高中数学总复习 圆锥曲线与方程

合集下载

高中数学圆锥曲线性质与公式总结

高中数学圆锥曲线性质与公式总结


1 r22

1 a2
1 b2
(r1 | OP |, r2
| OQ |)
.
16.若椭圆
x2 a2

y2 b2
1(a>b>0)上中心张直角的弦
L
所在直线方程为
Ax By
1
( AB
0)
,则(1)
1 a2
1 b2

A2 B2 ;(2)
L
2 a4 A2 b4B2 a2 A2 b2B2
或(o, m)为其对称轴上除中心,顶点外的任一点,过 M 引一
条直线与椭圆相交于 P、Q 两点,则直线 A1P、A2Q(A1 ,A2 为对称轴上的两顶点)的交点 N 在直线 l :x a2 (或 m
y b2 )上. m
40.设过椭圆焦点 F 作直线与椭圆相交 P、Q 两点,A 为椭圆长轴上一个顶点,连结 AP 和 AQ 分别交相
1
则直线
BC
有定向且 kBC

b2 x0 a2 y0
(常数).
x2 20.椭圆 a2
y2 b2
1
(a>b>0)的左右焦点分别为 F1,F 2,点 P 为椭圆上任意一点 F1PF2 ,则椭圆
的焦点三角形的面积为 SF1PF2
b2
tan 2
, P(
a c
c2 b2 tan 2 , b 2 tan ) 2c 2
应于焦点 F 的椭圆准线于 M、N 两点,则 MF⊥NF.
41.过椭圆一个焦点 F 的直线与椭圆交于两点 P、Q, A1、A2 为椭圆长轴上的顶点,A1P 和 A2Q 交于点 M,
A2P 和 A1Q 交于点 N,则 MF⊥NF.

高中数学第三章圆锥曲线与方程3.4曲线与方程3.4.2圆锥曲线的共同特征3.4.3直线与圆锥曲线的交

高中数学第三章圆锥曲线与方程3.4曲线与方程3.4.2圆锥曲线的共同特征3.4.3直线与圆锥曲线的交
设点 M 到右准线的距离为|MN|,
||
1
=e= ,∴|MN|=2|MF|,
||
2

即|AM|+2|MF|=|AM|+|MN|,
当A,M,N同时在垂直于右准线的一条直线上时,|AM|+2|MF|取得最小值,
此时
2
2
yM=yA=√3,代入 + =1,
16 12
得 xM=±2√3,
由题意知点 M 在第一象限,∴M(2√3, √3).
探究(tànjiū)

探究(tànjiū)

一题多解
弦长问题
【例 3】
2
已知椭圆 C: 2

+
2





2 =1(a>b>0),直线 l 1: − =1 被椭圆 C
截得的弦长为 2√2,过椭圆 C 的右焦点且斜率为 √3的直线 l2 被椭圆
2
5
思维点拨:由直线l1方程的特点,知直线l1恰好过椭圆的两个顶点,即有
3.4.2
圆锥曲线(yuán zhuī qǔ xiàn)
的共同特征
3.4.3 直线与圆锥曲线(yuán zhuī qǔ
xiàn)的交点
第一页,共31页。
学 习 目 标

1.通过例子,归纳出圆锥曲线的共
同特征.
2.理解并掌握圆锥曲线的共同特
征,感受圆锥曲线在解决实际问题
中的作用,进一步体会数形结合的
(3)直线l与双曲线没有公共点.
思维点拨:在解决直线与双曲线位置关系时,对消元后的方程的二次项系
数是否为零应分类讨论,且要结合判别式讨论.
第十二页,共31页。

高中数学平面几何中的圆锥曲线与方程解析

高中数学平面几何中的圆锥曲线与方程解析

高中数学平面几何中的圆锥曲线与方程解析在高中数学的学习中,圆锥曲线是一个重要的内容,它是解析几何的一个分支,与方程解析密切相关。

本文将以高中数学的角度,详细介绍圆锥曲线的基本概念、性质以及解析方程的应用。

一、圆锥曲线的基本概念与性质圆锥曲线是平面上一个点与一个定点的距离与一个定直线的距离之比为定值的点的轨迹。

根据这个定义,圆锥曲线可以分为椭圆、双曲线和抛物线三种类型。

1. 椭圆椭圆是圆锥曲线中的一种,它的定义是一个点到两个定点的距离之和等于常数的点的轨迹。

椭圆的解析方程为:$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$其中,a和b分别表示椭圆的长半轴和短半轴。

在解析几何中,椭圆有许多重要的性质。

例如,椭圆的离心率小于1,焦点在椭圆的内部,且椭圆是对称的。

这些性质在解题过程中起到了重要的作用。

2. 双曲线双曲线也是圆锥曲线的一种,它的定义是一个点到两个定点的距离之差等于常数的点的轨迹。

双曲线的解析方程为:$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$双曲线的性质与椭圆有很大的不同。

双曲线的离心率大于1,焦点在双曲线的外部,且双曲线也是对称的。

这些性质在解析几何中起到了重要的作用。

3. 抛物线抛物线是圆锥曲线中的一种,它的定义是一个点到一个定点的距离等于一个定直线的距离的点的轨迹。

抛物线的解析方程为:$y^2 = 2px$抛物线的性质与椭圆和双曲线也有所不同。

抛物线是对称的,焦点在抛物线的内部,且抛物线的开口方向由系数p的正负决定。

二、解析方程的应用解析方程是研究圆锥曲线的重要工具,通过解析方程可以确定圆锥曲线的形状、位置以及与坐标轴的交点等。

1. 求解焦点坐标对于给定的圆锥曲线,可以通过解析方程来求解其焦点坐标。

以椭圆为例,已知椭圆的解析方程为$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,我们可以通过求解方程组$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$和$(x - c)^2 + y^2 = a^2$来确定焦点的坐标。

高中数学课件 圆锥曲线与方程复习小结(一)

