电压U=E-Ir增大,即电容器电压增大将充电,电荷量将增大.故B错误.D、电阻R0只有在电容器充放电时有短暂的电流通过,稳定状态无电流,则其两端的电压为零不变,D错误;C、.故C正确.故选C.【点睛】本题电路动态变化分析问题.对于电容器,关键是分析其电压,电路稳定时,与电容器串联的电路没有电流,电容器的电压等于这条电路两端的电压.2.在如图所示的电路中,已知电源的电动势E=5 V,内阻不计,R1=8 Ω,R2=2 Ω,R3=5 Ω,R=6 Ω,滑动变阻器的最大阻值R4=20 Ω,电容器电容C=2 μF,不计电表内阻的影响,闭合开关,在滑片从a端滑到b端的过程中,下列说法中正确的是( )A.电流表的示数变大B.电压表的示数变大C.电源的总功率变大D.电容器先放电后充电【答案】D【解析】A、C、当P从a滑到b时,电路总电阻变大,总电流变小,电流表的示数变小,电源的总功率变小A、C错误;B、总电流变小,R1、R2支路的电流不变,通过R3的电流变小,故电压表示数变小,B正确;D、当P在a端时电容器与R2并联,电容器两端电压U C1=1V,上极板带正电;当P在b端时,电容器两端电压U C2=3V,上极板带负电,所以电容器先放电后充电,D正确.故选BD.【点睛】本题考查闭合电路欧姆定律中的含容电路;要注意当无法明确电容器的串并联关系时则应先求出两端的电势,再求出两端的电势差即可求解.3.如图甲所示,一轻质弹簧的下端,固定在水平面上,上端叠放着两个质量均为m的物体A、B(物体B与弹簧栓接),弹簧的劲度系数为k,初始时物体处于静止状态。