高中数学课件        圆锥曲线与方程复习小结(一)
这是一个综合问题. 既是求轨迹方程的问题,也是有关直线与圆 锥曲线的位置关系问题.
5
法一
法二
法一:相关点坐标分析法 解:设点 P 的坐标为 ( x, y ) ,因 A( x1 , y1 ) 、 B( x2 , y2 ) 在椭圆上,
2 2 y1 y2 1 2 2 2 2 2 2 1①, x2 1②. ①-②得 x1 x2 ( y1 y2 ) 0 , ∴ x1 4 4 4 1 所以 ( x1 x2 )( x1 x2 ) ( y1 y2 )( y1 y2 ) 0. 4 y1 y2 1 当 x1 x2 时,有 x1 x2 ( y1 y2 ) 0③. 4 x1 x2 x1 x2 y1 y2 y 1 y 1 y2 , y , 又∵ ∵x 2 2 x x1 x2
2
思考 1:课本 P86 A 组第 10 题 已知△ABC 的两个顶点 A、B 的坐标分别是 BC (5,0) 、 (5,0) , AC 、 所在直线的斜率之积等于 且 m (m 0) ,试探求顶点 C 的轨迹.
直译法
3
答案
y y ( x 5) 解:设顶点 C ( x, y) ,则 k AC ( x 5) , kBC x5 x5 y y 依题意得 kAC kBC m (m 0) ∴ m( x 5且x 5) x5 x5 2 2 x y 1 ( x 5且x 5) 这就是所求的轨迹方程. ∴ 25 25m ⑴当 m 0 时,轨迹是实轴长为 10,焦距为 10 1 m 的双曲线(除去两顶点); ⑵ 当 1 m 0 时 , 轨 迹 是 长 轴 长 为 10, 焦 距 为 (5, 10 1 m 的椭圆(除去顶点 ( 5, 0)、 0) ); ⑶当 m 1 时,轨迹是 长轴长为 10 m , 焦距为

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。

掌握圆锥曲线的相关知识对于解决数学问题和理解数学的应用具有重要意义。

一、椭圆1、定义平面内与两个定点 F1、F2 的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距。

2、标准方程(1)焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。

(2)焦点在 y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a > b > 0\))。

3、椭圆的性质(1)对称性:椭圆关于 x 轴、y 轴和原点对称。

(2)范围:\(a \leq x \leq a\),\(b \leq y \leq b\)。

点为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点为\((0, \pm a)\),\((\pm b, 0)\)。

(4)离心率:椭圆的离心率\(e =\frac{c}{a}\)(\(0 < e < 1\)),它反映了椭圆的扁平程度,\(e\)越接近 0,椭圆越接近于圆;\(e\)越接近 1,椭圆越扁。

二、双曲线1、定义平面内与两个定点 F1、F2 的距离之差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线。

这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距。

2、标准方程(1)焦点在 x 轴上:\(\frac{x^2}{a^2} \frac{y^2}{b^2} =1\),其中\(a\)为实半轴长,\(b\)为虚半轴长,\(c\)为半焦距,满足\(c^2 = a^2 + b^2\)。

(2)焦点在 y 轴上:\(\frac{y^2}{a^2} \frac{x^2}{b^2} =1\)。

高中数学圆锥曲线知识点梳理+例题解析

高中数学圆锥曲线知识点梳理+例题解析

高考数学圆锥曲线部分知识点梳理一、方程的曲线:在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。

点与曲线的关系:若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上⇔f(x 0,y 0)=0;点P 0(x 0,y 0)不在曲线C 上⇔f(x 0,y 0)≠0。

两条曲线的交点:若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则点P 0(x 0,y 0)是C 1,C 2的交点⇔{0),(0),(002001==y x f y x f 方程组有n个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有交点。

二、圆:1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.2、方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(ED --半径是2422F E D -+。

配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F -E D 22+②当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E );③当D 2+E 2-4F <0时,方程不表示任何图形.(3)点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +。

高中数学《圆锥曲线与方程》章末复习

《圆锥曲线与方程》知识系统整合规律方法收藏1.椭圆、双曲线、抛物线的定义、标准方程、几何性质椭圆双曲线抛物线定义平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|且大于零)的点的轨迹平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹标准方程x2a2+y2b2=1(a>b>0)x2a2-y2b2=1(a>0,b>0)y2=2px(p>0)关系式a2-b2=c2a2+b2=c2—图形封闭图形无限延展,但有渐近线无限延展,没有渐近线对称性对称中心为原点无对称中心两条对称轴一条对称轴顶点四个两个一个2.待定系数法求圆锥曲线的标准方程(1)椭圆、双曲线的标准方程求椭圆、双曲线的标准方程包括“定位”和“定量”两方面,一般先确定焦点的位置,再确定参数.当焦点位置不确定时,要分情况讨论,也可将方程设为一般形式:椭圆方程为Ax2+By2=1(A>0,B>0,A≠B),其中当1A>1B时,焦点在x轴上,当1A<1B时,焦点在y轴上;双曲线方程为Ax2+By2=1(AB<0),当A<0时,焦点在y轴上,当B<0时,焦点在x轴上.另外,在求双曲线的标准方程的过程中,根据不同的已知条件采取相应方法设方程,常常可以简化解题过程,避免出错.如:与已知双曲线x2a2-y2b2=1(a>0,b>0)共渐近线的双曲线方程可设为x2a2-y2b2=λ(λ≠0);已知所求双曲线为等轴双曲线,其方程可设为x2-y2=λ(λ≠0).(2)抛物线的标准方程求抛物线的标准方程时,先确定抛物线的方程类型,再由条件求出参数p的大小.当焦点位置不确定时,要分情况讨论,也可将焦点在x轴或y轴上的抛物线方程设为一般形式y2=2px(p≠0)或x2=2py(p≠0),然后建立方程求出参数p的值.3.求离心率的方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x轴上还是在y轴上都有关系式a2-b2=c2(a2+b2=c2)以及e=ca.已知其中的任意两个参数,可以求其他的参数.这是基本且常用的方法.(2)方程法:建立参数a与c之间的齐次关系式,从而求出其离心率.这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.4.直线与圆锥曲线的位置关系(1)直线与圆锥曲线问题,是高考对圆锥曲线考查的重点和难点,也是历年考查的热点,是每年高考试卷上都会出现的一个知识点.直线与圆锥曲线问题包括两大类:①直线与圆锥曲线位置关系的判定;②直线与圆锥曲线相交而产生的弦长问题、中点问题、范围问题、最值问题等.(2)直线与圆锥曲线问题往往综合性强,注重与一元二次方程中的根的判别式、根与系数的关系、函数的单调性、不等式、平面向量等知识综合.分析这类问题,往往利用“数形结合”的思想方法,或“设而不求”的方法求解.学科思想培优一、圆锥曲线的定义、方程及性质对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略.如:(1)在求轨迹方程时,若所求轨迹符合某种圆锥曲线的定义,则根据圆锥曲线的定义,写出所求的轨迹方程.(2)涉及椭圆、双曲线上的点与两个焦点构成的三角形问题时,常用定义结合解三角形的知识来解决.(3)在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形,利用几何意义去解决.总之,圆锥曲线的定义、性质在解题中有重要作用,要注意灵活运用. [典例1] 已知抛物线C :y 2=2px (p >0)的焦点为F ,P (1,m )是抛物线C 上的一点,且|PF |=2.(1)若椭圆C ′:x 24+y 2n =1与抛物线C 有共同的焦点,求椭圆C ′的方程; (2)设抛物线C 与(1)中所求椭圆C ′的交点为A ,B ,求以OA 和OB 所在的直线为渐近线,且经过点P 的双曲线方程.解 (1)P 到焦点距离等于P 到准线距离,所以|PF |=1+p2=2,p =2, 故抛物线的方程为C :y 2=4x .又由椭圆C ′:x 24+y 2n =1,可知4-n =1,所以n =3,故所求椭圆的方程为x 24+y 23=1.(2)由⎩⎨⎧x 24+y 23=1,y 2=4x ,消去y 得到3x 2+16x -12=0,解得x 1=23,x 2=-6(舍去).所以A ⎝ ⎛⎭⎪⎫23,236,B ⎝ ⎛⎭⎪⎫23,-236,则双曲线的渐近线方程为y =±6x .由渐近线6x ±y =0,可设双曲线方程为6x 2-y 2=λ(λ≠0). 由点P (1,m )在抛物线C :y 2=4x 上, 解得m 2=4,P (1,±2),因为点P 在双曲线上,∴6-4=λ=2, 故所求双曲线方程为3x 2-y 22=1.拓展提升(1)圆锥曲线的定义是推导标准方程和几何性质的基础,也是解题的重要工具,灵活运用定义,可避免很多复杂的计算,提高解题效率,因此在解决圆锥曲线的有关问题时,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略.(2)应用圆锥曲线的性质时,要注意与数形结合、方程等思想结合运用.二、直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系综合题,往往因综合性强,难度偏大,从而使很多同学遇到圆锥曲线题后感到无从下手,因此有些同学选择对其置之不理,先将其他题目完成后再做圆锥曲线题(考试过程中),这样一由于时间紧张,二由于无从下手,三由于运算量大,有些同学不得不放弃,从而造成遗憾.实际上直线与圆锥曲线综合题的求解是有一定的规律可循的,如下规律不妨试一试,共分六步,每步都有一定的步骤得分,因此要求步骤要全且规范,争取做到能得分且得分.(1)引参,设直线或圆锥曲线方程,并设直线与圆锥曲线交点坐标,如A (x 1,y 1),B (x 2,y 2).(2)将直线方程与圆锥曲线方程联立方程组,消去y (或x )得到关于x (或y )的方程f (x )=0(或f (y )=0).此方程可能是一元二次方程,也可能是二次项系数含参的一元二次方程(这种情况应注意对二次项系数的讨论),然后列出Δ>0及根与系数的关系.(3)试用A (x 1,y 1)与B (x 2,y 2)的坐标x 1,y 1,x 2,y 2表示题中条件,得条件式(*).(4)利用点A ,B 在直线上,将条件式(*)中坐标进行统一,都转化为关于x 1,x 2(或y 1,y 2)的条件式(*)′.(5)对第二步应用根与系数的关系整体代入条件(*)′,求参或其他. (6)与Δ>0联系验证求解结果或其他.[典例2] 设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,过点F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为45°,AF →=2FB →.(1)求椭圆C 的离心率;(2)如果|AB |=214,求椭圆C 的方程. 解 (1)设A (x 1,y 1),B (x 2,y 2),由直线l 的倾斜角为45°及AF →=2FB →,可知y 1<0,y 2>0.直线l 的方程为y =x -c ,其中c =a 2-b 2,联立⎩⎨⎧y =x -c ,x 2a 2+y 2b 2=1,得(a 2+b 2)y 2+2b 2cy -b 4=0, 解得y 1=-b 2(c +2a )a 2+b 2,y 2=-b 2(c -2a )a 2+b2. 因为AF →=2FB →,所以-y 1=2y 2, 即b 2(c +2a )a 2+b 2=2×-b 2(c -2a )a 2+b 2,求得离心率e =c a =23.(2)因为|AB |=2|y 2-y 1|,所以4ab 2a 2+b2=214, 由c a =23,得b =73a ,所以74a =214,得a =3,b =7, 所以椭圆C 的方程为x 29+y 27=1. 拓展提升直线与圆锥曲线的位置关系,涉及函数、方程、不等式、平面几何等诸多方面的知识,形成了求轨迹、最值、对称、取值范围、线段的长度等多种问题.解决此类问题应注意数形结合,以形辅数的方法;还要多结合圆锥曲线的定义,根与系数的关系以及“点差法”等.三、圆锥曲线中的定点与定值问题解决定点与定值问题应灵活应用已知条件巧设变量,在变形过程中要注意各变量之间的关系,善于捕捉题目信息,注意消元思想的应用.[典例3] 设抛物线y 2=2px (p >0)的焦点为F ,经过点F 的直线交抛物线于A ,B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明:直线AC 经过原点O .证明 因为抛物线y 2=2px (p >0)的焦点为F ⎝ ⎛⎭⎪⎫p 2,0,所以经过点F 的直线AB的方程可设为x =my +p2,代入抛物线方程得y 2-2pmy -p 2=0.若记A (x 1,y 1),B (x 2,y 2),则y 1,y 2是该方程的两个根,所以y 1y 2=-p 2. 因为BC ∥x 轴,且点C 在准线x =-p2上, 所以点C 的坐标为⎝ ⎛⎭⎪⎫-p 2,y 2,故直线CO 的斜率为k =y 2-p 2=2p y 1=y 1x 1, 即k 也是直线OA 的斜率,所以A ,O ,C 三点共线,所以直线AC 经过原点O .[典例4] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过A (2,0),B (0,1)两点. (1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:四边形ABNM 的面积为定值.解 (1)由题意得,a =2,b =1. 所以椭圆C 的方程为x 24+y 2=1. 又c =a 2-b 2=3,所以离心率e =c a =32.(2)证明:设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4.又A (2,0),B (0,1), 所以直线P A 的方程为y =y 0x 0-2(x -2). 令x =0,得y M =-2y 0x 0-2,从而|BM |=1-y M =1+2y 0x 0-2.直线PB 的方程为y =y 0-1x 0x +1.令y =0,得x N =-x 0y 0-1,从而|AN |=2-x N =2+x 0y 0-1. 所以四边形ABNM 的面积 S =12|AN |·|BM |=12⎝⎛⎭⎪⎫2+x 0y 0-1⎝ ⎛⎭⎪⎫1+2y 0x 0-2 =x 20+4y 20+4x 0y 0-4x 0-8y 0+42(x 0y 0-x 0-2y 0+2)=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2.从而四边形ABNM 的面积为定值. 拓展提升圆锥曲线中的定点、定值问题往往与圆锥曲线中的“常数”有关,如椭圆的长轴、短轴,双曲线的虚轴、实轴,抛物线的焦点等,解决此类问题的主要方法是通过研究直线与曲线的位置关系,把所给问题进行化简,通过计算获得答案;或是从特殊位置出发,确定定值,然后给出一般情况的证明.四、圆锥曲线中的最值(或范围)问题 1.最值问题的求解方法(1)建立函数模型,利用二次函数、三角函数的有界性求最值或利用导数法求最值.(2)建立不等式模型,利用基本不等式求最值.(3)数形结合,利用相切、相交的几何性质求最值.2.求参数范围的常用方法[典例5]设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.解(1)圆A的方程整理可得(x+1)2+y2=16,点A坐标为(-1,0),如图.因为|AD|=|AC|,所以∠ACD=∠ADC.因为EB∥AC,所以∠EBD=∠ACD,故∠EBD=∠ACD=∠ADC.所以|EB|=|ED|,故|EA|+|EB|=|EA|+|ED|=|AD|.又圆A的标准方程为(x+1)2+y2=16,从而|AD|=4,所以|EA|+|EB|=4.+由题设得A(-1,0),B(1,0),|AB|=2,由椭圆定义可得点E的轨迹方程为x24y 23=1(y ≠0).(2)解法一:当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎨⎧y =k (x -1),x 24+y 23=1得(4k 2+3)x 2-8k 2x +4k 2-12=0.则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3.过点B (1,0)且与l 垂直的直线m :y =-1k (x -1),A 到m 的距离为2k 2+1,所以|PQ |=242-⎝⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1.故四边形MPNQ 的面积 S =12|MN ||PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83). 当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为[12,83).解法二:设∠MBA =θ(θ∈(0,π)),则在△MAB 中运用余弦定理,有|MA |2=|MB |2+|AB |2-2·|MB |·|AB |·cos θ,结合|MA |+|MB |=4可解得|MB |=32-cos θ.同理可得|NB |=32+cos θ,从而|MN |=|MB |+|NB |=124-cos 2θ.此时直线PQ 的方程为x cos θ=y sin θ+cos θ. 于是圆的弦长|PQ |=242-⎝⎛⎭⎪⎫2cos θcos 2θ+sin 2θ2=44-cos 2θ.则四边形MPNQ 的面积S =12·|MN |·|PQ | =244-cos 2θ∈[12,83),故四边形MPNQ 面积的取值范围是[12,83). 拓展提升圆锥曲线中的最值问题,通常有两类:一类是有关长度、面积等最值问题;一类是圆锥曲线中有关几何元素的最值问题,这两类问题的解决往往通过回归定义,结合几何知识,建立目标函数,利用函数的性质或不等式知识,以及数形结合、设参、转化、代换等途径来解决.五、圆锥曲线中的存在性问题 1.解决存在性问题的关注点求解存在性问题,先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. 2.存在性问题的解题步骤[典例6] 如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝ ⎛⎭⎪⎫1,32,离心率e =12,直线l 的方程为x =4.(1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记P A ,PB ,PM 的斜率分别为k 1,k 2,k 3.问:是否存在常数λ,使得k 1+k 2=λk 3?若存在,求λ的值;若不存在,说明理由.解 (1)由P ⎝ ⎛⎭⎪⎫1,32在椭圆上,得1a 2+94b 2=1,① 依题设知a =2c ,则b 2=3c 2,②②代入①,解得c 2=1,a 2=4,b 2=3.故椭圆C 的方程为x 24+y 23=1.(2)解法一:由题意可设AB 的斜率为k ,则直线AB 的方程为y =k (x -1),③代入椭圆方程3x 2+4y 2=12,并整理,得(4k 2+3)x 2-8k 2x +4(k 2-3)=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=8k 24k 2+3,x 1x 2=4(k 2-3)4k 2+3,④ 在方程③中令x =4,得M 的坐标为(4,3k ).从而k 1=y 1-32x 1-1,k 2=y 2-32x 2-1,k 3=3k -324-1=k -12. 由于A ,F ,B 共线,则有k =k AF =k BF ,即有y 1x 1-1=y 2x 2-1=k . 所以k 1+k 2=y 1-32x 1-1+y 2-32x 2-1=y 1x 1-1+y 2x 2-1-32⎝ ⎛⎭⎪⎫1x 1-1+1x 2-1 =2k -32·x 1+x 2-2x 1x 2-(x 1+x 2)+1,⑤④代入⑤得k 1+k 2=2k -32·8k 24k 2+3-24(k 2-3)4k 2+3-8k 24k 2+3+1=2k -1, 又k 3=k -12,所以k 1+k 2=2k 3.故存在常数λ=2符合题意.解法二:设B (x 0,y 0)(x 0≠1),则直线FB 的方程为y =y 0x 0-1(x -1), 令x =4,求得M ⎝⎛⎭⎪⎫4,3y 0x 0-1, 从而直线PM 的斜率为k 3=2y 0-x 0+12(x 0-1), 联立⎩⎪⎨⎪⎧ y =y 0x 0-1(x -1),x 24+y 23=1,得A ⎝ ⎛⎭⎪⎪⎫5x 0-82x 0-5,3y 02x 0-5, 则直线P A 的斜率为k 1=2y 0-2x 0+52(x 0-1),直线PB 的斜率为k 2=2y 0-32(x 0-1), 所以k 1+k 2=2y 0-2x 0+52(x 0-1)+2y 0-32(x 0-1)=2y 0-x 0+1x 0-1=2k 3, 故存在常数λ=2符合题意.拓展提升存在性问题是一种具有开放性和发散性的问题,此类题目的条件和结论不完备,学生应结合已有的条件进行观察、分析、比较和概括,它对数学思想、数学意识有较高的要求.。

新教材高中数学第三章圆锥曲线的方程章末复习练习含解析新人教A版选择性必修第一册

章末复习一、圆锥曲线的定义及标准方程 1.求圆锥曲线方程的常用方法(1)直接法:动点满足的几何条件本身就是几何量的等量关系,只需把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程.(2)定义法:动点满足已知曲线的定义,可先设定方程,再确定其中的基本量.(3)代入法:动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的.如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程.(4)待定系数法:根据条件能确定曲线的类型,可设出方程形式,再根据条件确定待定的系数. 2.求圆锥曲线方程体现了逻辑推理和数学运算、直观想象的数学素养.例1 (1)已知动点M 的坐标满足方程5x 2+y 2=|3x +4y -12|,则动点M 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .以上都不对答案 C解析 把轨迹方程5x 2+y 2=|3x +4y -12|写成x 2+y 2=|3x +4y -12|5.∴动点M 到原点的距离与它到直线3x +4y -12=0的距离相等.∴点M 的轨迹是以原点为焦点,直线3x +4y -12=0为准线的抛物线.(2)在圆x 2+y 2=4上任取一点P ,设点P 在x 轴上的正投影为点D .当点P 在圆上运动时,动点M 满足PD →=2MD →,动点M 形成的轨迹为曲线C .求曲线C 的方程.解 方法一 由PD →=2MD →,知点M 为线段PD 的中点,设点M 的坐标为(x ,y ),则点P 的坐标为(x ,2y ).因为点P 在圆x 2+y 2=4上, 所以x 2+(2y )2=4,所以曲线C 的方程为x 24+y 2=1.方法二 设点M 的坐标为(x ,y ),点P 的坐标是(x 0,y 0), 由PD →=2MD →,得x 0=x ,y 0=2y , 因为点P (x 0,y 0)在圆x 2+y 2=4上, 所以x 20+y 20=4,(*)把x 0=x ,y 0=2y 代入(*)式,得x 2+4y 2=4, 所以曲线C 的方程为x 24+y 2=1.反思感悟 (1)应用定义解题时注意圆锥曲线定义中的限制条件.(2)涉及椭圆、双曲线上的点与两个定点构成的三角形问题时,常用定义结合解三角形的知识来解决.(3)在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形,利用几何意义去解决.跟踪训练1 (1)已知抛物线y 2=8x 的准线过双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为________. 答案 x 2-y 23=1解析 由题意得⎩⎪⎨⎪⎧c =2,ca=2,解得⎩⎪⎨⎪⎧a =1,c =2,则b 2=c 2-a 2=3,因此双曲线方程为x 2-y 23=1.(2)点P 是抛物线y 2=8x 上的任意一点,F 是抛物线的焦点,点M 的坐标是(2,3),求|PM |+|PF |的最小值,并求出此时点P 的坐标.解 抛物线y 2=8x 的准线方程是x =-2,那么点P 到焦点F 的距离等于它到准线x =-2的距离,过点P 作PD 垂直于准线x =-2,垂足为D ,那么|PM |+|PF |=|PM |+|PD |.如图所示,根据平面几何知识,当M ,P ,D 三点共线时,|PM |+|PF |的值最小, 且最小值为|MD |=2-(-2)=4, 所以|PM |+|PF |的最小值是4.此时点P 的纵坐标为3,所以其横坐标为98,即点P 的坐标是⎝ ⎛⎭⎪⎫98,3. 二、圆锥曲线的几何性质1.本类问题主要有两种考查类型:(1)已知圆锥曲线的方程研究其几何性质,其中以求椭圆、双曲线的离心率为考查重点. (2)已知圆锥曲线的性质求其方程,基本方法是待定系数法,其步骤可以概括为“先定位、后定量”.2.圆锥曲线的性质的讨论和应用充分体现了直观想象和逻辑推理的数学素养.例2 (1)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D.62答案 D解析 由椭圆可知|AF 1|+|AF 2|=4,|F 1F 2|=2 3.因为四边形AF 1BF 2为矩形, 所以|AF 1|2+|AF 2|2=|F 1F 2|2=12,所以2|AF 1||AF 2|=(|AF 1|+|AF 2|)2-(|AF 1|2+|AF 2|2)=16-12=4, 所以(|AF 2|-|AF 1|)2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|=12-4=8, 所以|AF 2|-|AF 1|=22,因此对于双曲线有a =2,c =3, 所以C 2的离心率e =c a =62.(2)已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为________. 答案 x ±2y =0解析 设椭圆C 1和双曲线C 2的离心率分别为e 1和e 2,则e 1=a 2-b 2a ,e 2=a 2+b 2a.因为e 1·e 2=32,所以a 4-b 4a 2=32,即⎝ ⎛⎭⎪⎫b a 4=14,所以b a =22. 故双曲线的渐近线方程为y =±ba x =±22x , 即x ±2y =0.反思感悟 求解离心率的三种方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x 轴上还是y 轴上都有关系式a 2-b 2=c 2(a 2+b 2=c 2)以及e =c a,已知其中的任意两个参数,可以求其他的参数,这是基本且常用的方法.(2)方程法:建立参数a 与c 之间的齐次关系式,从而求出其离心率,这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.跟踪训练2 (1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的半焦距是c ,A ,B 分别是长轴、短轴的一个端点,O 为原点,若△ABO 的面积是3c 2,则此椭圆的离心率是( ) A.12 B.32 C.22 D.33 答案 A解析 12ab =3c 2,即a 2(a 2-c 2)=12c 4,所以(a 2+3c 2)(a 2-4c 2)=0,所以a 2=4c 2,a =2c ,故e =c a =12.(2)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为2c ,右顶点为A ,抛物线x 2=2py (p >0)的焦点为F .若双曲线截抛物线的准线所得线段长为2c ,且|FA |=c ,则双曲线的渐近线方程为_________.答案 x ±y =0 解析 c 2=a 2+b 2,①由双曲线截抛物线的准线所得线段长为2c 知, 双曲线过点⎝⎛⎭⎪⎫c ,-p 2,即c 2a 2-p 24b2=1.② 由|FA |=c ,得c 2=a 2+p 24,③由①③得p 2=4b 2.④将④代入②,得c 2a 2=2.∴a 2+b 2a 2=2,即ba=1,故双曲线的渐近线方程为y =±x ,即x ±y =0. 三、直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系,可以通过讨论直线方程与曲线方程组成的方程组的实数解的个数来确定,通常消去方程组中变量y (或x )得到关于变量x (或y )的一元二次方程,考虑该一元二次方程的判别式.2.借用直线与圆锥曲线问题培养数学运算的数学核心素养.例 3 已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程. 解 (1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得a =2,b =3,c =1, ∴椭圆的方程为x 24+y 23=1. (2)由(1)知,以F 1F 2为直径的圆的方程为x 2+y 2=1,∴圆心到直线l 的距离d =2|m |5, 由d <1得|m |<52.(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2. 设A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =-12x +m ,x 24+y 23=1,得x 2-mx +m 2-3=0,由根与系数的关系可得x 1+x 2=m ,x 1x 2=m 2-3. ∴|AB |=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫-122[m 2-4m 2-3]=1524-m 2. 由|AB ||CD |=534,得 4-m25-4m2=1, 解得m =±33,满足(*). ∴直线l 的方程为y =-12x +33或y =-12x -33.反思感悟 (1)直线与圆锥曲线的位置关系可以通过代数法判断. (2)一元二次方程的判别式Δ、弦长公式是代数法解决问题的常用工具.跟踪训练3 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0),其焦点为F 1,F 2,离心率为22,直线l :x +2y-2=0与x 轴,y 轴分别交于点A ,B .(1)若点A 是椭圆E 的一个顶点,求椭圆的方程;(2)若线段AB 上存在点P 满足|PF 1|+|PF 2|=2a ,求a 的取值范围. 解 (1)由椭圆的离心率为22,得a =2c , 由A (2,0),得a =2, ∴c =2,b =2, ∴椭圆方程为x 24+y 22=1.(2)由e =22,设椭圆方程为x 2a 2+2y2a2=1,联立⎩⎪⎨⎪⎧x 2a 2+2y 2a2=1,x +2y -2=0,得6y 2-8y +4-a 2=0,若线段AB 上存在点P 满足|PF 1|+|PF 2|=2a ,则线段AB 与椭圆E 有公共点,等价于方程6y 2-8y +4-a 2=0在y ∈[0,1]上有解. 设f (y )=6y 2-8y +4-a 2,∴⎩⎪⎨⎪⎧Δ≥0,f 0≥0,即⎩⎪⎨⎪⎧a 2≥43,4-a 2≥0,∴43≤a 2≤4, 故a 的取值范围是⎣⎢⎡⎦⎥⎤233,2. 四、圆锥曲线的综合问题1.圆锥曲线的综合问题包括位置关系证明及定值、最值问题,解决的基本思路是利用代数法,通过直线与圆锥曲线的方程求解.2.圆锥曲线的综合问题的解决培养学生的逻辑推理和数学运算素养.例4 已知抛物线C :y 2=2px (p >0)经过点P (2,2),A ,B 是抛物线C 上异于点O 的不同的两点,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)若OA ⊥OB ,求△AOB 面积的最小值.解 (1)由抛物线C :y 2=2px 经过点P (2,2)知4p =4,解得p =1. 则抛物线C 的方程为y 2=2x .抛物线C 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,准线方程为x =-12.(2)由题意知,直线AB 不与y 轴垂直,设直线AB :x =ty +a ,由⎩⎪⎨⎪⎧x =ty +a ,y 2=2x ,消去x ,得y 2-2ty -2a =0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t ,y 1y 2=-2a . 因为OA ⊥OB ,所以x 1x 2+y 1y 2=0,即y 21y 224+y 1y 2=0,解得y 1y 2=0(舍去)或y 1y 2=-4. 所以-2a =-4,解得a =2.所以直线AB :x =ty +2. 所以直线AB 过定点(2,0).S △AOB =12×2×||y 1-y 2=y 21+y 22-2y 1y 2=y 21+y 22+8≥2||y 1y 2+8=4. 当且仅当y 1=2,y 2=-2或y 1=-2,y 2=2时,等号成立. 所以△AOB 面积的最小值为4.反思感悟 (1)解决最值问题常见的题型,可用建立目标函数的方法求解.(2)圆锥曲线的综合问题可以从分析问题的数量关系入手,利用直线系或曲线系方程或函数方程思想,通过联想与类比,使问题获解.跟踪训练4 已知动圆P 与圆O 1:x 2-x +y 2=0内切,且与直线x =-1相切,设动圆圆心P 的轨迹为曲线C . (1)求曲线C 的方程;(2)过曲线C 上一点M (2,y 0)(y 0>0)作两条直线l 1,l 2与曲线C 分别交于不同的两点A ,B ,若直线l 1,l 2的斜率分别为k 1,k 2,且k 1k 2=1.证明:直线AB 过定点.(1)解 由题意可知,动圆圆心P 到点⎝ ⎛⎭⎪⎫12,0的距离与到直线x =-12的距离相等,所以点P 的轨迹是以⎝ ⎛⎭⎪⎫12,0为焦点,直线x =-12为准线的抛物线,所以曲线C 的方程为y 2=2x .(2)证明 易知M (2,2),设点A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =my +b ,联立⎩⎪⎨⎪⎧x =my +b ,y 2=2x ,得y 2-2my -2b =0,所以⎩⎪⎨⎪⎧y 1+y 2=2m ,y 1y 2=-2b ,所以⎩⎪⎨⎪⎧x 1+x 2=2m 2+2b ,x 1x 2=b 2,因为k 1k 2=y 1-2x 1-2·y 2-2x 2-2=1, 即y 1y 2-2(y 1+y 2)=x 1x 2-2(x 1+x 2), 所以b 2-2b -4m 2+4m =0, 所以(b -1)2=(2m -1)2, 所以b =2m 或b =-2m +2.当b =-2m +2时,直线AB 的方程为x =my -2m +2过定点(2,2)与M 重合,舍去; 当b =2m 时,直线AB 的方程为x =my +2m 过定点(0,-2),所以直线AB 过定点(0,-2).1.(2019·全国Ⅰ)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( ) A .2sin 40° B .2cos 40° C.1sin 50°D.1cos 50°答案 D解析 由题意可得-b a=tan 130°, 所以e =1+b 2a2=1+tan 2130° =1+sin 2130°cos 2130° =1|cos 130°|=1cos 50°.2.(2019·全国Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p 等于( )A .2B .3C .4D .8 答案 D解析 由题意知,抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p2,0,椭圆的焦点坐标为(±2p ,0), 所以p2=2p ,解得p =8,故选D.3.(2019·全国Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( ) A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 答案 B解析 由题意设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),连接F 1A ,令|F 2B |=m ,则|AF 2|=2m ,|BF 1|=3m .由椭圆的定义知,4m =2a ,得m =a2,故|F 2A |=a =|F 1A |,则点A 为椭圆C 的上顶点或下顶点.令∠OAF 2=θ(O 为坐标原点),则sin θ=c a=1a.在等腰三角形ABF 1中,cos 2θ=2m2+3m 2-3m 22×2m ·3m=13,因为cos 2θ=1-2sin 2θ,所以13=1-2⎝ ⎛⎭⎪⎫1a 2,得a 2=3.又c 2=1,所以b 2=a 2-c 2=2,椭圆C 的方程为x 23+y 22=1,故选B.4.(2019·北京)已知椭圆C :x 2a 2+y 2b2=1的右焦点为(1,0),且经过点A (0,1).(1)求椭圆C 的方程;(2)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |·|ON |=2,求证:直线l 经过定点. (1)解 由题意,得b 2=1,c =1, 所以a 2=b 2+c 2=2.所以椭圆C 的方程为x 22+y 2=1.(2)证明 设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为y =y 1-1x 1x +1. 令y =0,得点M 的横坐标x M =-x 1y 1-1.又y 1=kx 1+t ,从而|OM |=|x M |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1.同理,|ON |=⎪⎪⎪⎪⎪⎪x 2kx 2+t -1.由⎩⎪⎨⎪⎧y =kx +t ,x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0,则x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2.所以|OM |·|ON |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1·⎪⎪⎪⎪⎪⎪x 2kx 2+t -1=⎪⎪⎪⎪⎪⎪x 1x 2k 2x 1x 2+k t -1x 1+x 2+t -12=2⎪⎪⎪⎪⎪⎪1+t 1-t .又|OM |·|ON |=2,所以2⎪⎪⎪⎪⎪⎪1+t 1-t =2.解得t =0,所以直线l 经过定点(0,0).。

圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是解析几何中的重要内容,由平面与一个双曲面、椭圆面或者抛物线面相交而得到。

在高中数学课程中,学习圆锥曲线是必不可少的。

本文将对圆锥曲线的定义、基本方程、性质和应用进行总结。

一、圆锥曲线的定义圆锥曲线就是平面与一个双曲面、椭圆面或者抛物线面相交而得到的曲线,在平面上的图像可以呈现出不同的形状。

二、圆锥曲线的基本方程1. 双曲线:双曲线的基本方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$。

其中,a和b分别为椭圆的两个半轴。

2. 椭圆:椭圆的基本方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。

其中,a和b分别为椭圆的两个半轴。

3. 抛物线:抛物线的基本方程为:$y^2=2px$。

其中,p为抛物线的焦距。

三、圆锥曲线的性质1. 双曲线的性质:双曲线的两个分支镜像对称于原点,焦点到曲线的距离之差为常数。

双曲线还具有渐近线,即曲线趋近于两根直线。

2. 椭圆的性质:椭圆的两个焦点在椭圆的长轴上,且焦点到任意点的距离之和为常数。

此外,椭圆也具有主轴、短轴和焦距等重要概念。

3. 抛物线的性质:抛物线的焦点位于抛物线的顶点上,且焦点到抛物线上任意点的距离等于焦点到该点的法线距离。

四、圆锥曲线的应用1. 双曲线的应用:双曲线在电磁学中有广泛的应用,例如电磁波的传播、天线的辐射以及电磁场分布等方面。

2. 椭圆的应用:椭圆在力学、天文学和导航等领域有着重要的应用。

例如椭圆轨道运动的物体、天体运动规律的研究以及导航系统中的卫星轨道等。

3. 抛物线的应用:抛物线在物理学和工程学中有着广泛的应用。

例如自由落体运动、射击运动以及卫星的发射轨道等。

综上所述,圆锥曲线是解析几何中的重要内容,通过本文的总结,我们了解了圆锥曲线的定义、基本方程、性质和应用。

在学习过程中,我们需要深入理解每个曲线的特点和应用领域,为解决实际问题提供有力的数学工具。

希望本文对你对圆锥曲线的学习有所帮助。

高中数学第二章圆锥曲线与方程2

∴抛物线方程为 y2=-8x 或 x2=-y.故选 B. [答案] B
14/85
2.焦点在 x 轴上,顶点到焦点的距离为 4 的抛物线
的标准方程是( )
A.y2=16x
B.y2=8x
C.y2=±8x
D.y2=±16x
15/85
[解析] 由已知p2=4,∴p=8,而抛物线开口是向左 还是向右无法确定,∴抛物线方程为 y2=±16x.故选 D.
6/85
④离心率 抛物线上的点 M 到焦点的距离和它到准线的距离之 比,叫做抛物线的________,用 e 表示,由定义可知,e =1.
7/85
(2)注意三个结论 ①抛物线只有一个焦点,一个顶点,一条对称轴, 一条准线,没有中心. ②抛物线 y2=2px(p>0)上任意一点 P(x0,y0)的焦半 径为 x0+p2. ③过抛物线的焦点且垂直于抛物线对称轴的一条 弦,称为抛物线的通径,通径长为 2p.
准线 ________ ________ ________ ________
性 范围 ________ ________ ________ ________
质 轴
____ ____ x轴
____
____
y轴
顶点
O(0,0)
离心率
e=1
10/85
[答案] 1.抛物线的轴 顶点 离心率 2.Fp2,0 F-p2,0 F0,p2 F0,-p2 x= -p2 x=p2 y=-p2 y=p2 x≥0,y∈R x≤0,y∈R x∈R,y≥0 x∈R,y≤0
所以中点为 P(3,2).
39/85
方法二:设直线 y=x-1 与抛物线 y2=4x 交于点 A(x1,y1),B(x2,y2),其中点为 P(x0,y0).则 y22=4x2, y12=4x1,y22-y21=4x2-4x1,∴y2-xy21-yx21+y1=4.因为 xy22--xy11=kAB=1,y2+y1=4,y0=2,x0=y0+1=3,故中 点为 P(3,2).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学总复习教学案
直线与圆锥曲线的位置关系
① 在理解和掌握两种圆锥曲线(双曲线只要求理解)的定义和标准方程的基础上,能熟练的解决直线和圆锥曲线的位置关系的一些问题。

② 会判断、解决直线与圆锥曲线的位置关系、交点个数、参数范围及对称问题。

③熟练运用所学知识,解决有关弦长、面积、中点的问题。

本节的重点是直线与椭圆的位置关系,直线与双曲线的位置关系,直线与抛物线的位置关系;数形结合、分类讨论、方程思想方法的应用。

本节的难点是弦长问题及中点弦问题。

纵观近几年的高考试题,直线与圆锥曲线的简单问题一般在选择题、填空题中考查,比
较容易;解答题中的直线与圆锥曲线的问题难度较大,为中难档次,时常作为压轴题出现。

直线与圆锥曲线的位置关系,由于集中交汇了解析几何中直线、圆锥曲线两部分的知识内容,还涉及到函数方程、不等式、向量、平面几何、数列等许多知识,形成了轨迹、最值、范围、定值、弦长等多种问题,因而为解析几何中综合性最强 ,能力要求最高的内容,也成为高考命题的重点和热点。

再现型题组
1.过点(2,4)作直线与抛物线=8x只有一个公共点,这样的直线有( ) A.一条 B.两条 C.三条 D.四条
2.双曲线=1的左焦点为F ,点P 为左支下半支上任意一点(异于顶点)则直线PF的斜率的变化范围是 ( )
A.(∞,0) B. (1,+∞)
C.(-∞,0)∪(1,+∞)
D.(-∞,-1)∪(1,+∞)
2
y 2
2
y x
3.直线y=kx+1与焦点在x轴上的椭圆=1恒有公共点,则m 的取值范围是( ) A. (0,1) B. (0,5) C. [1,+∞) D. [1,5)
巩固型题组
4、过点作直线与椭圆交于两点,若线段的中点为,求直
线所在的直线方程和线段的长度.
5、已知椭圆,试确定的取值范围,便得椭圆上存在不同的两点关于直线对称。

提高型题组
6、设椭圆方程为,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足,点N 的坐标为,当l 绕点M 旋转时,求: (1)动点P 的轨迹方程; (2)的最小值与最大值.
反馈型题组
7.设坐标原点为O ,抛物线与过焦点的直线交于两点,则( )
(A)
(B) (C)
(D) 8.
不论取值何值,直线与曲线总有公共点,则实数的取
值范围是( )
(A) (B) (C) (D) 9.点P在椭圆上,则点P到直线3x-2y-16=0的距离的最大值
是( )
A.
B. C. D. m
y x 2
25+
(1,1)P -22
142
x y +=,A B AB P AB AB 22
:143
x y E +=m E :4l y x m =+14
2
2
=+y x )(21OB OA OP +=
)2
1
,21(||2
2y x =,A B OA OB ⋅=
343
4
-33-k (2)y k x b =-+2
2
1x y -=b ([(2,2)-[2,2]-28472
2
=+y x 13131213131613132413
28
13
10.过双曲线(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、
N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_______ 11.点是椭圆的焦点,P是其上的一动点,当为钝角时,
点P的横坐标的取值范围是
12.椭圆中过点的弦恰好被点平分,则此弦所在的直线方程是
13、(2007年山东省枣庄市模拟考试)如图,已知直线l 与抛物线相切于点P (2,1),且与x 轴交于点A ,O 为坐标原点,定点B 的坐标为(2,0). (I )若动点M 满足,求点M 的轨迹C ;
(II )若过点B 的直线l ′(斜率不等于零)与(I )中的轨迹C 交于不同的两点E 、F
(E 在B 、F 之间),试求△OBE 与△OBF 面积之比的取值范围.
曲线与方程
了解方程的曲线与曲线的方程的对应关系.
本节的重点是曲线的方程及方程的曲线的概念及求曲线方程的步骤,坐标法思想的本质理解及应用.
22
221x y a b
-=21,F F 36942
2
=+y x 21PF F ∠22
142
x y +=(1,1)P P y x 42
=0||2=+⋅AM BM AB
本节的难点是曲线的方程和方程的曲线的理解.
《普通高中数学课程标准》及《考试说明》要求“能够根据所给条件选择合适的坐标系,求曲线方程,并由方程研究曲线的性质”。

这里既有思想,又有方法。

本节考查会以选择或填空的形式求常见曲线的方程或研究常见曲线的性质。

求曲线的性质也会在 解答题中出现,属于中低档题,常见的方法有直接法、定义法、待定系数法、动点转移法,求曲线的方程是高考中的热点,常见方法应熟练掌握并能灵活应用。

再现型题组
1.已知点、,动点,则点P 的轨迹是( )
圆 椭圆 双曲线 抛物线
2.已知椭圆的两个焦点分别是F 1,F 2,P 是这个椭圆上的一个动点,延长F 1P
到Q ,使得|PQ |=|F 2P |,求Q 的轨迹方程是
巩固型题组
⒊在△PMN 中,tan ∠PMN =,tan ∠MNP =-2,且△PMN 的面积为1,建立适当的坐标
系,求以M 、N 为焦点,且过点P 的椭圆的方程.
4、如下图,P 是抛物线C :y =
x 2
上一点,直线l 过点P 且与抛物线C 交于另一点Q .若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程.
)0,2(-A )0,3(B 2
),(x PB PA y x P =⋅满足()A ()B ()C ()D 13
422=+y x 2
1M N
P
2
1
提高型题组
5、如图,在平面直角坐标系中,N 为圆A 上的一动点,点B (1,0),
点M 是BN 中点,点P 在线段AN 上,且 (1)求动点P 的轨迹方程;
(2)试判断以PB 为直径的圆与圆
的位置关系,并说明理由。

反馈型题组
6.x =表示的曲线是( )
A.双曲线
B.椭圆
C.双曲线的一部分
D.椭圆的一部分
7.在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +b y 2=0(a >b >0)的曲线大致是( D )
8.设k >1,则关于x 、y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是( )
A.长轴在y 轴上的椭圆
B.长轴在x 轴上的椭圆
C.实轴在y 轴上的双曲线
D.实轴在x 轴上的双曲线
9.(2007江西)一动点到两坐标轴的距离之和的2倍等于动点到原点距离的平方,则动点的轨迹方程为( )
16)1(:22=++y x .0=⋅42
2
=+y x 2
31y
-P
A.
B. C.
D.
10.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的焦点作椭圆的焦点,那么具有最短长轴的椭圆方程为_________.
11.已知两点M (-1,0),N (1,0)且点P 使成公差小于零的等差数列,
(Ⅰ)点P 的轨迹是什么曲线?
(Ⅱ)若点P 坐标为,为的夹角,求tan θ。

y x y x 222
2+=+y x y x 222
2-=+y x y x 222
2
+-=+y x y x 222
2
+=+⋅⋅⋅,,),(00y x θ。

相关文档
最新文档